

Panorama
Enterprise Server

Page 2 Panorama Handbook

Panorama Enterprise Server Handbook (Version 5.5)
Copyright © 2008, ProVUE Development,

All Rights Reserved

ProVUE Development
18685-A Main Street PMB 356
Huntington Beach, CA 92648

USA

www.provue.com

Page 1

Table of Contents

– Click on any entry to jump to the page —

System Requirements (Server)... 13
System Requirements (Client) .. 13
System Configuration (Local Database Sharing).. 14
System Preparation (Database Web Publishing).. 14
System Preparation (Internet Database Sharing) ... 14
Converting a Single User Database into a Shared Multi-User Database ... 15
Shared vs. Single User Database Operation .. 15
Converting a Shared Multi-User Database Back to Single User... 15
Removing a Database from the Server... 15

Introduction ..17
Types of Networks .. 17
Client/Server Modes ... 17
Database Sharing Concepts and Operation ... 18

High Performance.. 19
Low Network/Server Load ... 19
Offline Operation.. 19
High Safety Margin .. 19

Zero-Loss Interruption Recovery.. 19
Automatic Live Backups ... 19
Detailed Logging and E-mail Notification ... 19
Rebuild from any client ... 20
No delicate index to get corrupted.. 20

How Distributed Data Sharing Works .. 20
Opening a Database .. 21
The Synchronization Process... 22

A Note about Time Stamps ... 22
Editing and Record Locking ... 22
Modifying Data Offline .. 27

Database Web Publishing Concepts and Operation... 28
Panorama Forms on the Web.. 28
Database Tables on the Web .. 29
Custom Web Programming ... 29

Page 2 Panorama Handbook

Installation, Configuration & Management ...31
System Requirements... 31
System Preparation .. 32

Setting up the Computer Name ... 32
Enable Remote Apple Events.. 33
Setting Up The User Account .. 33
A Brief Introduction to Static IP Addresses.. 34

Setting up a Server Directly Connected to the Internet .. 34
Setting up a Server Connected to the Internet using a Router... 37

Enabling Internet Sharing .. 38
Ensuring Nonstop Server Operation.. 39
Enabling Remote Server Operation... 40

Installing the Panorama Server Software ... 43
Launching the Server... 44
Shutting Down the Server.. 45

Shutting Down the Server with Open Sharing Sessions .. 46
Setting up Panorama Server to Launch Automatically .. 47
Panorama Server Product Activation... 48

Panorama Server Licensing Options.. 48
Panorama Client Licensing Options ... 48
Panorama Server Demo Mode... 48

Basic Server Configuration ... 49
Unlocking the Server Configuration... 49
Changing the Server Password... 51

Remembering the Password .. 51
Changing the Auxiliary Passwords .. 52
Changing the Server Name ... 53
Local Network vs. Internet Settings ... 54
Enabling Database Sharing... 55

Enabling Database Sharing over the Internet .. 55
Enabling Database Web Publishing .. 56

Setting the IP Address/Domain Name.. 56
Locking the Server Configuration ... 57

Client Configuration .. 58
Configuring Local Database Sharing... 58

Configuring Local Database Sharing to use TCP/IP instead of Remote Apple Events...... 59
Configuring Bonjour.. 60
Bonjour Threshold .. 60
Locking the Bonjour Configuration ... 60
Debugging Local Database Sharing Connection Problems ... 61

Configuring Remote (Internet) Database Sharing ... 62
Further Testing the Sharing Connection.. 63
Testing Web Database Publishing (Server Status) ... 64

Restricting Access to the Server Status and Database Web Link Pages 65
Server Management (The Server Administration Wizard) .. 68

Choosing the Server to Manage.. 69
Updating the Snapshot... 69

Server Snapshot Information... 69
Server Database List ... 70

Listing Database Users .. 71
Forcing a Database to Close.. 71
Listing Locked Records .. 72
The Pop-up Database Context Menu... 72

Page 3

Database Online/Database Offline.. 73
Display Users .. 73
Delete From Server... 73
Browse Database Web Links .. 73
Close Database... 74

Adjusting the Table Size... 75
Disabled Sharing/Web Publishing Warning.. 76

Server Memory Usage... 77
Adjusting Panorama’s Memory Allocation.. 77

Active Session List... 78
Listing Open Databases ... 79
Forcing a Session to Close .. 79
Adjusting the Table Size... 79

Memorizing Server Passwords .. 80
Changing the Auxiliary Passwords .. 80
Monitoring Server Logs.. 82

Viewing a Log... 82
Searching the Log .. 83
Viewing a Different Log .. 84
Refreshing the Log ... 84
Server Log Configuration ... 85

Configuring the Notification Wizard... 85
When does the Notification Wizard appear? ... 86
Using Growl for Notifications ... 87
Using the Notification Wizard in your own database applications ... 88

Advanced Server Configuration .. 89
Notification Options.. 90

Configuring an Email Channel.. 90
Backup Options ... 91
Advanced Options ... 92

Automaticaly Unlock Records .. 92
Rebound After Server Crash .. 92
Ask to Confirm Before Quitting Server ... 93
Automatically Hide Server When Launched... 93
Enable Server Activity Indicator ... 94

Internal/Debug Options.. 95
Editing the Server Configuration Text File (For Experts Only)... 96

Editing the ServerConfig.dat File Directly on the Server .. 97
Server Configuration Tags ... 98

Online Database Sharing...103
Creating a Shared Database .. 103

Duplicate Database Conflicts on the Server .. 108
Transferring the Database to Other Client Computers .. 110

Using the Download Shared Databases Wizard .. 110
Downloading Offline Databases.. 112

Downloading with the Server Administration wizard. ... 113
Transferring the Database Manually .. 114

Opening a Shared Databases... 115
Debugging Local Database Sharing Connection Problems .. 115
Opening a Shared Database on the Internet ... 116
Connecting an Already Open Database to the Server .. 117
Disconnecting from a Server ... 118

Page 4 Panorama Handbook

Changing the Design of a Shared Database .. 119
Sharing “Generations” ... 119
Starting a New Sharing Generation... 119
Adding and/or Removing Fields... 121
Uploading the New Sharing Generation .. 122
Distributing the New Database Generation to All Clients .. 122
Design Changes to Forms (Graphics) and/or Procedures (Programming).................................. 123
New Sharing Generation Options and Advanced Topics .. 125

Synchronization vs. Force Sync ... 125
Removing Sharing History.. 125
Making a New Sharing Generation Manually ... 128

Take the Database Offline .. 128
Synchronize/Force Sync ... 128
Download Server Variables... 128
Convert Local Copy of Database to Single User... 128
Make Design Changes.. 128
Remove Sharing History (Optional) .. 129
Re-Share & Re-Upload Database... 129
Distributing the New Shared Generation of the Database .. 129

“Unsharing” a Shared Database ... 130
Forcing a Shared Database Back to Single User .. 132
Permanently Deleting a Database from the Server ... 133

Shared vs. Single User Database Operation .. 135
Editing Data and Record Locking ... 136

Record Lock Timeout (Client) .. 139
Changing the Record Lock Timeout... 140

Record Lock Timeout (Server)... 142
Locked Records Wizard... 142

Finding a Locked Record ... 142
Manually Unlocking a Record... 143
Manually Unlocking All Records in a Database.. 143

Synchronization .. 144
Synchronization and Record Order ... 145
Regular Synchronization vs. Force Synchronization ... 147

Adding New Records .. 147
Deleting Records .. 147
Working With Summary Records.. 147

Toggling Summary Records (not!)... 148
Automatic Record Numbering... 148

Manually Changing the Record Number Counter.. 151
Accessing the Next Record Number in a Procedure.. 152

Saving the Database... 152
Revert to Saved... 152
When does the Server Save?.. 152
Handling Interruptions in Server Operation (Crash Recovery) .. 153

Programming Shared Databases.. 154
Record Locking.. 154

Implicit Record Locking .. 154
Explicitly Locking/Unlocking Records in a Procedure .. 154
What Records are Locked?.. 155
Forcing the Server to Unlock All Records .. 156
Forcing the Server to Unlock a Specific Record... 156
Forcing the Server to Lock a Specific Record .. 156

Page 5

Temporarily Disabling Record Locking (and Server Updates)... 157
The info("serverupdate") Function.. 157

Synchronizing .. 158
Force Synchronization.. 158
Automatic Pre and Post Synchronization Procedures.. 158

Server Variables (Shared Variables) ... 159
Accessing Server Variables ... 160
Adjusting a Server Variable (Atomic Calculation)... 160
Maintaining Server Variables when a database is Re-Shared ... 161

Data Transformations .. 162
Minimizing the amount of data changed by Fill commands.. 162

ServerFormulaFill — A Much Faster Option for Select/Formula Fill Operation 163
ServerFormulaFill Formula Restrictions ... 164
Record Locking and the ServerFormulaFill Statement... 165
Minimizing the amount of data changed by ServerFormulaFill commands........................ 165

Looking Up Data From Another Database... 166
Temporarily Disabling Direct Lookups from the Server.. 166

Controlling and Monitoring the Server Connection.. 167
ConnectToServer Statement.. 167
DropServer Statement.. 167
The info(“serverconnection”) Function ... 167
The sharedusers(Function .. 167
The servername(Function ... 168
The serverdatabasename(Function .. 168

Shared Database Configuration .. 168
The EESetDBConfig Statement ... 168
The EEGetDBConfig Statement... 169
The Configuration Dictionary.. 169
Deleting a Database from the Server ... 171

Offline Database Sharing...173
Offline Sharing Options... 173

Is Offline Modification of Existing Records Appropriate for your Application?............................. 174
Is Adding New Records While Offline Appropriate for your Application? 175

Deleting Records While Offline ... 175
Two Way Synchronization .. 176

Managing Synchronization Conflicts.. 176
Reviewing Conflicts in Large Fields ... 183
Overriding by Record (instead of Field).. 183

Making and Dropping Server Connections ... 184
Designing a Database Primarily for Offline Operation .. 189

Configuring a Client Database for Primarily Offline Operation .. 189
Automatically Connect.. 189
Automatically Synchronize ... 189
Offline changes synchronized with server later.. 190
Offline changes are local only .. 190
Allow deleting records .. 190

Mixing Offline and Online Clients... 191
Simulating Offline Operation (for testing).. 192

Web Publishing ..193
Web Publishing a Database.. 193

Preparing the Web Layout and Logic .. 194

Page 6 Panorama Handbook

Uploading the Database to the Server... 194
Database Sharing and Web Publishing.. 195
Web Publishing Options ... 196

Open automatically when server starts up .. 196
Automatically open as needed .. 196
Close database after each access .. 196
Automatically save database after each access ... 196
Use secret windows .. 196

Server Database Name.. 197
Uploading the Database to the Server ... 197

Testing a Web Database ... 199
The Server Status Page ... 200
The Database Web Links Page.. 202
Testing a Web Form... 204
Testing a Web Procedure... 206
Debugging Web Link Page Problems .. 207
Disabling the Web Link Page ... 207

Modifying a Web Published Database .. 208
Updating a Web Form/Adding a new Web Form... 208
Updating All Web Forms.. 209
Updating a Table/Adding a new Web Table Template .. 210
Updating a Procedure/Adding a new Procedure ... 211
Uploading Multiple Procedures.. 211
Synchronizing data between the original copy and the server .. 212

Downloading Data from the Server .. 212
Uploading Data to the Server ... 212

Removing a Database from the Server ... 212
Associating a Database with Multiple Servers (Clones) .. 214

Creating a Clone .. 214
Updating a Clone Database’s Procedures and Forms ... 216
Changing the Primary Server ... 217
Distributing Shared Clients for Clone Servers.. 217

Designing Your Web Database Application .. 220
Web Database URL Format .. 220
Standard Actions ... 222
Custom Actions.. 222
Action Sequences.. 222

Standard Data Entry Sequence.. 222
Search —> List —> Detail Sequence.. 226

Web Forms...231
Converting a Panorama Form into a Web Form... 231

Converting a Panorama Form into a Web Page Form .. 232
The Web Form Converter Wizard .. 235

Preparing a Form... 236
Conversion Limitations ... 236
Fields and Variables in Web Forms ... 238

Data Cells and Text Editor SuperObjects ... 238
Data Buttons (Checkboxes and Radio Buttons).. 238
Pop-Up Menus .. 239
Lists... 239
Push Buttons... 240

Form Actions and Sequence ... 241

Page 7

Standard Form Action — FORMDUMP.. 242
Standard Form Action — NEWRECORD... 243

Setting Up a Custom Response Page .. 243
Checking for Required Fields/Preventing Missing Fields.. 245

Standard Form Action — QUERY .. 249
Searching All Fields .. 251
Searching Multiple Fields instead of All Fields.. 252
Handling Failed Searches ... 253

Standard Form Action — UPDATERECORD... 253
Custom Form Actions... 254

Advanced Form Techniques.. 255
Font selection ... 255
Embedding HTML in a Text Display SuperObject .. 256
Linking to Other Web Pages .. 259
Linking to Blank Panorama Forms (from a Panorama Form)... 260
Linking to Blank Panorama Forms (from a standard web page) .. 261
Linking to Panorama Procedures (from a Panorama Form) .. 261
Linking to Panorama Procedures (from a standard web page).. 262
Linking to a JavaScript Script ... 263
Displaying Images in a Web Form ... 264
Displaying Images Based on a Field or Variable.. 266
Making an Image Link to Another Page ... 267
Making an Image a Submit Button ... 268
Making an Image a JavaScript Button.. 269
Triggering JavaScript with a Button.. 270
Hidden Data ... 271

Customizing the form HTML (Advanced)... 273
Customize Page Dialog.. 273

Web Page Title.. 273
Form Tag Parameters ... 273
Form Prefix.. 273
Form Suffix.. 273
Style Tag Parameters ... 274
Style Prefix .. 274
Style Suffix .. 274

Page Template Dialog.. 274
Changing the Page Background Color.. 275
Adding JavaScript to a Page... 275
Building a form in an external program. .. 276

Web Tables..277
Web Tables... 277

Text Export Wizard Refresher ... 277
Creating a Template... 278
Using an Existing Template.. 279

Configuring the Table Columns (Title, Formula, Width and Alignment)....................................... 280
Customizing the Table Appearance... 283

Web Page Title... 284
Table Header Form .. 285
Table Margins... 286
Table Border... 287
Cell Spacing ... 288
Cell Padding ... 288

Page 8 Panorama Handbook

Table Font .. 289
Text Size .. 290
Text and Background Colors.. 291

Color Selection Techniques .. 291
Main Text Color... 294
Page Background Color .. 295
Title Color.. 295
Title Background Color.. 296
Table Data Color ... 296
Row Background Color ... 297
Multiple Background Colors .. 297

Linking a Table with a Query Form.. 299
Uploading a Table to the Server .. 300

Testing the Query and Table.. 301
Splitting a Long Table into Multiple Pages... 303

The Multiple Page Table Dialog ... 304
Records per Page ... 304
Page Navigation Font.. 305
Text Size ... 305
Previous and Next Page Caption .. 306
Page Navigation Header and Footer... 306

Linking Individual Table Rows to a Detail Form... 307
The Individual Page Linking & Sorting dialog... 308

Link Action... 308
Link Table Column .. 309
Database Link Fields... 310
Broken Links ... 311
Sort by... 312

Editing/Updating a Record... 313
Preparing a Database Update Form .. 314

Broken Record Identification ... 314
Customizing the table HTML (advanced) .. 315

Web Programming 101 ..317
Creating a Simple Guestbook Web Database .. 317

Creating Web Procedures ... 318
Testing a Procedure in Advance .. 318

Create a Web Form ... 319
Assigning a Procedure to the Form.. 320
Testing the Form and Procedure using Simulation .. 321

Uploading the Guestbook Database.. 323
Testing Web Procedures on the Server... 324

Modifying a Web Procedure ... 325
Testing a Procedure Assigned to a Web Form .. 325

Web Procedure Inputs and Outputs.. 328
Web Procedure URLs.. 329

Upper and Lower Case Characters in Procedure Names and Extra Parameters 330
Database and Procedure Names Containing Spaces.. 330
Generating a Web Procedure URL Without Typing ... 330

Run Web Procedure in the Debug menu .. 330
Server Status Page ... 331

Linking to a Web Procedure from Regular Web Pages.. 331
Linking to a Web Procedure from another Web Procedure.. 331

Page 9

Linking to a Web Procedure from a Form .. 331
URL Extra Parameters ... 332

Testing Procedures with Extra URL Parameters .. 333
HTTP Request Information .. 336
Form Input Data... 337

Accessing Form Item Values in a Formula... 337
Assigning a Form Item Value into a Field or Variable .. 338
Getting a List of Form Item Names .. 338
What Form Is This? .. 338
Hidden Form Items... 339

Processing Hidden Form Items in a Procedure .. 339
Cookies.. 339
Generating a Web Page .. 340

The cgiHTML Global Variable .. 340
HTML (HyperText Markup Language).. 341

JavaScript and CSS .. 341
Web Procedure Errors.. 342
Cookie Output .. 344

Getting Procedures onto the Server ... 345
Uploading All Procedures when the Database is Uploaded .. 345

Uploading All Procedures via a New Sharing Generation.. 345
Updating a Single Procedure/Adding a new Procedure .. 345

Uploading and Testing a Web Procedure .. 346
Uploading Multiple Procedures with the Database Sharing Options Wizard............................... 347

Testing Web Procedures with the CGI Simulator Wizard ... 348
Query Mode (get vs. post) ... 348
Testing Get Queries... 350

Repeating a Previous Query .. 351
Testing Get Queries from the Debug Menu ... 352

Testing Post Queries (Forms).. 354
Testing Post Queries Directly from a Panorama Form... 356
Testing Post Queries Directly from a Panorama Procedures... 356
Testing Post Queries from a Subroutine .. 357
Testing Forms in Separate HTML Files.. 358

Simulating Multiple Request Sequences ... 360
Navigating Within a Session... 365
Re-Simulating a Previous Query .. 366
Starting a New Session .. 366

Disabling Automatic Browser Preview... 366
Simulating Cookies .. 367

Generating HTML ..369
What is HTML? ... 369

Other Web Languages (JavaScript, CSS) ... 370
Directly Generating an HTML Page .. 370

Customizing the HTML Page Header .. 373
Placing Fields and Variables into the HTML Page .. 374

Fields or Variables with Special Characters... 375
Links to Other Web Pages... 378
Images... 379

Generating a Page Using a Panorama Form Template.. 379
The RenderWebForm(Function .. 379
Using a Web Form to Display Data ... 380

Page 10 Panorama Handbook

Specifying the Record to Display ... 381
Customizing the Web Form’s HTML Header (Page Title, etc.) .. 382

Using Variables to Customize a Web Form on the Fly .. 383
Which Came First, the Chicken (Web Template) or the Egg (Variables)? 385

Using a Web Form to Submit Data .. 386
Designing Web Forms for Submitting Data .. 386
Displaying a Blank Web Form .. 387
Pre-Filling Database Fields .. 388
Pre-Filling Variables ... 392
Setting Hidden Form Values .. 393

What Record Are We Talking About? ... 395
“Roll Your Own” Web Navigation... 395

Searching the Database in Reverse... 397
Using WebURLFind For Navigation in Shared Databases.. 398
Using WebURLFind for Navigation in Non-Shared Databases ... 401

Generating an HTML Table from a Panorama Array .. 403
Array Rendering Options ... 404

Table Column Layout ... 404
Table Font, Font Size and Color.. 408

Table Borders and Spacing.. 408
Table Background Colors. .. 409

Displaying an Array in a Web Form... 411
Generating an HTML Table or List from Multiple Records.. 413

What Records are we Talking About? (The WebSelect Statement).. 413
Using Variables in a WebSelect Statement.. 413
Other Web Selection Statements ... 414
Why Not Use the Select Statement?.. 414

Generating HTML Tables Using a Web Table Template... 414
Generating HTML Tables Without a Template (“from scratch”)... 414

Table Field Layout.. 415
Table Font, Font Size and Color .. 417
Table Borders and Spacing.. 417
Table Background Colors. .. 418
Table Sort Order... 420
Linking Individual Table Rows to Detail Pages .. 421
Splitting a Long Table into Multiple Pages ... 424
Displaying an Empty Table... 426
Table HTML Layout.. 427
Modifying a Web Table Template On the Fly ... 427

Rendering a List (and lists, Formatted Tables, JavaScript) ... 428
Linking a Table or List with a Detail Form .. 432

Processing Web Forms..433
Accessing Web Form Information... 434

What Form was Submitted? (The WebFormName() Function) ... 434
What Items were Submitted? (The WebFormItems() Function) .. 434

Hidden Items .. 434
Accessing Form Item Values in a Formula .. 435
Assigning a Web Form Item Value into a Panorama Field or Variable.. 435
Assigning Multiple Items into Multiple Fields and/or Variables.. 435
Validating Data Entry (Error Checking).. 437

Generating a List of Data Entry Errors ... 437
Buffered Data Entry ... 438

Page 11

Copying from the Variable Buffer into the Database .. 440
Data Pre-Processing in the Variable Buffer.. 441
Validating Data in the Variable Buffer .. 441

Identifying Items with Data Validation Problems ... 442
Displaying an Image Instead of an Exclamation Point .. 444
Displaying Error Explanations ... 445

Pre-Filling Database Fields when Displaying a Form that uses Buffered Data Entry 447
Non Data Entry Forms (Searching, Navigation, etc.)... 448

Pre-Filling Non Data Entry Forms .. 450
Using Cookies to Remember Form Values .. 451

Advanced Topics ...453
Working with Cookies ... 453

Cookie Name and Value.. 453
Creating a Cookie .. 453

Cookie Expiration Date... 453
Cookie Options... 454

Retrieving a Cookie Value ... 454
Listing Cookies ... 454

Building a Very Simple Shopping Cart... 454
Displaying the Shopping Cart ... 455
Adding a New Item to the Cart ... 457
Clearing the Shopping Cart .. 459

Accessing Additional Web Server Information.. 460
Non HTML Content Types (text/plain) .. 461
Custom Handling of Programming Errors ... 462

Writing a Procedure to Handle Programming Errors ... 463
Opening and Closing Databases on the Server.. 464
Combining Web Publishing with Database Sharing.. 465

Web Publishing vs. Record Locking .. 465
Manually Locking and Unlocking Records ... 465
Checking Record Lock Status .. 465

Running a Program Every Minute on the Server .. 466
Web Based Data Entry with the WebFormToDatabase Statement .. 467

... Web-
FormToDatabase — Displaying Form Items... 471

WebFormToDatabase — Adding a New Record... 472
Setting up a Custom Response Page .. 473
Forcing Input to Upper or Lower Case ... 473
Checking for Missing Fields ... 473
Data Entry for Number and Dates .. 476
Saving the Modified Database ... 476
WebFormToDatabase — Modifying an Existing Record.. 476
Handling Missing or Ambiguous Records .. 477

WebFormToDatabase — Modifying an Existing Record with Embedded Record ID 477
Manually Creating Web Forms for use with the WebFormToDatabase Statement 478

Web Form Based Data Selection.. 479
Searching All Fields ... 482

Rendering Using an External Text File as a Template ... 483
Rendering Using an External Text File containing a Form as a Template 484

Enterprise Sharing vs. Butler ...489
System Architecture.. 489

Page 12 Panorama Handbook

Speed .. 489
Database Configuration ... 490
Data Storage Flexibility.. 490

Client Subsets... 490
Converting from Butler to Enterprise Edition Server ... 491

Reprogramming your Application .. 491

Secrets of the Enterprise Folder ..493
cgi-bin ... 494
Log Cache... 494
Logs .. 494
PanoramaCGI ... 494
Public Databases .. 494
ServerConfig.dat ... 494
ServerList.dat.. 494
temp .. 495

Panorama Enterprise Quick Reference

We highly recommend that you carefully read and study the following detailed chapters before setting up
and using the Panorama Enterprise Edition Server. Don’t try to learn how to use the system from the check-
lists below!

Once you are familiar with the material the following checklists will help keep you organized and help you
follow all the steps for each task in the proper order.

System Requirements (Server)

To run the Panorama Enterprise Server you’ll need a system that meets these requirements:

• Macintosh (PPC or Intel) Computer
• Memory at least 110% the size of all combined server databases (200% recommended)
• OS X 10.4 (Tiger) or later
• Panorama 5.5 Server License (database sharing, web, or both)

System Requirements (Client)

Each system that needs to access shared databases must meets these requirements:

• Macintosh (PPC or Intel) Computer
• OS X 10.3 (Panther) or later (OS X 10.4 Tiger recommended)
• Panorama 5.5 or Panorama Direct 5.5 License
 Personal Use License may only log on from one computer at at time.

It’s not required, but we highly recommend you install Growl for notifications. See “Using Growl for Notifi-
cations” on page 87 for more information on installing and using this open source package.

Page 14 Panorama Handbook

System Configuration (Local Database Sharing)

Before you can begin using the Panorama server to share databases over the local network you’ll need to
properly configure your server’s operating system. Most of this configuration is done using the OS X System
Preferences application, which you can launch from the dock.

• Set up the computer name (see “Setting up the Computer Name” on page 32)
• Enable remote Apple Events (see “Enable Remote Apple Events” on page 33)
• Turn off sleep (see “Ensuring Nonstop Server Operation” on page 39)
• Enable VNC for remote operation
 (optional, see “Enabling Remote Server Operation” on page 40)
• Install Panorama 5.5 w/server (see “Installing the Panorama Server Software” on page 43)
• Enable automatic server restart when system reboots
 (optional, see “Setting up Panorama Server to Launch Automatically” on page 47)
• Activate Panorama Server license (unless using demo version)
 (see “Panorama Server Product Activation” on page 48)

Once the system is set up you’ll need to configure the Panorama Server itself:

• Launch the Panorama Server (see “Launching the Server” on page 44)
• Unlock the server (see “Unlocking the Server Configuration” on page 49)
• Change the server password (see “Changing the Server Password” on page 51)
• Change the server name (see “Changing the Server Name” on page 53)
• Enable database sharing (see “Enabling Database Sharing” on page 55)
• Test the server (see “Configuring Local Database Sharing” on page 58)

System Preparation (Database Web Publishing)

Before you can begin using the Panorama server for publishing database information on the web you’ll need
to properly configure your server’s operating system. Most of this configuration is done using the OS X Sys-
tem Preferences application, which you can launch from the dock.

• Make sure the computer has a static IP address
 (see “A Brief Introduction to Static IP Addresses” on page 34)
• Turn on Personal Web Sharing (see “Enabling Internet Sharing” on page 38)
• Set up the computer name (see “Setting up the Computer Name” on page 32)
• Turn off sleep (see “Ensuring Nonstop Server Operation” on page 39)
• Enable VNC for remote operation
 (optional, see “Enabling Remote Server Operation” on page 40)
• Install Panorama 5.5 w/server (see “Installing the Panorama Server Software” on page 43)
• Enable automatic server restart when system reboots
 (optional, see “Setting up Panorama Server to Launch Automatically” on page 47)
• Activate Panorama Server license (unless using demo version)
 (see “Panorama Server Product Activation” on page 48)

Once the system is set up you’ll need to configure the Panorama Server itself:

• Launch the Panorama Server (see “Launching the Server” on page 44)
• Unlock the server (see “Unlocking the Server Configuration” on page 49)
• Change the server password (see “Changing the Server Password” on page 51)
• Change the server name (see “Changing the Server Name” on page 53)
• Enable web publishing (see “Enabling Database Web Publishing” on page 56)
• Set public IP address (see “Setting the IP Address/Domain Name” on page 56)
• Test the server (see “Testing Web Database Publishing (Server Status)” on page 64)

System Preparation (Internet Database Sharing)

If you want to use the Panorama server to share databases over the entire internet (instead of just the local
network) you’ll need to use both checklists above.

Page 15

Converting a Single User Database into a Shared Multi-User Database

Follow this checklist to convert a single user database into a multi-user database. For more detailed instruc-
tions see “Creating a Shared Database” on page 103.

• Open the single user database
• Open the Database Sharing Options wizard (in the Sharing submenu of the Wizard menu)
• If not already selected, use the first pop-up menu to select the database.
• Use the second pop-up menu to select the server
• Check the Local Database Sharing checkbox
• Check the Internet Database Sharing checkbox (optional)
• Specify the auto-timeout value (optional, see “Record Lock Timeout (Client)” on page 139)
• If a database with this name already exists on the server, type in an alternate name
• Press the Apply Changes button or choose Apply Option Changes from the Maintenance menu
• Confirm that the settings are correct and press the Apply Options button.
• Transfer the client database to the other clients
 (see “Duplicate Database Conflicts on the Server” on page 108)

Shared vs. Single User Database Operation

Operation of shared Panorama databases is very similar to single user use, but there are some differences. See
“Shared vs. Single User Database Operation” on page 135 for a summary.

Converting a Shared Multi-User Database Back to Single User

Follow this checklist to convert a multi-user database into a single user database. For more detailed instruc-
tions see “Saving the Database” on page 152.

• Open the shared database
• Synchronize the database (optional, to make sure you have the most up-to-date data)
• Open the Database Sharing Options wizard (in the Sharing submenu of the Wizard menu)
• Uncheck the Local Database Sharing checkbox
• Press the Apply Changes button or choose Apply Option Changes from the Maintenance menu
• Confirm that the settings are correct and press the Apply Options button.

Note: The shared database remains on the server and can still be accessed by other users.

Adding or Removing Fields from a Shared Database

Follow this checklist to add or remove fields from a shared database. See “Changing the Design of a Shared
Database” on page 119 for a more detailed explanation.

• Start a new shared generation of the database (see above)
• Using the Setup menu or the Design Sheet, add and/or remove fields
• Re-share the database

Removing a Database from the Server

Follow these steps to completely remove a database from the server.

• On any client computer, open the Server Administration wizard
 (see “Server Management (The Server Administration Wizard)” on page 68)
• Locate the database in the wizard’s list of server databases
• Uncheck the Online option for this database
 (see “Database Online/Database Offline” on page 73)
• Hold down the Control key and click on the database name
• Select Delete From Server from the pop-up menu (see “Delete From Server” on page 73)

This command is permanent and cannot be reversed or undone.

Page 16 Panorama Handbook

Chapter 1: Introduction

The Panorama Enterprise Edition Server extends the reach of Panorama beyond a single computer to a net-
work of connected computers. Using this server you can share data on a local network or even across the
entire Internet.

Types of Networks

From Panorama’s point of view there are two types of networks: local networks and the internet. A local area
network (LAN) is a computer network covering a small local area, like a home, office, or building. For Pan-
orama to consider a network a local network, all of the computers on the network must be connected to a sin-
gle router. Any other configuration is considered the internet.

When used on a local network, Panorama clients can use Apple’s Bonjour (formerly Rendezvous) technology
to automatically locate and connect to the Panorama Enterprise Edition Server (even if there are multiple
servers on the network). Panorama normally uses Remote Apple Events to communicate on local networks,
though direct TCP/IP connections are also allowed (but slower).

When used on the internet (any non-local network), the server address (domain name or IP address) must be
manually set up on each client. The process only takes a few seconds per client (similar to typing in the url in
a web browser), but is not automatic. Panorama uses TCP/IP to communicate over the internet.

Client/Server Modes

The Panorama Enterprise Edition Server can operate in two different client/server modes: database sharing
and web publishing. The mode used depends on the client software. In database sharing mode the client is
Panorama itself. Database sharing mode allows you to use Panorama on your local computer in almost the
same way you would with a single user database. The server co-ordinates data flow between multiple clients
so that data can be shared seamlessly. In most cases a single user Panorama database can be converted to a
shared database with almost no preparation and will continue to operate almost identically to the single user
version.

In web publishing mode the client is a web browser — Internet Explorer, Safari, Firefox, etc. This mode
allows any authorized user on the internet to access and modify the database. Unlike database sharing mode,
no copy of Panorama is required on the client computer, anyone with a web browser can join in. There are,
however, some downsides to this mode. First, a database must be prepared to work in this mode. For simple
applications this may take only an hour or two, while more complex applications may take hundreds of
hours. Secondly, the user interface in web publishing mode is limited to the capabilities of a web browser.
Advanced Panorama features like Clairvoyance®, Smart Dates™, Super Matrix, Elastic Forms, Word Process-
ing, Custom Menus, Automatic Capitalization, Phone Dialing and more are not available when using a web
based database. If you need universal global access to your database, however, web publishing mode is the
way to go.

Page 18 Panorama Handbook

Database sharing mode and web publishing mode are not mutually exclusive — both modes can be in use on
a single server simultaneously. In fact a single database may be used in both modes simultaneously, allowing
different clients to take advantage of the appropriate mode for them. (For example you might create a prod-
uct catalog database that is accessed using data sharing mode in house, while also making it publicly avail-
able in web publishing mode.)

Database Sharing Concepts and Operation

This section explains how Panorama’s database sharing mode works, and the benefits of Panorama’s unique
distributed data sharing system. Traditional client/server database systems (FileMaker, SQL, etc.) store the
data only on the central server computer. Panorama, in contrast, keeps copies of the data on the server but
also keeps duplicate copies on every client.

By distributing multiple copies of the data across the network, Panorama uncorks the network/server bottle-
neck that hampers traditional client/server database systems. Distributing the data has several key benefits
over these traditional systems: high performance, low network/server load, offline operation and high safety
margin. Each of these benefits is explored further in the sections below.

Chapter 1:Introduction Page 19

High Performance

When sharing a Panorama database, each client keeps a full copy of the database in RAM on the client com-
puter. Operations like searching, sorting and reports happen almost instantaneously in RAM with no net-
work or server delay. The server only gets involved when data is modified (it handles record locking and
updating other clients as necessary). (Traditional client/server systems, in contrast, channel every database
action (query, sort, report, etc.) through the network and the server. The client is only used to display the
results.)

Since Panorama is RAM based, it doesn’t need or use indexes. (Indexes are special tables that disk based
databases use to speed up searching and sorting.) Eliminating indexes simplifies database design, allows
more flexible searching and also dramatically reduces RAM and disk requirements on each client (Panorama
databases are typically much smaller than the traditional data + index tables combination — in some cases up
to 90% smaller).

Low Network/Server Load

Since the network and server are not involved in a majority of database actions, the load on these compo-
nents is much lower than when using a traditional client/server system. Bottom line — you’ll be able to scale
to more clients without upgrading your network or server hardware.

Offline Operation

Unlike a traditional client/server database, Panorama database clients don’t “go dark” if a network connec-
tion is unavailable. Panorama database sharing allows off-line database browsing and even modification
(configurable on a per database basis). If allowed, offline changes are automatically synchronized with the
server when the client re-connects to the network. Because both client and server are RAM based, this syn-
chronization is extremely fast. If there is a potential conflict between the modifications made offline and the
modifications made by other users, you will be notified and given the option to resolve the conflict manually.

A Panorama database can even be configured to operate primarily offline. This is similar to the way e-mail
works - users perform data entry offline, then press Submit or Connect to submit their data and receive
updates. In the past applications like this had to be built from scratch, but Panorama database sharing allows
this with little or no custom programming.

High Safety Margin

Engineers understand that critical structures like bridges and aircraft must be resiliently designed to elimi-
nate the possibility of total failure. Your data is critical to you so the Panorama Enterprise Edition Server
includes layered safeguards to protect every byte.

Zero-Loss Interruption Recovery

The Panorama server is RAM based for high performance, but it also keeps a disk based transaction journal
for full data recovery after any kind of power failure or system interruption of any kind (the journal is a sim-
ple sequential file with minimal impact on performance). The server will automatically recover any unsaved
data when the system reboots — no manual intervention is necessary.

Automatic Live Backups

The Panorama server includes a built in backup system that can perform automatic backup of "live" data-
bases without shutting down the server. (Live backups are performed to another folder or hard drive, we
highly recommend that you use a secondary backup system to regularly copy the backed up files to a remote
location. The small file size of Panorama databases helps make this process smoother, especially if you are
backing up over the Internet or other relatively slow network.)

Detailed Logging and E-mail Notification

The Panorama server keeps detailed, configurable logs of server activity and can also e-mail the administra-
tor automatically if any kind of server error occurs (including reboots).

Page 20 Panorama Handbook

Rebuild from any client

In a worst case scenario Panorama’s distributed architecture provides an automatic built-in backup system. If
your regular backup is unavailable (earthquake? hurricane? tsunami?) you can always rebuild the server
database from the data in any client.

No delicate index to get corrupted

Since Panorama is RAM based, it doesn’t need or use indexes (see “High Performance” on page 19). In addi-
tion to the excessive space they take up, indexes have another disadvantage — they are complex and fragile
structures that are easily corrupted. Although a corrupted index usually doesn’t mean the data itself is lost, a
database may be offline for a considerable time while waiting for an index to be rebuilt. Since Panorama
doesn’t use indexes, the possibility of a corrupted index is eliminated.

How Distributed Data Sharing Works

It’s not necessary to understand how distributed data sharing works to use the system — you can simply
open your databases and access them as you normally would. If you are not interested in the details you can
simply skip this section. However if you’ve used other client/server systems you might be more comfortable
knowing exactly how Panorama’s distributed data sharing manages to juggle data across a network without
spilling a drop. We think that the more you know about Panorama’s unique system, the more you’ll like it.

We’ll use a series of diagrams to illustrate how distributed data sharing works and how data flows across the
network. Our hypothetical network contains a server and four clients: Alan, Bob, Carl and Dave. For simplic-
ity we’ll assume that these users are only sharing a single database, which we’ll simply call the database. We
start with this database all set up and ready to use, with a copy of the database on the hard drive of each cli-
ent and on the server as well. (To learn how these copies are originally set up see “Creating a Shared Data-
base” on page 103.)

Chapter 1:Introduction Page 21

Opening a Database

The action begins as Alan double clicks on his copy of database to open it. Panorama loads the database into
RAM, then contacts the server to request synchronization (more on synchronization in a moment).

In response, the server loads its copy of the database into RAM. It then gathers the most recently modified
data and sends it back to Alan’s computer.

Page 22 Panorama Handbook

Alan’s computer takes these recent changes and updates its local copy of the database. Because Panorama is
RAM based, this synchronization process is very rapid — often nearly instantaneous. Alan now has an up-to-
date copy of the database available for searching, sorting, reports, etc. All of these operations are performed
at blazing speed in RAM, just as it would be done if this was a single user database.

The Synchronization Process

How did the Panorama server know which changes were recent, and which changes Alan already had on his
computer? And how did the Panorama client know how to merge this recently changed data with the data it
already had?

When a Panorama database is converted from single user to shared two invisible fields are added to each
record in the database: ID and Time Stamp. The ID is a unique number that is assigned to the record when it
is first created and never changes. The Time Stamp keeps track of when this record was last modified. (These
extra fields are both invisible, and cannot be seen or modified by the user.)

Panorama also keeps an overall time stamp for each database. This overall time stamp keeps track of when
the database was last synchronized with the server. When a client requests synchronization, it passes this
overall time stamp as part of the request. The server gathers all records with later time stamps (including any
brand new records) and sends them back to the client. The client matches up the ID numbers to update exist-
ing records, and simultaneously adds the new records to complete the synchronization process.

A Note about Time Stamps. Time stamps are not really “clock times” in the ordinary sense of days, hours,
minutes and seconds. Instead, this “time” is really a count of the total number of changes made to this data-
base since the database was first created. Like a clock, this number always increase as time goes on. But since
we don’t use a real clock, it doesn’t matter if the time is incorrectly set on one or more of your computers, or
even if some of the computers are in a different time zone.

Editing and Record Locking

To edit a record, Alan double clicks a data cell in the record. Panorama sends a request to the server asking to
edit the record (the request includes the records unique ID number). (Notice that we are assuming that Bob,
Carl and Dave have now all opened this database, so the database is loaded into RAM on all four of these cli-
ent machines.)

Chapter 1:Introduction Page 23

If no one else is currently editing that record, the server will respond that it is ok to edit the data. The server
will also send a copy of the most up-to-date data for this record. Using this data, Panorama performs a “mini-
synchronization” of just this record. This insures that the data in this record is completely up-to-date before
Alan makes any changes.

Suppose that Carl double clicks on a data cell in the same record before Alan finishes editing it? Just like
before a request is sent to the server.

Page 24 Panorama Handbook

But Alan still has this record locked, so Carl’s request is denied. Carl will see an alert suggesting that he try
again later. Of course Carl can edit any other record in the database.

When Alan finishes editing the record (indicated by clicking on another record, clicking on another window,
saving the database or simply being inactive too long) the freshly edited data is transmitted to the server.

Chapter 1:Introduction Page 25

The server updates its copy of the database and releases the lock.

Now suppose Carl tries to edit the same record again. This time his request will succeed.

As Carl double clicks on the data cell he’ll see Alan’s changes appear before he begins editing. In some cases
this can be very important. For example, suppose this is an inventory database and Alan subtracted items
from a particular inventory record. Now Carl wants to subtract additional items from the same record. It’s
vital that if Alan subtracted 12 and Carl now subtracts 9, the final amount will be the original amount minus

Page 26 Panorama Handbook

21. Because the server updates each client as the record is locked, this correct total is assured no matter how
many calculations are chained together. In this example we’ve assumed that the data is being edited manu-
ally, but the same principle applies when modifications are made by a program. Whenever a record is modi-
fied it, is always locked and updated first, whether that modification is manual or done by a program.

Taking Data On The Road (Offline Database Operation)

Mobile users can use their local copy of the database even when disconnected from the network. When
mobile databases are reconnected to the network, the server and remote databases are automatically synchro-
nized and reconciled with each other on a record-by-record basis.

When Carl takes his laptop on the road he may not always be able to connect to the server back at the office.
Even when he’s not connected, however, he can always open and view his local copy of the database. He can
search, sort, even calculate summaries and print reports. Of course he won’t have the most up-to-date data,
but in many cases that is much better than nothing.

The next time Carl connects to the office, even over the Internet, he can synchronize to bring his local copy
back up-to-date.

(Of course as long as Carl is connected to the server he can work normally, editing data and synchronizing
just as if he were back at the office.)

Chapter 1:Introduction Page 27

Modifying Data Offline

Can Carl edit his database when he is not connected to the server (off-line)? By default the answer is no.
However, this ability can optionally be enabled when setting up the sharing options for any database. If it is
enabled, Panorama will keep track of all of the changes Carl makes when he is off-line.

Of course since Carl is not connected to the server there is no record locking. You should leave off-line editing
disabled for any databases for which record locking is vital to database integrity.

The next time Carl connects to the server (whether locally or over the Internet), the system will perform a two
way synchronization. All of Carl’s new changes will be updated on the server, and all of the changes made by
other users will be transferred to Carl.

Since there is no record locking when off-line, it’s possible that Alan, Bob or Dave may have changed some of
the same records that Carl has changed while off line. When you set up the database options you can config-
ure either the server or the client to have priority. As a third options, Carl can review the conflicting changes
manually and “cherry pick” the final data on a field-by-field basis. Keep in mind that off-line editing is
entirely optional. If you are concerned about database integrity you should consider leaving this option dis-
abled.

Page 28 Panorama Handbook

Database Web Publishing Concepts and Operation

Like database sharing, web publishing allows a database to be viewed and accessed remotely. Instead of
using a custom Panorama client, web publishing allows the database to be used by anyone with a modern
web browser. This approach makes possible for a truly global audience for your database. There are, how-
ever, some downsides to using web publishing instead of database sharing. First, a database must be pre-
pared to work in this mode. For simple applications this may take only an hour or two, while more complex
applications may take hundreds of hours. Secondly, the user interface in web publishing mode is limited to
the capabilities of a web browser. Advanced Panorama features like Clairvoyance®, Smart Dates™, Super
Matrix, Elastic Forms, Word Processing, Custom Menus, Automatic Capitalization, Phone Dialing and more
are not available when using a web based database. If you need universal global access to your database,
however, web publishing mode is the way to go.

Database sharing mode and web publishing mode are not mutually exclusive — both modes can be in use on
a single server simultaneously. In fact a single database may be used in both modes simultaneously, allowing
different clients to take advantage of the appropriate mode for them. (For example, you might create a prod-
uct catalog database that is accessed using data sharing mode in house, while also making it publicly avail-
able in web publishing mode.)

Panorama Forms on the Web

Just as in Panorama itself, most database display and data entry on the web is accomplished through forms.
You can create web forms with standard authoring tools like Dreamweaver, GoLive or (assuming knowledge
of HTML) a basic text editor. Panorama also includes a wizard that converts your existing Panorama forms
for use on the web. This wizard allows you to use Panorama’s powerful graphic editing tools to create web
based forms. The illustration below shows how this works. The screen shot on the left shows the original
Panorama form. On the right is the nearly identical web based form.

Since web browsers don’t have all the capabilities available in Panorama forms, some features cannot be
translated. You may find that you want to create special forms specifically for use as web forms, just as you
normally create special forms for printed reports. Nevertheless, you’ll find that this capability allows you to
leverage your existing skills (and much of your existing forms) to rapidly develop web based databases.

Chapter 1:Introduction Page 29

Database Tables on the Web

Panorama’s form conversion wizard is great for displaying one record at a time. Another wizard makes it
easy to display a web page with a table showing multiple records, like this price list.

The wizard makes it easy to set up this table in just a few minutes.

Custom Web Programming

The Panorama web publishing server can perform basic actions like searching the database, displaying
tables, displaying forms, and data entry without any programming at all. By adding your own custom pro-
gramming you can implement more advanced features. The illustration below shows a simple shopping cart
based on a Panorama database. The short program on the left adds an item to the shopping cart.

With Panorama’s powerful programming language the possibilities are limited only by your imagination!

Page 30 Panorama Handbook

Chapter 2: Installation,
Configuration & Management

This chapter explains how to set up and mange your Panorama Enterprise Edition Server. Topics covered
include system preparation, server installation, server configuration and administration.

System Requirements

Before you begin, make sure that your system meets the minimum requirements. The Panorama Server
requires a Macintosh computer with OS X 10.4 (Tiger) or later. OS X Server is not required, but can also be
used. (However, if you don’t have any specific reason to use OS X Server, stick to regular OS X. Using regu-
lar OS X will save you money and is easier to configure than OS X Server. (If you do use OS X Server be sure
to read “Setting Up The User Account” on page 33 which contains an important tip for OS X Server configu-
ration.) For light to medium duty applications we’ve found that a Mac Mini makes an excellent and afford-
able server (either the PPC or Intel version).

For extremely light duty, it is possible to run the server on a machine that is also being used as a client. We
generally don’t recommend this configuration (especially if there are more than a couple of clients). Most of
the discussion in this chapter will assume that the server is running on a separate, dedicated computer.

Of course the server computer must have a permanent connection to the network you are using. If you plan
to do web publishing or share databases over the internet then you’ll also need a static IP address for your
server. Static IP addresses are discussed in more detail later in this chapter.

Page 32 Panorama Handbook

System Preparation

Before you can begin using the Panorama server, you’ll need to properly configure your operating system.
Most of this configuration is done using the OS X System Preferences application which you can launch from
the dock.

Setting up the Computer Name

Every Macintosh computer has a name that identifies that computer on the local network. Mac OS normally
sets this name up for you the first time you log onto the computer. You may, however, want to assign a more
descriptive name. (If possible, it’s better to stick with shorter computer names — some users have reported
problems with names longer than 20 characters and/or names with unusual characters or punctuation.)

You must make absolutely sure that the server computer has a unique name that is not used by any other
computer on the network. This can happen several ways: 1) If the computer is not connected to the network
when it is first set up, and is later connected to the network. 2) If another computer added to the network and
is already set up with a duplicate name. 3) If a computer is set up in a non-standard way, for example by
using a disk cloning utility to clone the configuration of a machine already on the network. To check the
name and assign a non-duplicate name use the Sharing panel in the System Preferences application.

If you ever encounter problems communicating between computers on the local network and the server, one
thing to check is that no computers have been added to the network with the same name as the server com-
puter.

Note: If you ever need to change the name of the server computer, you should stop and then re-start the Pan-
orama server’s local sharing option (see “Enabling Database Sharing” on page 55).

Chapter 2:Installation, Configuration & Management Page 33

Enable Remote Apple Events

If you are planning on accessing the server from a computer on the local network, you must enable the
Remote Apple Events option in the sharing panel.

It is not necessary to enable the Allow events from Mac OS 9 option.

Setting Up The User Account

The Panorama server must run on an account with administrator privileges. There’s nothing special about
this account, any account with administrator privileges may be used, with one exception: the account must
not be named root or admin. A bug in OS X prevents Remote Apple Events from working with an account
named either root or admin. This is especially an issue with OS X Server since the installer for OS X Server
usually sets up a default account with one of these names. If you use OS X Server be sure to double check that
you are not using root or admin as the name of the account used to run the server. (This bug has been con-
firmed with Apple for OS X 10.3 and 10.4, but may be fixed in future versions of OS X.)

Page 34 Panorama Handbook
A Brief Introduction to Static IP Addresses

If you are planning to access your server over the internet the server must have a static IP address. A static IP
address never changes, so anyone wanting to contact your server will be able to do so at the same IP address
every time — today, tomorrow and next year. (An IP address is four numbers separated by dots, for example
192.168.1.23).

When the internet first started, every IP address was a static IP address, so this wasn’t an issue. However, as
the internet expanded there weren’t enough numbers to go around. So now most IP addresses are dynamic
— which means they are temporarily assigned as needed. If you have a dynamic IP address, your address
today may be different from the one you have an hour from now, not to mention tomorrow or next week.
This works fine if you are simply accessing other servers (for example web browsing) but not so well if you
want to have your own server (because other users don’t know where to find you at any given moment).

So, to run your own server you’ll need your own static IP address. To get one you’ll need to talk to your ISP.
At a minimum they’ll probably ask you to pay an extra fee. Worst case you may need to switch to a different
ISP, since some don’t allow static IP’s at any price (especially cable companies, although some cable compa-
nies have begun to offer static IP address - usually you have to pay for “business” rather than “residential”
service). So before you go any further, go knock on your ISP’s door and arrange to get a static IP address.
We’ll wait for you to get back…

Ok, got that static IP address? Your ISP actually should have given you several numbers — an IP address, a
subnet mask, a router (sometimes called gateway) and a couple of dns servers.

Setting up a Server Directly Connected to the Internet

If your server computer is directly connected to the internet (without a router, as shown in the diagram
below.) then IP configuration is relatively easy. (If you are using a router then skip to the next section.)

Chapter 2:Installation, Configuration & Management Page 35
The first step is to open the Built-in Ethernet configuration panel. To do this first click on the Network icon,
then double click on the Built-in Ethernet option.

Page 36 Panorama Handbook
Now use the pop-up menu to switch the Configure IPv4 setting to Manually.
x

Now fill in the IP Address, Subnet Mask, Router and DNS Server information you got from your ISP.

When you’re done, check everything twice and press the Apply Now button. Your static IP is now ready to
use.

Chapter 2:Installation, Configuration & Management Page 37
Setting up a Server Connected to the Internet using a Router

A more common configuration is for the server computer to be connected to the internet through a router, as
shown in the diagram below.

In this configuration, typically all of the local computers will get their IP address automatically from the
router (this is called DHCP, or dynamic host control protocol), while the router automatically gets a dynamic
IP address from the ISP. Converting this to use a static IP is a three step process.

1) Set up the router to use the static IP address information provided by the ISP.

2) Set up server computer to use DHCP but with a manually assigned static IP address. This
static IP address is not the one given to you by your ISP, but is determined by your router con-
figuration.

3) Configure the router to pass incoming port 80 requests through to port 80 on your server
computer (sometimes called “port-forwarding”).

If your network has a System Administrator or Network IT staff, you’ll want to consult them. If you are your
own System Administrator, you’ll need to consult the documentation that came with your router to learn
how to set up your particular router (unfortunately, every one is different). You may also want to refer to the
web site www.portforward.com, which has instructions and help for dozens of popular routers.

Note: ProVUE Development has no connection with the www.portforward.com web site.

Page 38 Panorama Handbook
Enabling Internet Sharing

If you intend to share databases using the internet or to publish a database on the web, you must enable the
Personal Web Sharing option in the Sharing pane of the System Preferences application.

Note: Turning on this option actually starts the Apache web server that is built-in to every copy of OS X. The
Panorama server uses Apache as a front end for all TCP/IP (internet) communications. Of course you can
also use this copy of Apache to host your entire web site, not just the Panorama databases. The Apache server
has earned such a reputation for rock-solid reliability that it currently hosts over half the websites on the
Internet.

Chapter 2:Installation, Configuration & Management Page 39
Ensuring Nonstop Server Operation

If you are setting up a production server (as opposed to in-house testing) you’ll want to make sure that your
server doesn’t stop when it’s been inactive for a while, and also make sure that it restarts after a power fail-
ure. These options are controlled in the Energy Saver pane of the System Preferences application. To make
sure that the computer doesn’t shut down after a period of activity, set the sleep option to Never. (It’s gener-
ally ok to let the display go to sleep, however.)

Switch to the Options panel and check the Restart automatically after a power failure option. With this option
enabled, the computer will turn itself back on automatically when power is restored. (Of course for 24/7 reli-
ability you will probably want to use an uninterruptable power supply for your server and routers.)

You’ll also want to make sure that the Panorama Server launches automatically when the computer starts up.
Of course you can’t do that until the server is installed. See “Setting up Panorama Server to Launch Automat-
ically” on page 47.

Page 40 Panorama Handbook
Enabling Remote Server Operation

If your server is in a remote location (for example at your ISP) you may want to set up a method for operating
the server by “remote control.” This will save you a trip in your car (or plane?) if you need to change some-
thing on the server. Although your Panorama server should rarely or never need to be operated remotely
once it is set up, you may want to consider a backup remote control method just in case. There are three pack-
ages that allow a computer to be operated by remote control.

Both of the commercial packages are highly rated and come with complete documentation. VNC is not quite
as fancy as these two, but it is free and works well, especially on a local network. If you are using OS X 10.4 or
later then a VNC server comes built-in — all you have to do is turn it on! You can turn this on from the Shar-
ing panel of the System Preferences application, as shown below.

Once Remote Desktop Control is on, press the Access Privileges button, which opens a separate dialog sheet.
This sheet contains a number of options that we’re not interested in. All you need to do is check the VNC box
and enter a password, as shown here.

That’s all you need to do on the server side.

Package Vendor URL

Timbuktu® Pro Netopia http://www.netopia.com/software/products/tb2/

Apple Remote Desktop Apple http://www.apple.com/remotedesktop/

VNC Open Source http://sourceforge.net/projects/cotvnc/

Chapter 2:Installation, Configuration & Management Page 41
On the client computer (the one you are going to use to remotely control the server) you’ll need to download
and install the free open source “Chicken of the VNC” client. At the time this was written, the download page
(http://sourceforge.net/projects/cotvnc/) looked like this.

After you download the application copy it into your Applications folder.

To remotely control your server, start by double clicking on the Chicken of the VNC application.

Select New Connection from the Connection menu. In the Host field enter either the IP address or the name
of the server computer, then enter the password.

enter the IP address, domain name, or
computer name of the server computer
(the computer you want to control)

enter the VNC password you just set up in
the Access Privileges sheet on the server
(see illustration earlier in this section).

Page 42 Panorama Handbook
Now press the Connect button to remotely operate the server computer. You can operate the remote com-
puter just as if you were sitting in front of it.

When you are done, simply close the remote window (or quit the Chicken of the VNC application).

remote controlled computer
appears in its own window.

Chapter 2:Installation, Configuration & Management Page 43
Installing the Panorama Server Software

Now you’re ready to actually install the Panorama server software. If you haven’t already done so, download
Panorama from the www.provue.com web site or insert the Panorama installation CD into the server com-
puter.

Double click to launch the Panorama installer. Make sure you have the first four packages selected, as shown
below. The remaining options aren’t necessary for server operation, but won’t hurt anything if the disk space
is available.

Page 44 Panorama Handbook
Press the Install button when the options you want are selected. If you’ve already purchased a serial number
and product codes, you can enter the serial number at the end of the installation process to activate the soft-
ware. Both a regular copy of Panorama and the Panorama Server will be installed. (The regular copy of Pan-
orama is used for some configuration tasks, for example product activation or setting up an e-mail channel.)

Launching the Server

To manually launch the server, simply double click on the Panorama Server icon. The server will open and
the Server Activity Monitor window will appear.

Chapter 2:Installation, Configuration & Management Page 45
Shutting Down the Server

If you need to shut down the server, choose Quit Panorama Server from the Panorama Server menu.

Another option is to choose Shut Down Server from the Admin menu (these commands are identical).

Whichever command you use, you will be asked to confirm that you really do want to shut down the server.

Press Yes if you really want to shut down the server. (You can configure the server to skip this confirmation
and simply shut the server down, see “Ask to Confirm Before Quitting Server” on page 93).

Page 46 Panorama Handbook
Shutting Down the Server with Open Sharing Sessions

If the server is currently sharing one or more databases, it will not allow you to shut down the server. If you
try to quit or shut down, it will beep and display an error message in red on a yellow background.

If you really want to shut down even though there are open databases being shared, hold down the Control
key while you choose Quit Panorama Server or Shut Down Server. Keep in mind, however, that this will
disconnect all users that are currently sharing databases on this server, and may cause a loss of data.

Chapter 2:Installation, Configuration & Management Page 47
Setting up Panorama Server to Launch Automatically

If you are setting up a production server that needs to be on 24/7, you’ll want to set up the system so that the
Panorama Server will launch automatically whenever the system starts up (for example after a power fail-
ure). To do this, drag the Panorama Server icon from the Finder onto the Login Items pane of the System
Preferences application (the Login Items pane is located in the Accounts section).

Panorama Server will now appear at the bottom of the list of items that will automatically open.

If you later decide that you no longer want Panorama Server to open automatically simply click on it to select

it, then press the button.

Page 48 Panorama Handbook
Panorama Server Product Activation

When you first install the Panorama Server on a computer, it initially acts as a demo version. If you haven’t
purchased Panorama Server yet, you can use this demo version to evaluate the software (see “Panorama
Server Demo Mode” on page 48). If you have purchased the server, you’ll want to activate your software as
soon as possible. You can do this in a few minutes at any time of the day or night following the instructions in
the Panorama Handbook (see the chapter “Installation and Activation”). When you activate the software, be
sure to launch Panorama, not Panorama Server. Panorama Server does not have the Registration command
needed to activate the software. After you activate the software, you’ll need to shut down and relaunch the
server (if it was already open).

Panorama Server Licensing Options

The Panorama Server database sharing and web publishing options are licensed separately. If you want the
same server to be able to share databases and publish databases on the web, you’ll need to purchase both
licenses. (The server will have only a single Panorama serial number whether you have one or both of these
licenses.)

Different Panorama Server database sharing licenses are available for different size organizations. At the time
this was written, licenses are available for 6 users, 12 users, and unlimited users. See the ProVUE.com web
site for the currently available configurations and pricing. It’s also possible to upgrade a license at a later time
(this is a special order item; contact the ProVUE sales staff if you need to do this.)

The Panorama Web Server license is only available in a single configuration, which allows unlimited data-
base web publishing. See the ProVUE web site for pricing information.

If you want to run a Panorama client on the same computer as the server, you’ll also need to purchase Pan-
orama or Panorama Direct for the serial number in use on the server computer. Standard pricing applies, but
this is a special order item. Contact the ProVUE sales staff if you need this option.

Because there are so many possible variations, you should carefully consider your needs before purchasing
your Panorama Server license. Contact the ProVUE sales staff if you have any questions.

Panorama Client Licensing Options

Any licensed copy of Panorama or Panorama Direct (version 5.5 or later) can function as a client for database
sharing with the Panorama Server. Demo copies, however, cannot be used to share databases.

The Panorama Personal Use License allows a single person to use Panorama on multiple computers. How-
ever, only one computer with this license can share databases at a time. In other words, since only the person
who purchased the personal use license is allowed to use the Panorama with that license, that person cannot
share databases on more than one computer at a time. (Shouldn’t be a problem since you can’t be in two
places at one time!)

Panorama Server Demo Mode

If you haven’t purchased a license for Panorama Server, you can still use it in a limited demo mode. This
mode allows you a limited ability to work with and evaluate the software.

When in demo mode, database sharing can only be done by one user at a time. In other words, you can create
shared databases and evaluate performance on your hardware and network but not actually “share” data
between multiple users simultaneously. There is no time limit to demo mode or limit on the database size you
can use.

Web publishing demo mode is limited to publishing for 120 minutes. After two hours you’ll need to refresh
the server, which can be done with the Refresh Demo command in the Admin menu.

Chapter 2:Installation, Configuration & Management Page 49
Basic Server Configuration

This section describes how to set up the fundamental server settings: password, server name, enabling and
disabling database sharing and web publishing. Usually you’ll set these options up once when you first set
up the server and then never need to touch them again. A later section in this chapter describes more
advanced server configuration (backup options, notification options, record locking options, etc.), see
“Advanced Server Configuration” on page 89.

Unlocking the Server Configuration

The first time you start the Panorama Server, all services (sharing, web publishing) are turned off and the
Server Activity Monitor will look something like this.

By default the configuration is locked, as indicated by the padlock in the upper right. This is to prevent acci-
dental modification of the configuration. (This lock is not, however, designed to prevent malicious attacks by
someone with physical or virtual access to the computer.)

Click on the padlock to unlock the configuration.

Page 50 Panorama Handbook
To unlock, you’ll need to enter the password for this server. The default password is enterprise (we’ll explain
how to change the password in a moment.)

Press Ok to unlock the configuration. Now that the configuration is unlocked, you’ll see several new buttons
and pop-up menus.

The Server Activity Monitor has a built in help system. To see what any item means, simply move the mouse
over that item and a short explanation will appear at the bottom of the window.

When you are done configuring the server you should click on the padlock again to re-lock the configuration.

Chapter 2:Installation, Configuration & Management Page 51
Changing the Server Password

The default server password is enterprise. We highly recommend that you change this immediately. Anyone
with the server password can act as the administrator of this server. Not only does the server password allow
you to change the configuration on the server itself, it also allows you to manage the server remotely from
any client on the network (or from anywhere on the Internet if your server has a static IP address). So choose
your password carefully. (We recommend using a different password than your logon password.)

To actually change the password, click on the keys in the upper right hand corner (you must unlock the pad-
lock to make the keys appear).

Enter your new password and click Ok. You’ll be asked to confirm the new password before the change is
made permanent.

Remembering the Password

The password is used both to unlock the server (clicking on the lock icon) and to remotely administer the
server. However by choosing the Remember Password command in the Admin menu, you can eliminate the
need to type in the password to unlock the server (it will still be needed for remote administration). This
command will ask you to confirm that you really want to bypass password entry in the future. Doing so is
convenient but of course less secure. For example you might want to bypass the password during configura-
tion or testing, but then re-enable the password when actually deploying the server. To re-enable the pass-
word, simply choose the Remember Password command and press No when asked if you want to remember
the password.

Note: We really don’t recommend this option - you should be working on the server so infrequently that the
password really shouldn’t be inconvenient. However, here in our internal development work at ProVUE we
of course have been doing a lot of work on the server and found this option very helpful. We left it in the final
product just in case someone else also finds it useful. Caveat emptor!

Page 52 Panorama Handbook
Changing the Auxiliary Passwords

In addition to the main server password, there are also three optional auxiliary passwords: two for down-
loading and one for displaying server status from web browsers. You can edit these passwords using the
Auxiliary Passwords command in the Admin menu on the server. (You can also open this dialog on a client
computer using the Server Administration wizard, see “Changing the Auxiliary Passwords” on page 80.)

Use these auxiliary passwords if you want to restrict access to downloading databases (see “Using the Down-
load Shared Databases Wizard” on page 110) and/or displaying web status (see “Testing Web Database Pub-
lishing (Server Status)” on page 64). If used, each auxiliary password should be unique and should also be
different from the main server password.

If an auxiliary password is left blank then that operation is not restricted. For example, if you want to allow
anyone on your local network to download databases without a password, just leave the Download
Databases to Local Clients password blank.

You can change these passwords at any time. Once the server is running we recommend changing the auxil-
iary passwords from the Server Administration wizard (see “Changing the Auxiliary Passwords” on
page 80) rather than directly from the server.

Chapter 2:Installation, Configuration & Management Page 53
Changing the Server Name

The server name is shown on the right hand side of the Server Activity Monitor. As you can see, the default
name is PanServer followed by 14 or 15 numeric digits.

You’ll probably want to change this to a unique name that describes this server, for example Acme Widgets
Payroll, UW Forestry Lab or Mesa Verde Fellowship. To change the name, simply click on the name or the tri-
angle to the left of the name.

If you have more than one Panorama server on your local network each one must have a unique name. To
help you pick a unique name, a list of current servers appears at the bottom of the dialog. The dialog will also
object if you pick a name that is already in use. (However, the list of other servers only includes Panorama
servers that are currently running. If you have any Panorama servers on your network that are not currently
turned on, it is up to you to make sure that you don’t duplicate the name.)

Warning: The server name will be embedded in every database that is shared on this server, so it should not
be changed once you start creating shared databases.

Page 54 Panorama Handbook
If you are planning to share databases on the internet, you should avoid generic names like Server or Payroll.
Any client computer can connect to only one Panorama server with a given name. For example suppose sev-
eral departments in your organization have servers simply called Panorama Server. These servers can be
accessed by anyone in the company over the internet but a given person will only be able to access one of
them. For example the company president would have to choose whether he wanted to access the payroll,
research, or human resources server, because he couldn’t access all of them without reconfiguring his system.
If the servers each have unique names then he can access all of them simultaneously.

Local Network vs. Internet Settings

The network section of the Server Activity Monitor is divided into two rows. The top row is for the local net-
work, the bottom row for internet settings.

The Sharing? column enables and disables database sharing. The Web Publishing? column enables and dis-
ables database web publishing. The Address column displays the local and internet address of the server
computer.

Chapter 2:Installation, Configuration & Management Page 55
Enabling Database Sharing

To enable database sharing on the local network, click on the triangle and select yes from the pop-up
menu. (If you don’t see the triangle you need to unlock the padlock.) If this is the first time you have
turned on database sharing, you will be prompted to enter the System Administrator password. (Important
note: This is your logon password for the computer, not the Panorama Server password.)

Assuming that you have entered the password correctly, the server is now ready to share databases. If the
server is shut down and restarted, the local sharing will restart automatically. If you ever need to turn local
sharing off again simply click on the triangle and select no from the pop-up menu.

Note: If the system administrator information (ID or password) ever changes, you must turn database shar-
ing off and then back on again. You’ll be prompted for the new password when sharing is turned back on.

Enabling Database Sharing over the Internet

If you want to allow databases from this server to be shared over the Internet then click on the bottom tri-
angle and select yes from the pop-up menu. If web publishing is not already enabled, the server will prompt
you to enter the System Administrator password. (This is your logon password for the computer, not the Pan-
orama Server password.)

Although this option enables internet sharing, this option must also be enabled for each individual database
you want to share. A database will not be sharable over the internet unless the internet sharing option is
enabled both here and in the individual database (see “Creating a Shared Database” on page 103).

Page 56 Panorama Handbook
If you want all connections to the server to be made via tcp/ip (not remote apple events), you can enable
internet sharing but leave local network sharing off. In our tests tcp/ip access is somewhat slower than
remote apple events, but this does give you an option if your network does not support remote apple events
(for example if the router is configured to block port 3031 on the local network).

Enabling Database Web Publishing

To enable database web publishing, click on the triangle in the Web Publishing? column and select yes
from the pop-up menu. The server may prompt you to enter to enter the System Administrator password (if
you haven't entered it already during this session). (This is your logon password for the computer, not the
Panorama Server password.)

Setting the IP Address/Domain Name

When publishing web pages, the Panorama server sometimes needs to create links to other pages or images
on the web server. To do that, it needs to know the URL of the web server. The server can’t figure this out by
itself, so you’ll have to tell it what its IP address or domain name is. (If you are only using the server for data-

base sharing, you can skip this section). To set the IP address or domain name click on the globe icon.

Chapter 2:Installation, Configuration & Management Page 57
You can choose one of the four options or simply type in a domain name or IP address. For example if the
domain name for your web server is www.acmewidgets.com you should type that into the Server Domain
area. The four radio buttons set the IP address semi-automatically or fully automatically.

The Test button allows you to verify that the IP address or domain name you have specified is correct. It will
either display an error alert or a message indicating that the address verified as ok.

Locking the Server Configuration

When you are done configuring and testing the server, don’t forget to lock the configuration by clicking on
the padlock.

This helps insure against accidental modification of these important settings.

Option Description

Internal IP (nn.nn.nn.nn)
This sets the IP address to your computer’s current IP address (which is
shown in the parentheses). You can use this option if your computer
has a static IP and is directly connected to the internet without a router.

External IP (nn.nn.nn.nn)
This sets the IP address to your router’s current IP address (which is
shown in parentheses). You can use this option if your router has a
static IP and port 80 is forwarded to this computer.

Internal IP (automatic)

This option is similar to the first option except that it will check the
computer’s current IP address every time the server starts up. Every
time the server starts it will adjust the IP accordingly. Of course for web
serving you should usually have a static IP so the IP address should
never change. This option is good for testing when you are accessing
the server only from this computer.

External IP (automatic)

This option is similar to the first External IP option except that it will
check the router’s current IP address every time the server starts up. Of
course for web serving you should usually have a static IP so the IP
address should never change.

click here to lock server configuration

Page 58 Panorama Handbook
Client Configuration

To actually start using the server, you’ll need to configure at least one client.

Configuring Local Database Sharing

Any computer on the local network can be configured for database sharing, and in fact in most cases no
actual configuration is required. However you can use the Available Servers wizard to check the configura-
tion and to customize it if necessary. Start by opening the Panorama application (of course the server must
already be running). Open Available Servers from the Sharing submenu of the Wizard menu. This window

should show a list of available servers, including the server you have just set up. (The symbol indicates

that this is a server on the local network that was automatically discovered via Bonjour.)

The fact that a server shows up in the Available Servers window indicates that Bonjour is working, but does
not prove that the client can actually communicate with the server. To test the actual connection double click
on the ethernet plug icon next to the server name.

Notice that so far you really haven’t done any configuration — you’ve simply tested Panorama’s automatic
default configuration. In fact, for local database sharing you usually don’t have to do any configuration at all.
You really only need to open the Available Servers wizard if there is a problem.

Chapter 2:Installation, Configuration & Management Page 59
Configuring Local Database Sharing to use TCP/IP instead of Remote Apple Events

If you’ve enabled local database sharing on the server (see “Enabling Database Sharing” on page 55) Pan-
orama will normally use Remote Apple Events to communicate between the client and the server. However,
if internet database sharing is enabled on the server (see “Enabling Database Sharing over the Internet” on
page 55) you can force a client to connect to the server using TCP/IP. To do this click on the Bonjour icon

() and choose the connection method from the pop-up menu.

The window will update to show the new status.

This selection will be permanent for this computer (unless you change it back) but will not affect how any
other computers on the network connect with the server. If you want all computers on the network to connect
using TCP/IP, you should go to the server and turn off the local database sharing option while leaving the
Internet sharing option turned on.

With this combination on the server, all local database clients will use TCP/IP instead of Remote Apple
Events.

client will con-
nect to this
computer
using remote
Apple Events

client will con-
nect to this
computer
using TCP/IP

Page 60 Panorama Handbook
Configuring Bonjour

On the local network Panorama uses Apple’s Bonjour technology to scan the network and locate any servers
that are available. Normally this is completely automatic and something you don’t have to worry about at all.
However on some networks (especially networks with a lot of computers on them) you may need to tweak
Panorama’s Bonjour settings to get a reliable connection.

Bonjour Threshold

When it first tries to locate a server Panorama scans the network for a short interval to find out what servers
are available. If a client does not reliably locate the server you can increase the amount of time Panorama will
scan. This interval is called the Bonjour threshold. To increase this threshold use the Bonjour Threshold
command in the Servers menu of the Available Servers wizard. Larger values may be needed for more com-
plex networks (however, increasing the threshold causes an additional delay the first time the client connects
to a server).

Locking the Bonjour Configuration

As described above, Panorama normally scans the network looking for servers the first time it needs to con-
nect to a server (for example when you open a shared database). However you can also “lock” the Bonjour
configuration, which essentially freezes Panorama’s list of servers on the local network. You should only use
this locking if you have a guaranteed stable server configuration on your local network. Locking the Bonjour
configuration eliminates the need for Panorama to scan the network. This has two potential advantages: 1)
The first shared database you open after launching Panorama will open faster, and 2) If Panorama is for some
reason having problems scanning the network reliably locking Bonjour allows Panorama to find the server
once and then “freeze” the configuration so that no further scanning is necessary, even when Panorama is
closed and relaunched.

To lock the current Bonjour configuration open the Available Servers wizard and choose Lock Bonjour Con-
figuration from the Server menu. Make sure that any servers you want to use are visible before you lock the
configuration.

Chapter 2:Installation, Configuration & Management Page 61
Once the configuration is locked a small lock icon will appear in the upper right hand corner of the wizard.

If the servers on your network ever change (for example you move the server software to a different com-
puter or change the name of the server computer (or IP address if using TCP/IP) you will have to unlock the
Bonjour configuration (and then lock it again, if desired.)

Debugging Local Database Sharing Connection Problems

If the server does not show up at all in the Available Servers wizard double check that both computers are
connected to the same local network (the same router). If the client computer is not on the same local network
as the server computer you’ll have to use internet sharing to connect to the server (see “Configuring Remote
(Internet) Database Sharing” on page 62). Also double check that Local Network sharing is enabled on the
server (see “Enabling Database Sharing” on page 55). If these steps don’t solve the problem then you may
need to increase the Bonjour threshold value (see “Configuring Local Database Sharing to use TCP/IP
instead of Remote Apple Events” on page 59).

If the server does show up in the list but double clicking on the ethernet plug doesn’t work then double check
that the server computer has Remote Apple Events option enabled in the System Preferences application (see
“Enable Remote Apple Events” on page 33). If that is ok then you can try turning sharing off and on again.
When you turn sharing on again you may want to hold down the control or option key. This forces Pan-
orama to ask you for the System Administrator password again (if this password is incorrect clients will not
be able to connect to the server).

Bonjour configuration
is currently locked

Page 62 Panorama Handbook
Configuring Remote (Internet) Database Sharing

You can configure remote database sharing from any computer on the internet that has a copy of Panorama
5.5 or later. Start by opening the Panorama application. Open Available Servers from the Sharing submenu
of the Wizard menu. Since the server is not on the local network it will not appear.

Press the Add Remote Server button and enter the domain name or IP address of the server.

If you’ve entered a correct domain name or IP address the server will appear in the list of available servers.

If the server name doesn’t appear you’ll of course need to track down why. Possible culprits include router
misconfiguration (port 80 must be forwarded to the Panorama Server computer), incorrect (or no) static IP
address, forgetting to turn on personal web sharing (see “Enabling Internet Sharing” on page 38) or general
network problems. You may find that trying to connect from different computers may isolate the problem.
For testing purposes it’s possible to set up an internet connection to the server even from computers on the
local network (or even from the server computer itself). You should remove this connection once it is work-
ing, however (see below).

If you are finished with a server and don’t plan to ever connect to it again from this computer you can

remove it from the list of available servers. Simply click the button to the right of the server name. After
confirming that you really want to delete the server Panorama will remove the server from the list (this
doesn’t affect the ability of any other computer to connect to the server).

Chapter 2:Installation, Configuration & Management Page 63
Further Testing the Sharing Connection

As a more comprehensive test of the client/server connection, you can double click on the server name to
open the Server Administration wizard. After you enter the server password, this wizard displays detailed
information about the server.

If this wizard is working you should have no trouble opening shared databases with this server. This wizard
is discussed in more detail later in this chapter (see “Server Management (The Server Administration Wiz-
ard)” on page 68).

Page 64 Panorama Handbook
Testing Web Database Publishing (Server Status)

To test web database publishing launch Safari or the web browser of your choice, then enter the URL as
shown below (substitute your actual server IP or domain name, or localhost if on the same computer as the
server):

http://www.yourserverdomain.com/cgi-bin/panorama.cgi?serverstatus

The server should respond with a status page similar to the one shown below (of course if you haven’t set up
any databases yet, none will be listed).

This page lists the server name (this is the “Bonjour” name you set up earlier, see “Changing the Server
Name” on page 53), the server’s URL (see “Setting the IP Address/Domain Name” on page 56), the current
date and time at the server’s location (which may be in a different time zone than you are) and the length of
time the server has been running. If any databases have been uploaded to the server for web publishing these
will be listed (you can make this list available only with a special password, see “Changing the Auxiliary
Passwords” on page 80).

In addition to typing in the URL for the Server Status page manually, you can also let Panorama do the work
for you. To do this, open the Server Admin wizard, choose the server, then choose Server Web Status from
the Admin menu. The wizard will automatically open the browser and display the server status page. See
“Server Management (The Server Administration Wizard)” on page 68 for more information on this wizard.

Chapter 2:Installation, Configuration & Management Page 65
The database names in the Server Status page are actually links. Clicking on the link displays the web links
page for that database (see “Testing a Web Database” on page 199). The web links page lists all of the forms
and procedures for that database.

From this page, you can click on any web form to open that form (see “Testing a Web Form” on page 204), or
click on any procedure in the database to trigger the procedure (see “Testing a Web Procedure” on page 206).

Restricting Access to the Server Status and Database Web Link Pages

The Server Status page and Database Web Links pages described in the previous section allow anyone on
the web to find out what databases, forms and procedures are available on your server (at least anyone that
has read this documentation and knows that you have a Panorama Enterprise Server). With this knowledge,
they could also open any form and trigger any procedure on your server. Use the Auxiliary Password dialog
to prevent this type of unauthorized access. You can access this dialog either directly from the server (see
“Changing the Auxiliary Passwords” on page 52) or from a client using the Server Administration wizard

Page 66 Panorama Handbook
(see “Changing the Auxiliary Passwords” on page 80). The password should consist of letters and numbers,
and we recommend that you make the Web Admin Password different from the main Enterprise Administra-
tor password (see “Changing the Server Password” on page 51). The dialog does not disguise the password
because it is going to be included in URL’s anyway.

Once this auxiliary password has been set up, the Server Status page will normally omit the detailed data-
base information.

If you want to see the detailed information, you must append @ and the password to the end of the URL, like
this:

http://www.yourserverdomain.com/cgi-bin/panorama.cgi?serverstatus@password

no list of databases

Chapter 2:Installation, Configuration & Management Page 67
When the password is included in the url, the list of databases with links will be displayed.

Note: If you accidentally submit an incorrect password, you must wait at least ten seconds before re-submit-
ting the correct password. The server will ignore the correct password for ten seconds after an incorrect pass-
word is submitted. This delay is included to slow down brute-force attempts to crack the password by
repeatedly querying the server.

If this auxiliary password has been set up, the Web Database Links pages also require an @ symbol and pass-
word appended to the end of the URL. If you let Panorama link to this page for you (either from the Server
Admin or Database Sharing Options wizards or from the Server Status page) this is taken care of for you,
but you’ll have to do this yourself if you manually type in the URL like this:

http://www.yourserverdomain.com/cgi-bin/panorama.cgi?databasename~admin@password

See “The Database Web Links Page” on page 202 for more information on this web links page.

auxiliary password = milwaukee

Page 68 Panorama Handbook
Server Management (The Server Administration Wizard)

Once you’ve configured your Panorama Server you’ll probably never need to touch the actual server com-
puter again. You can monitor and manage your server remotely from any computer that has Panorama 5.5 or
later. The primary tool you’ll use for this is the Server Administration wizard. This wizard allows you to
monitor and manage shared databases on the server, memory usage, logged on users, activity logs and
backup.

You can open the Server Administration wizard directly from the Sharing submenu of the Wizard menu, or
by double clicking on a server name in the Available Servers wizard (see “Further Testing the Sharing Con-
nection” on page 63). Here’s a typical view of this wizard in action.

You’ll need the Panorama Server password (see “Changing the Server Password” on page 51) to work with
this wizard. It will ask you for the password when you first select the server you want to manage. It will ask
for the password again if you perform an operation and haven’t entered the password in the last five min-
utes.

Chapter 2:Installation, Configuration & Management Page 69
Choosing the Server to Manage

There are three ways to select a server to manage: 1) Double clicking on the server name in the Available
Servers wizard, or 2) Select the server name from the pop-up menu in the Server Name area, or 3) Type the
server name or URL (internet sharing only) into the box in the Server Name area.

The wizard will ask you for the server password, then display a “snapshot” of the current status of the server.

Updating the Snapshot

The information displayed by the Server Administration wizard is a snapshot, a point in time. It is not
updated automatically. If you want to update the snapshot display, press the Update Snapshot button. You
can also choose Update Snapshot from the Administration menu.

Server Snapshot Information

This section of the wizard displays basic information about the server and this snapshot.

Page 70 Panorama Handbook
Server Database List

This section of the wizard displays all of the databases on the server and their status. Both open and closed
databases are listed. (Installing databases on the server is explained in the next chapter, see “Creating a
Shared Database” on page 103).

Chapter 2:Installation, Configuration & Management Page 71
Listing Database Users

The database table shows the number of users that have each database open. You can click on this number to
see a list of these users.

Forcing a Database to Close

If a network connection is broken (or a client loses power or crashes) while sharing a database that database
will remain open on the server indefinitely. In this case you may want to force the database to close. (How-
ever, if the client re-connects to the server this function is handled automatically.)

To force the database to close, you must open the list of users and press the Force Close button. Before you
take this drastic step, you should carefully review the list of users and make sure that none of them are actu-
ally using the database. If they are, they will lose their connection and if they are currently editing a record,
the changes they are working on will be lost. Also see “Forcing a Session to Close” on page 79.

Page 72 Panorama Handbook
Listing Locked Records

The database table also lists how many records in each database are locked. In the example below the Corpo-
rate Checkbook database currently has one locked record.

Clicking on this number opens a dialog with a list of locked records. Only the record ID’s are listed, which
usually isn’t very helpful. Instead of using this dialog we recommend using the Locked Record wizard, see
“Locked Records Wizard” on page 142.

The Pop-up Database Context Menu

If you hold down the Control key while you click on a row in the database table (or right-click if you have a
two button mouse) a pop-up context menu will appear. The exact contents of this menu depend on the cur-
rent status of the database, but it will look something like this:

You can use this pop-up menu to temporarily disable a database, to display the currently logged in users of a
database, and to delete a database from the server.

Chapter 2:Installation, Configuration & Management Page 73
Database Online/Database Offline. The first two commands in the pop-up menu work as a pair. They allow
you to temporarily take a database offline (for example for maintenance) without actually deleting the data-
base from the server. The checkmark in the menu indicates whether the database is currently online or offline
(in the example above the Real Estate Listings database is currently online). Note: You can also see and mod-
ify the online/offline status of a database using the On column at the far right of the table.

Notice that when a database is temporarily offline, it is dimmed (gray) in the database table.

Display Users. If a database is a shared database (not just web publishing) and is currently online you can
use this command to display a list of the currently active users. This is the same as clicking on the number of
users (see “Listing Database Users” on page 71).

Delete From Server. This command completely deletes this database from the server. This command is per-
manent and cannot be reversed or undone. You cannot delete an online database from the server. First you
must take the database offline (see above), then you can delete it.

Browse Database Web Links. If the database is configured for web database publishing, you can use this
option to display all of the web links (forms and procedures) for this database in your web browser.

See “Testing a Web Database” on page 199 for more information on this command.

database is offline

Page 74 Panorama Handbook
Close Database. If the database is configured for web database publishing you can use this option to close
the database (for example for maintenance).

This command cannot be used to close a database that has been opened for database sharing.

Chapter 2:Installation, Configuration & Management Page 75
Adjusting the Table Size

If the server contains many databases you can scroll the table to see the additional databases. You can also
expand the table by grabbing the “dimple” at the bottom of the table and dragging it down.

To shrink the table, just grab the dimple and drag up.

Page 76 Panorama Handbook
Disabled Sharing/Web Publishing Warning

Usually you’ll configure your server to that it automatically enables sharing and/or web publishing when in
starts up. If one of these modes is disabled the Server Administration window will warn you with a message
above the list of databases. The message shown below means that server is running, but local sharing is not
enabled and clients on the local network will not be able to work with shared databases.

If you see this message you’ll probably want to go to the server and enable local sharing.

See “Enabling Database Sharing” on page 55 and “Enabling Database Web Publishing” on page 56 for more
information about enabling these modes.

Chapter 2:Installation, Configuration & Management Page 77
Server Memory Usage

This section of the wizard displays the amount of memory used and available on the server, in both numeric
and graphical (bar graph) formats.

Adjusting Panorama’s Memory Allocation

As shipped from the factory, Panorama normally allocates 96 megabytes of memory for databases. For most
applications this is more than enough. However, if you wish to use extremely large databases you may need
to increase this allocation. To do this, locate the PanoramaPowerPC.ini file. This file is located in the
Applications:Panorama folder (the same folder as the Panorama application itself). Double click this file
to open it in TextEdit. (Note: Be sure you open PanoramaPowerPC.ini and not Panorama.ini. If you
open the wrong file, don’t worry, just close it and open the correct file.) The file should look something like
this:

The databasememory line controls the amount of memory allocated by Panorama for databases. You may set
this to any value from 3M to 999M. (Don’t forget the M!). However, if you set this value to larger than the
physical amount of memory available on your computer, you may reduce the amount of virtual memory
available for other applications. We do not recommend opening databases that are larger than the physical
memory size of your computer. Panorama will open the file and operate correctly, but its performance may
be severely degraded. Once you have set the new value, save and close the window, then relaunch Panorama
Server if necessary.

Page 78 Panorama Handbook
Active Session List

This section of the wizard lists all of the currently active sharing “sessions” taking place on the server. When
a user first opens a shared database on a client computer, their copy of Panorama automatically connects to
the server and establishes a “session.” Each session has a unique number, and all communications between
the client and the server are tagged with the session number. If the user opens additional shared databases on
the same server, the same session number is used. The session remains active until the user closes all shared
databases on this server. (If the user later opens a shared database, again a new session number will be
assigned.) The active session list displays a list of all of the users that currently have one or more databases
open on this computer.

Chapter 2:Installation, Configuration & Management Page 79
Listing Open Databases

To see a list of shared databases a user currently has open, click on the session ID number.

Forcing a Session to Close

If a network connection is broken or a client loses power or crashes while sharing a database, that client’s ses-
sion will remain open on the server indefinitely. In this case, you may want to force the session to close (usu-
ally you don’t need to do this manually because the Panorama Server will do it automatically if the same
client re-connects). To do so, open the list of users and press the Terminate Session button. Before you take
this drastic step you should carefully check to make sure that the session is really kaput. Also see “Forcing a
Database to Close” on page 71.

Adjusting the Table Size

If the server has many active sessions, you can scroll the table to see the additional sessions. You can also
expand the table by grabbing the “dimple” at the bottom of the table and dragging it down. See “Adjusting
the Table Size” on page 79.

Page 80 Panorama Handbook
Memorizing Server Passwords

If you are doing a lot of work on a particular server, you may find it convenient to have Panorama remember
the password for that server for you. Be careful, though, since doing this means that anyone with access to
your computer will also have administrator level access to this server.

Before you ask Panorama to remember a password, you must already have selected the server in the Server
Administration wizard and entered the password. Then choose Remember Server Password from the Serv-
ers menu.

Once the wizard has memorized the password, you won’t have to enter the password any more, even if you
quit Panorama and then restart it later.

If you later decide that you no longer want Panorama to remember the password for the current server then
choose the Forget Server Password command. The Forget All Server Passwords command causes Panorama
to forget all server passwords, not just the password for the current server. For example you might want to
use this command if you are taking your computer on the road or to a trade show, or any situation where
other people might have access to your computer.

Changing the Auxiliary Passwords

In addition to the main server password, there are also three optional auxiliary passwords: two for down-
loading and one for displaying server status from web browsers. You can edit these passwords using the
Auxiliary Passwords command in the Administration menu.

1) Select server 2) Memorize password

Chapter 2:Installation, Configuration & Management Page 81
(You can also open this dialog on the server itself, see “Changing the Auxiliary Passwords” on page 52.)

Use these auxiliary passwords if you want to restrict access to downloading databases (see “Using the Down-
load Shared Databases Wizard” on page 110) and/or displaying web status (see “Testing Web Database Pub-
lishing (Server Status)” on page 64). If used, each auxiliary password should be unique and should also be
different from the main server password.

If an auxiliary password is left blank then that operation is not restricted. For example, if you want to allow
anyone on your local network to download databases without a password, just leave the Download
Databases from Local Clients password blank.

You can change these passwords at any time.

Page 82 Panorama Handbook
Monitoring Server Logs

The Panorama Server keeps logs of its activity and any errors that it encounters. You can use the Server
Administration wizard to view these logs remotely. The server keeps four different logs:

Viewing a Log

To view a log use the View Log submenu of the Administration menu.

The wizard will open the most recent log. Log entries are displayed with the most recent at the bottom.

Log Name Description

Sharing Error Log
This log records errors that occur when sharing databases. For example,
this log will record crash recovery or unsuccessful attempts to log in to
the server.

Sharing Activity Log

This log records normal database sharing activity. Activities that can be
logged include server startup and shutdown, users logging on and off,
opening and closing databases, saving and synchronizing databases,
and data editing. The system administrator can decide which of these
activities should be logged.

Web Error Log
This log records errors that occur when publishing databases as web
pages. For example, this log will record missing databases or coding
errors.

Web Activity Log
This log records the web queries (URL’s and POST data) that come in to
the server. The system administrator can decide whether GET or POST
requests (or both) are logged.

Chapter 2:Installation, Configuration & Management Page 83
You can click on any line in the log to see additional detail.

Searching the Log

If a log contains hundreds or thousands of entries, it may be difficult to find the entry you want. To search for
specific log entries, type a word or phrase into the search box in the upper right hand corner. For example,
you can search for logon to quickly find out who logged on and when.

To go back to the full display, press the cancel search button.

enter search text

Page 84 Panorama Handbook
Viewing a Different Log

You can use the pop-up menu to switch to a different log.

The first eight digits of each line are the date of the log, in year month day format.

Refreshing the Log

The log display is a “snapshot” in time - it is not updated as new server activity occurs. To update the log dis-

play to show the most recent server activity, press the button.

Chapter 2:Installation, Configuration & Management Page 85
Server Log Configuration

The Server Administration wizard allows you to configure how logs are kept.

For each log you have a choice of Daily, Weekly or Monthly. This specifies how often the server will start a
new log file. If you don’t have much server activity you may want to keep a Monthly file, but if your server is
busy you will probably want to use Daily or Weekly logs to keep the log file size more manageable.

The Logged Activities options control how much detail is recorded in the log. Recording more detail can
adversely affect the performance of the server. For best performance, we recommend not logging Data Modi-
fication (the last two sharing options).

Configuring the Notification Wizard

Panorama uses the Notification Wizard to inform you if problems occur during database sharing operation.
For example, if there is a connection problem when opening a shared database, this wizard will appear auto-
matically. Unlike an alert, the Notification Wizard doesn’t interrupt your work by requiring you to dismiss
the message before continuing (this is especially true if you use the optional Growl package, see “Using
Growl for Notifications” on page 87). You can also review problems that occurred earlier in the session.

Page 86 Panorama Handbook
The Notification wizard displays a list of the notifications that have occurred since Panorama was launched.
The most recent notification is at the top, earlier notifications are listed below. There are four types of notifica-
tions: Errors (red), Warnings (orange), Information (green), and Debug (purple). Each notice has a title and
additional detail, as shown below (the notifications shown below are just examples, and do not reflect the
actual notifications you may see).

When does the Notification Wizard appear?

By default, the Notification wizard will appear automatically whenever an error or warning occurs, but not
when an information or debug notice occurs. However, you can use the Preferences command (in the Admin
menu) to change this behavior.

Chapter 2:Installation, Configuration & Management Page 87
For example, you can modify the settings so that only Errors make the wizard appear automatically, and so
that information (notes) and debug notices are simply discarded (they won’t even appear in the wizard if you
open it manually).

Note: The notification settings for each computer are separate. Setting the notification settings on the server
has no effect on any client, and changing the notification options on any client doesn’t affect the server or any
other client. In other words, if you want to make a change across the network you’ll need to go to each com-
puter and make the change.

Using Growl for Notifications

Growl is a very cool free open source add-on for OS X that displays temporary messages that fade away
automatically after a few seconds. In other words, a perfect way to display notifications! If Growl is installed
on your computer then the Notification wizard Preferences dialog gives you the option of displaying notifi-
cations via Growl instead of by opening the Notification wizard (you can always open the Notification wiz-
ard manually from the Wizard menu). If you don’t already have a copy of Growl, you can download it from
this web site.

http://growl.info/

Page 88 Panorama Handbook
It’s a small download (2 mb) and installs easily. Once it’s installed, you can enable the Growl option and your
notices will appear in floating “bubbles” while you can continue to work. (In the example below we also set
the visible notification level to “Debug”.)

After a short delay, the notices will fade away, or they will disappear immediately if you click on them.

Using the Notification Wizard in your own database applications

Using the notify statement your applications can create their own notifications for errors and significant
events. See the Programming Reference wizard for details on how to use this statement.

Chapter 2:Installation, Configuration & Management Page 89
Advanced Server Configuration

Earlier in this chapter you learned how to set up basic server settings (password, server name, enabling and
disabling database sharing and web publishing), see “Basic Server Configuration” on page 49. The following
sections explain how to set up more advanced server options, including backup options, advanced record
locking options, notification options, and more. The server sets up the defaults for these advanced options to
settings that will work for most typical applications, so if you are simply setting up a basic server on a local
network you may simply want to skip this section and go directly to the next chapter (you can always come
back later).

Unlike the basic server configuration which must be done on the server itself, the advanced server configura-
tion is usually done remotely from a client with the Server Administration wizard (see “Server Management
(The Server Administration Wizard)” on page 68). To review, this wizard is opened directly from the Sharing
submenu of the Wizard menu, or by double clicking on a server name in the Available Servers wizard (see
“Further Testing the Sharing Connection” on page 63). You can see the advanced options by scrolling to the
bottom of this wizard:

Unless otherwise noted, any configuration changes you make with the Server Administration wizard will
take place immediately — you don’t need to restart the server.

Page 90 Panorama Handbook
Notification Options

If an e-mail channel has been set up on the server computer (see “Configuring an Email Channel” on page 90)
the Panorama server can automatically send the administrator e-mail to notify him or her of situations that
may need attention. Enter your e-mail address into the Administrator Email box. Press the Send Test Email
button to test to make sure that the e-mail address is correct and that e-mail is correctly configured on the
server.

If you want to be notified whenever there is a problem with the server, check the Send e-mail notification of
server errors box. The server will send you an e-mail whenever an error occurs. The e-mail will contain the
error, and you can look in the server logs for additional details about the situation.

The Allow users to send e-mail to administrator option enables the mailtoadministrator statement. This
statement can be used in shared Panorama databases to send e-mail to the administrator. The syntax of this
statement is:

mailtoadministrator from,subject,body

The from parameter is the e-mail address of the user sending the e-mail (can be left blank in which case the
server’s e-mail address will be used. The subject parameter is the subject of the e-mail, while body contains
the main part of the e-mail message. When you design a shared database you might include a button or
menu item that sends a message to the administrator using this statement.

Configuring an Email Channel

If you want the server to send e-mails, you must set up an e-mail channel on the server computer. This must
be done on the server computer itself, it cannot be done remotely. Go to the server computer and open the
Panorama application (not Panorama Server). Then open the Channels wizard, which is in the Preferences
submenu.

Chapter 2:Installation, Configuration & Management Page 91
The first step is to click on E-mail in the left column, then select the module you want to use. In this case
we’ve picked XMail, which uses a software package, called, surprisingly enough XMail (this software is sep-
arate and must be downloaded and installed before using it). You’ll want to pick the module for whatever
external software you already have or plan to acquire.

The exact setup details depend on the module you choose. We’ll show how to set up for XMail as an example.
Since XMail communicates directly with an SMTP server, you’ll need the same SMTP account information
you used when setting up your e-mail client. To start, click on Server= and type in the URL for the SMTP
server your ISP provides.

Now click on From= and type in your e-mail address.

Repeat to type in any additional information required by your ISP, then close the Channels wizard and quit
Panorama when you are done.

Backup Options

The Panorama Server can automatically do a daily first level backup of your database files to any folder or
drive mounted to your computer. All databases are backed up, including open databases. The server in the
illustration below has been configured to automatically backup at 1:30 am every day, to a folder named
EnterpriseBackup on a hard drive named Alaska.

We highly recommend that you do a further backup of this data. Normally backup programs like Retrospect
cannot backup files that are open, but once Panorama has backed up the files your regular backup program
can back up the copies with no problem. This allows you to do a full backup without ever shutting down the
server.

Page 92 Panorama Handbook
Advanced Options

The options in this section of the wizard control various advanced settings on the server.

Automaticaly Unlock Records

When a client locks a record in a shared database (see “Editing Data and Record Locking” on page 136) that
record normally stays locked until the user is finished with it (or until the client auto-unlock time is exceeded,
see “Changing the Record Lock Timeout” on page 140). Of course this is usually exactly what you want to
happen. In certain situations, however, this can result in a record being “stuck” in the record lock mode. This
can happen if the client disconnects from the server before unlocking the record (either due to a network con-
nection failure, for example a laptop disconnecting from the network or an internet failure, or from the client
actually crashing).

If records being “stuck” in locked mode is a problem on your server you can configure the server to automat-
ically unlock records after a specified period of time. If another user on the network tries to edit the record
after this period has expired the server will unlock the record from the user that originally locked it and give
the lock to the new user. Don’t make the time period too short, because if you do then users that simply pause
for a moment may find that the record they thought they had locked is now locked by someone else (in which
case any changes they were trying to make to the record will be lost).

Note: The server will not automatically unlock a record unless someone else on the network asks for it. As
long as no one else requests the record it will remain locked indefinitely. For example, suppose the automatic
unlock timeout is set to 5 minutes. Now suppose that Bob locks record 1234 at 1:00 PM. At 1:03 PM Marla
tries to edit 1234. The server will refuse because the record is locked by Bob. But if Marla tries again after 1:05
PM she’ll be able to edit the record, and Bob will be locked out.

Note: This automatic unlock server option is completly independent from the client auto-unlock feature (see
“Changing the Record Lock Timeout” on page 140), and you can use both of these features simultaneously. If
you do use both, you would usually want to set the server timeout longer than the client timeout.

Note: You can also manually unlock records at any time with the Locked Records wizard (see “Locked
Records Wizard” on page 142).

Rebound After Server Crash

Hopefully your server will never suffer a power failure or crash. If it does, however, this option will allow the
server to restart and get right back to work right where it left off. We call this “rebounding.” When the server
rebounds it automatically resumes operations from where it left off before the crash — any client sharing ses-
sions are restarted, databases that were open before are re-opened, and any locked records are re-locked
(rebounding has no effect on web publishing, only database sharing). Once the server restarts any clients can
continue to work with shared databases as if nothing has happened. (If the rebound option is not turned on
then all clients must log off and then log on again after a server crash.)

Rebounding only occurs if the server restarts soon after the power failure or crash. You can specify the maxi-
mum interval allowed before the rebound feature is disabled. After this time the server will do a clean restart,
without resuming sessions, open databases or record locks. (You can also force a clean restart by erasing the
Snapshot.dat file in the Enterprise folder before re-starting the server.)

Chapter 2:Installation, Configuration & Management Page 93
The rebound feature only comes into play if the server crashes. The server will always do a clean re-start after
you intentionally Quit the server application.

Ask to Confirm Before Quitting Server

When you intentionally Quit the server application the server normally asks you to confirm before it actually
shuts the server down (see “Shutting Down the Server” on page 45). Uncheck this option if you want the
server to skip this confirmation and quit immediately when asked.

Automatically Hide Server When Launched

When this option is checked the server will automatically hide itself as it launches. This is the same as launch-
ing the application and then using the Hide Panorama Server command in the Panorama Server menu,
except that it all happens automatically.

We highly recommend this option if anyone is actually using this computer for something other than serv-
ing. Hiding the server prevents someone sitting at the server from accidentally clicking on one of the server
windows and possibly disrupting server operation.

If you need to un-hide the server for any reason you can either click on its dock icon or choose Show All from
the Application menu of any open program (the Application menu is always the first menu after the Apple
menu).

Page 94 Panorama Handbook
Enable Server Activity Indicator

The Panorama Server noramally doesn’t give any indication of activity while it is running. If you check the
Enable Server Activity Indicator option the Server Activity Monitor window will display a blinking indicator
as it is accessed by sharing and web clients. This indicator appears just to the right of the word Activity as
shown in the illustration below.

As shown above, the blinking indicator is normally green-blue for sharing activity, light purple for web activ-
ity, and dark red/maroon for errors.

Advanced Note: If you don’t like the standard indicator colors you can change them by editing the Server-
Config.dat file (see “Editing the Server Configuration Text File (For Experts Only)” on page 96). To change
the colors, add an <ACTIVITYLIGHTCOLORS> tag to this file, like this:

The tag may contain up to three parameters, share=, web= and error=. Each parameter must specify a
color in HTML RGB format, and must be preceded with %%. For example error="%%FF0000" will cause
errors to be displayed with a pure red indicator. If a parameter is missing the default color will be used.

Web Publishing Activity

Activity indicator

Database Sharing Activity

Server Error

Chapter 2:Installation, Configuration & Management Page 95
Internal/Debug Options

The bottom portion of the Server Administration wizard contains internal and debug options.

These options are intended for assisting ProVUE technical support staff in tracking down unusual problems,
especially during the beta test phase of server development. You should not modify any of these options
unless directed by a ProVUE staff member.

Page 96 Panorama Handbook
Editing the Server Configuration Text File (For Experts Only)

The server computer contains a special text file that controls the configuration of the server (called Server-
Config.dat, see the next section). When you change options with the Server Administration wizard you are
actually editing this file. The file can also be edited directly, either remotely from a client or directly on the
server computer. Usually this is never necessary, as the normal Server Administration options should take
care of every option you’ll need to control. If you do decide to edit the configuration file directly, be very care-
ful since a mistake may cause serious problems or even require that you re-install the server.

To edit the configuration file remotely from a client, open the Server Administration wizard, select the
server, then choose Advanced Server Configuration from the Administration menu.

A dialog window appears listing the contents of the configuration file.

Carefully edit the configuration (see “Server Configuration Tags” on page 98), then press the Update button
to update the file on the server.

Chapter 2:Installation, Configuration & Management Page 97
Editing the ServerConfig.dat File Directly on the Server

The Panorama Server configuration file is called ServerConfig.dat file and is located in the Enterprise folder
inside the Extensions folder inside the Panorama folder.

You can edit this file with BBEdit, TextWrangler, TextMate, Text Edit or your favorite text editor. When you
open the file it should look something like this:

If the server is running when you edit this file, you’ll need to shut down and re-launch the server software for
any changes you make to take effect (note that this is not generally necessary when editing the file with the
Server Administration wizard as described in the previous section).

Page 98 Panorama Handbook
Server Configuration Tags

The server configuration file contains a series of tags that control the configuration of the server. Most of these
tags are described below (some tags are designed for internal server use, and should never be edited).

<ACTIVITYLIGHT>yes</ACTIVITYLIGHT>

This option enables a blinking "activity light" on the server. The blinking light appears just to the right of the
word Activity above the list of users. Note that turning on this feature may slow down the server slightly, so
the default is off if this option is missing. The blinking light is green-blue for sharing activity, light purple for
web activity, and dark red/maroon for errors. You can also customize the colors with the ACTIVITYLIGHT-
COLORS tag, see below.

<ACTIVITYLIGHTCOLORS>share="%%66CC66" web="%%D8D4FE" error="%%CC66CC"</ACTIVITYLIGHTCOLORS>

This option allows you to customize the activity light colors for different activities on the server. Each color is
specified using HTML RGB format preceded by %%, as shown above. If an activity is not included in the
option the server will use the default color for that activity.

<ADMIN>enterprise</ADMIN>

This is the server administrator password. This option is normally changed using the Server Activity Moni-
tor, you cannot edit it manually.

<ADMINEMAIL>someone@someisp</ADMINEMAIL>

This option specifies the e-mail address of the server administrator. Use this if you want the administrator to
be able to receive e-mail messages from the server. This option can also be set with the Server Administration
wizard.

<ADMINMAILERRORS>yes</ADMINMAILERRORS>

If this option is set to "yes" (or actually any non-blank value) and the ADMINEMAIL option (see above) con-
tains a valid e-mail address (or at least an @ symbol) then any errors that occur on the server will be e-mailed
to the system administrator. This option can also be set with the Server Administration wizard.

<ALLOWSERVERALERTS>yes</ALLOWSERVERALERTS>

This is a debugging feature. Panorama normally supresses any alerts that may occur on the server. Instead of
displaying the alerts, they are saved in the server log files. You can disable this feature by setting this option
to "yes". Normally this option is only used by ProVUE programmers during software development. (Note:
Alerts are not supressed when you are using the CGI Simulator wizard.)

<BACKUPPATH>path</BACKUPPATH>

This option specifies the folder where backups (if any) should be made. This must be a full path beginning
with the name of the disk. For example, if the backup should be made to the PanBack folder on the disk HD,
the path should be HD:PanBack. This option can also be set with the Server Administration wizard.

<BACKUPTIME>time</BACKUPTIME>

This option specifies the time when backups (if any) should be made. The time may be specified in either
am/pm or 24 hour format, for example 4am, 10:45 PM, or 22:15. This option can also be set with the Server
Administration wizard.

Chapter 2:Installation, Configuration & Management Page 99
<BONJOUR_DOWNLOAD>password</BONJOUR_DOWNLOAD>

This password restricts access to downloading databases from clients on the local network. This password is
used by the Download Shared Databases wizard. If left blank anyone on the local network can download
shared databases from this server using this wizard. This password can also be set from the "Auxiliary Pass-
words" dialog in the "Administration" menu of the Server Administration wizard, where it is called the
"Download Databases from Local Clients" password.

<DEBUGPOINTDEPTH>nn</DEBUGPOINTDEPTH>

This is a debugging feature. When this feature is enabled the server will keep detailed log files of the last nn
activities performed by the server before a crash. The files are kept in the Enterprise:Logs:dbg folder. The nn
value is the max number of previous actions to keep in the log, for example the last 50 or last 100. Note that
using this option will slow the server down somewhat, though probably not too much (the larger nn is, the
more it will slow down). The contents of this log can be analyzed by ProVUE Development's technical staff,
you would not usually enable this feature unless requested by ProVUE technical staff.

<FULLINTEGRITYCHECKS>yes</FULLINTEGRITYCHECKS>

This is a debugging feature. If this option is "yes" the server will check the integrity of the current database
after every server communication. If there is a problem it will log this in a special Data Integrity Log in the
Logs folder. Using this option may significantly slow down your server (or may not). The contents of this log
can be analyzed by ProVUE Development's technical staff, you would not usually enable this feature unless
requested by ProVUE technical staff.

<HIDESERVER>yes</HIDESERVER>

When this option is set to "yes" the server will automatically hide itself when it launches. This is the same as
using the "Hide Panorama Server" command in the "Panorama Server" menu, except that it happens auto-
matically. This is especially useful if you are running both client and server on the same machine, or running
any other software on the same machine as the server. You can always make it visible again by clicking on the
Panorama Server dock icon.

<MAXJOURNALSIZE>nnnn</MAXJOURNALSIZE>

The server normally limits the size of journal files to 32,000 bytes. If a journal file gets bigger than this the
server saves the database and erases the journal file. The max size is actually adjustable using this option,
where nnnn is a number specifying the maximum journal size in bytes. If nnnn is 0 then journalling is com-
pletely disabled and Panorama will save the entire database on every change. However if nnnn = "" (empty)
then the default 32,000 threshold will be used.

<MESSAGEXLG>yes</MESSAGEXLG>

Normally when an alert occurs on the server the text of the alert is logged and the server creates a special .xlg
log file with complete information about what the procedure was doing at the time of the alert (in addition to
logging the alert, see <ALLOWSERVERALERTS> above.) Normally an .xlg file is NOT created for MESSAGE
statements, but they will be if this option is set to "yes". The contents of .xlg log files can be analyzed by Pro-
VUE Development's technical staff, they do not contain information that can be analyzed by users or system
administrators.

<PJP>internal_data</PJP>
<PJPID>internal_data</PJPID>

These options contain internal data used by the server. You cannot (and must not) edit these options.

Page 100 Panorama Handbook
<QUITCONFIRMATION>no</QUITCONFIRMATION>

Use this option to disable quit confirmation for the server. If this option is "no" or "off" the server will not ask
you to confirm when you Quit the server. Use this option if you want to use an automatic tool for remote
reboots, but be careful not to quit the server accidentally!!

<RMPW>internal_data</RMPW>

This option contains internal data used by the server. You cannot (and must not) edit this option.

<REBOUND>nn</REBOUND>

This option enables the server's "rebound" option. When this option is enabled the server will "rebound" after
a crash, i.e. re-open any sessions and databases that were open before the crash, allowing clients to continue
working without closing and re-opening databases. (Of course they will still get errors if they try to use the
server between the time of the crash and the time the server restarts.) NN is the number of minutes allowed
between the last server activity and a restart. For example, suppose nn=20. If the server crashes and you
reboot within 20 minutes then it will "rebound" and clients can continue to work. If you wait more than 20
minutes then the server will start up normally without rebounding. You can also start up without rebound-
ing by erasing the Snapshot.dat file in the Enterprise folder before restarting the server.

<REBOUNDLOCKPARDON>nn</REBOUNDLOCKPARDON>

When rebounding (see above) the server normally restores all state, including locked records. If clients have
shut down (or even clicked on other records or windows) in between crash and restart then you can be left
with locked records that must be cleared either manually (with the serveradmin wizard or the forceunlock
statement) or by shutting down the server. To avoid this you can use the <REBOUNDLOCKPARDON>nn</
REBOUNDLOCKPARDON> option. If this option is used then rebound does not relock records when
rebounding. However, clients may still think they have locked records and may try to update the server with
revised records. If they do so in the first few minutes the server will allow this. The exact number of minutes
is determined by nn. After the "lock pardon" period is over users will no longer be able to unlock records they
locked before the crash (which means that any changes they have made will be lost). The advantage of this
approach is that it will avoid extra locked records after a crash, but the disadvantage is that it breaks Pan-
orama's rigid record locking rules and could potentially allow two users to edit the same record simulta-
neously. (IMPORTANT NOTE: This tag is now obsolete.)

<REMOTE_DOWNLOAD>password</REMOTE_DOWNLOAD>

This password restricts access to downloading databases from clients on the internet. This password is used
by the Download Shared Databases wizard. If left blank anyone on the internet can download shared data-
bases from this server using this wizard. This password can also be set from the "Auxiliary Passwords" dialog
in the "Administration" menu of the Server Administration wizard, where it is called the "Download Data-
bases from Remote Clients" password.

<SERVERNAME>name</SERVERNAME>

This is the bonjour name of this server. This option is normally changed using the Server Activity Monitor,
you cannot edit it manually.

Chapter 2:Installation, Configuration & Management Page 101
<SHARELOGACTIVITIES>actions</SHARELOGACTIVITIES>

This option controls what types of actions will be logged in the sharing log. The allowable actions are:

logon,logoff,open,close,save,sync,forcesync,superfill,appendrecords,startup,shutdown
execute,periodic

If multiple types should be logged they should be separated by a comma with no spaces, for example
logon,logoff. You can also simply specify the action "all" to log all server activity, but this will make for gigan-
tic logs and may impact server performance. This option can also be set with the Server Administration wiz-
ard, though some types of actions are not available thru that wizard.

<SHARELOGFREQUENCY>period</SHARELOGFREQUENCY>

This option controls how often the server starts a new Sharing Log (log of database sharing activity). The
period may be Daily, Weekly, Monthly or "" if you don't want to keep any log at all. This option can also be set
with the Server Administration wizard.

<SHARELOGERRORFREQUENCY>period</SHARELOGERRORFREQUENCY>

This option controls how often the server starts a new Sharing Error Log (log of database sharing errors). The
period may be Daily, Weekly, Monthly or "" if you don't want to keep any log at all. This option can also be set
with the Server Administration wizard.

<SHARINGENABLE>yes</SHARINGENABLE>

This option is normally changed using the Server Activity Monitor, you cannot edit it manually. If it is set to
"yes" then database sharing using AppleEvents on the local network is enabled.

<SHARINGNETENABLE>yes</SHARINGNETENABLE>

This option is normally changed using the Server Activity Monitor, you cannot edit it manually. If it is set to
"yes" then database sharing using TCP/IP is enabled.

<SHARINGEXTRAOPTIONS></SHARINGEXTRAOPTIONS>

This option is currently not used.

<SHARINGUSERID>id</SHARINGUSERID>

This is the unix name of the user the server is running under. You cannot (and must not) edit this option.

<WEBADMIN>password</WEBADMIN>

This password restricts access to server and database status pages from web browsers. If left blank then any-
one on the internet will be able to view a list of web published databases on this server, as well as lists of
forms and procedures in each database. This password can also be set from the "Auxiliary Passwords" dialog
in the "Administration" menu of the Server Administration wizard, where it is called the "Server & Database
Web Status Pages" password.

<WEBDOMAIN>http://yourdomain</WEBDOMAIN>

This option is normally changed using the Server Activity Monitor, but can be edited manually. It should be
the ip address or domain name of this server. Note: This option is only necessary for web publishing, if you
are only using database sharing you can leave this option blank.

<WEBENABLE>yes</WEBENABLE>

This option is normally changed using the Server Activity Monitor, you cannot edit it manually. If it is set to
"yes" then web database publishing is enabled.

Page 102 Panorama Handbook
<WEBLOGACTIVITIES>actions</WEBLOGACTIVITIES>

This option controls what types of actions will be logged in the CGI log. The allowable actions are get and
post. If multiple types should be logged they should be separated by a comma with no spaces, for example
get,post. This option can also be set with the Server Administration wizard.

<WEBLOGFREQUENCY>period</WEBLOGFREQUENCY>

This option controls how often the server starts a new CGI Log (log of web publishing activity). The period
may be Daily, Weekly, Monthly or "" if you don't want to keep any log at all. This option can also be set with
the Server Administration wizard.

<WEBLOGERRORFREQUENCY>period</WEBLOGERRORFREQUENCY>

This option controls how often the server starts a new CGI ERROR Log (log of web publishing errors). The
period may be Daily, Weekly, Monthly or "" if you don't want to keep any log at all. This option can also be set
with the Server Administration wizard.

Chapter 3: Online Database Sharing

This chapter explains how to create and use shared Panorama databases. It assumes that you already have a
working Panorama Server available (see Chapter 2).

Creating a Shared Database

The first step in creating a shared database is to create a single user database. This database can be old or new,
empty or full. For this example, we’ll use a database called Real Estate Listings.

If it’s not already open, double click on the database to open it.

So far this is a garden variety single user database. You can sort, select, add data, delete data — it all happens
on your computer and has nothing to do with anyone else. In other words, it’s not shared, but we’re about to
change that.

Page 104 Panorama Handbook
To start the process of changing this database into a shared database, open the Database Sharing Options
wizard (in the Sharing submenu of the Wizard menu).

Start at the top of this form and work your way down. The first choice is the database. If it doesn’t already list
the database you want to convert then select it from the pop-up menu.

The next choice is the server. Use the pop-up menu to select the server that will host this shared database. (If
no server appears in the pop-up menu then see “Debugging Local Database Sharing Connection Problems”
on page 61.)

Chapter 3:Online Database Sharing Page 105
The next choice is the sharing mode. Since for now we only want to share this database on the local server, we
just check the Local Database Sharing option.

The next choice is whether to enable an auto-timeout that will unlock records automatically if someone walks
away from their computer in the middle of making a change. This is usually a good idea, so we’ll set the tim-
eout to 45 seconds.

The next four sections of this form (Offline Database Sharing Options, Connection/Synchronization Sharing
Options Database Web Publications and Server Database Name) contain advanced options that can usually be left
as is, so our database is ready to be shared! Just scroll to the bottom and press the Apply Changes button

or choose Apply Option Changes from the Maintenance menu (or press Command-1).

Page 106 Panorama Handbook
The wizard will display a summary of the proposed new sharing options for this database.

Double check to make sure the options are correct, then press the Apply Options button. The database will
be uploaded to the server as a shared database. You’ll be notified when this process is complete.

At this point you can close the Database Sharing Options wizard.

Chapter 3:Online Database Sharing Page 107
Our database is still open, and it looks the same as it did before we started. But it is now a fully shared multi-
user database.

If you want to check to see if a database is sharable, you can use the Sharing Info wizard (in the Sharing sub-
menu of the Wizard menu). This wizard shows that there are currently four databases open, three of which
are single user databases. The Real Estate Listings database is shared on the TiBook server, and is currently
open on that server.

You can click on the Real Estate Listings line to see more detail about the sharing status of this database. You
shouldn’t need this information in ordinary use, but if there is a problem, this additional information can
sometimes help track it down.

Page 108 Panorama Handbook
If you check the list of server databases in the Server Administration wizard, you’ll see the newly shared
database there.

Duplicate Database Conflicts on the Server

Each database on the server must have its own unique name. In other words, you cannot have two databases
on the server with the same name. For example, suppose that there already is a database named Real Estate
Listings on the server and then you use the Database Sharing Options wizard to try to add another. The wiz-
ard will warn you that completing this operation will replace (erase) the copy of the database that is already
on the server.

If this is a new version of the same database (see “Sharing “Generations”” on page 119) then you’ll probably
want to click Yes. Otherwise, you should click No (unless you are absolutely, positively sure that no one on
the network will want to use the existing database ever again).

Chapter 3:Online Database Sharing Page 109
If you encounter this situation, one solution is to rename the original database. However, sometimes that is
not possible. For example, the database may be part of a set with extensive lookups and programming
between different databases in the set. In that case renaming a database could take hours or even days of
work. To get around this problem, the Database Sharing Options wizard allows you to specify a Server
Database Name that is separate from the actual database name. You’ll find this at the very bottom of the wiz-
ard.

In this case we’ve changed the Server Database Name to Acme Real Estate Listings. This allows this database
to co-exist on the server with the original Real Estate Listings database. The client database (on the local com-
puter) is still called Real Estate Listings, so you won’t need to reprogram any of the lookups or procedures.

actual database name

Page 110 Panorama Handbook
Transferring the Database to Other Client Computers

The original single user database has been transformed into a shared database. The final step is to transfer
copies of this database to all of the other clients that need to access the data. There are several ways to transfer
the database to the various clients: 1) using the Download Shared Databases wizard, 2) using the Server
Administration wizard, or 3) manually (via file sharing, e-mail, USB drive, etc.).

Using the Download Shared Databases Wizard

The most common way to download shared files from the server is to use the Download Shared Databases
wizard. Start by opening this wizard on the client machine, then use the pop-up menu to choose the server
that contains the shared database (if only one local server is available, it will be selected automatically when
the wizard opens). You’ll be asked for the appropriate download password, if any (see “Changing the Auxil-
iary Passwords” on page 80). After the password is entered, a list of shared databases on the server is dis-
played (databases that are web published but not sharable are not listed).

Chapter 3:Online Database Sharing Page 111
To download one or more databases, simply click on their check boxes and press the Download Databases
button.

When you press the Download Databases button, Panorama will ask you where you would like to put the
databases on the local computer. Navigate to the folder you want to use and press the Save button.

Page 112 Panorama Handbook
When the download is complete, the wizard will display a list of the databases that have been downloaded.

You can simply press Ok, or press Reveal in Finder to display the folder containing the newly downloaded
files.

Once a shared database has been downloaded you can open it simply by double clicking (see “Opening a
Shared Databases” on page 115).

Downloading Offline Databases. If a database is currently off-line, it will be dimmed in the listing (like Aca-
cia Contacts in the list below).

You can download an offline database, but it cannot be opened until the administrator brings it on-line again
(see “Database Online/Database Offline” on page 73). The most common reason for taking a database offline
is to update its fields, forms or procedures, so you may want to wait to download this database until the
updated version is available.

Chapter 3:Online Database Sharing Page 113
Downloading with the Server Administration wizard.

An alternate way to download shared files from the server is to use the Server Administration wizard. Start
by opening this wizard on the client machine, then choose the server that contains the shared database (you’ll
be asked for the administrator password). Locate the database you want to download and hold down the
Control key while you click on the database name. A pop-up menu will appear.

The first choice in this pop-up menu is Download Database. When you choose this option, the wizard will
ask you where you want to place the downloaded file.

Page 114 Panorama Handbook
Select a folder, press the Save button and the wizard will download the database to the client machine. When
the download is complete, the wizard will ask you if you want to see this file in the Finder.

Press Yes to switch to the Finder and see the folder that contains the newly downloaded file.

Now you can open this file and begin sharing.

Transferring the Database Manually

As an alternative to downloading the database with a wizard, you can also manually copy the database to
each client computer.

Chapter 3:Online Database Sharing Page 115
An advantage of this approach is that it doesn’t require knowledge of the download or server administrator
password. Simply use the normal methods you would use for copying any other file. You can transfer the file
over a network, using file sharing, FTP, or .Mac. You can transfer the file via sneakernet, using a CD, USB
thumb drive, zip drive or (gulp) floppy. You can even e-mail the file as an attachment. Or you can use a com-
bination of these techniques.

If you transfer the file as an e-mail attachment we recommend that you compress the file before sending it
(Zip or Stuffit). We’ve found that some e-mail clients tend to slightly modify “naked” attachment files, which
Panorama doesn’t like at all. Compressing solves the problem.

If you transfer files via sneakernet, make sure that the media you are using is formatted for Macintosh (unless
you are transferring to a Windows computer). If that is not possible then compressing the file usually allows
it to be transferred cleanly between systems.

Opening a Shared Databases

Once a database file has been copied to another computer on the local network, it can be opened simply by
double clicking on it (assuming, of course, that the computer has a licensed copy of Panorama). Panorama
will open the database (load the data into RAM), then connect to the server and synchronize with the server
to get the latest modifications (see “Synchronization” on page 144). Basically it’s the same as single user oper-
ation — just double click on the database and get to work!

Debugging Local Database Sharing Connection Problems

If the server does not show up at all in the Available Servers wizard, double check that both computers are
connected to the same local network (the same router). If the client computer is not on the same local network
as the server computer you’ll have to use internet sharing to connect to the server (see “Configuring Remote
(Internet) Database Sharing” on page 62). Also double check that Local Network sharing is enabled on the
server (see “Enabling Database Sharing” on page 55). If these steps don’t solve the problem then you may
need to increase the Bonjour threshold value (see “Configuring Local Database Sharing to use TCP/IP
instead of Remote Apple Events” on page 59).

If the server does show up in the list but double clicking on the ethernet plug doesn’t work then double check
that the server computer has Remote Apple Events option enabled in the System Preferences application (see
“Enable Remote Apple Events” on page 33). If that is ok then you can try turning sharing off and on again.
When you turn sharing on again, you may want to hold down the control or option key. This forces Pan-
orama to ask you for the System Administrator password again (if this password is incorrect clients will not
be able to connect to the server).

Page 116 Panorama Handbook
Opening a Shared Database on the Internet

On the local network, Panorama can locate and contact the server automatically. If the server is not on the
local network, you must add the server to the list of available servers before the database can be used. This is
done with the Available Servers wizard (in the Sharing submenu of the Wizard menu).

Press the Add Remote Server button and enter the domain name or IP address of the server.

If you’ve entered a correct domain name or IP address the server will appear in the list of available servers
(see “Configuring Remote (Internet) Database Sharing” on page 62).

Once the server has been added to the list, you can open the shared database simply by double clicking on it.
The database will open, connect to the server and synchronize. You’re ready to get to work!

Chapter 3:Online Database Sharing Page 117
Connecting an Already Open Database to the Server

When you open a shared database, Panorama will normally connect and synchronize the database to the
server automatically. However, if there is a connection problem (client not connected to the network, network
down, server down) Panorama will still open the client database, but won’t connect and synchronize without
additional steps.

The first step in making the connection is to resolve whatever problem is preventing the connection. If the cli-
ent is unplugged from the network, plug it in! If the server is turned off, turn it on, etc.

Simply fixing the network or server isn’t enough to get databases that are already open to connect and sync.
To force any disconnected open databases to connect and sync, first open the Available Servers wizard and
choose the Reconnect to Available Servers command from the Connections menu.

This command will scan all open databases. When it finds a shared database that is not currently connected
to the server it checks to see if the server is available, and if so, reconnects and synchronizes the database.
This is the fastest and easiest way to connect all databases. When all databases have been scanned a dialog
lists the databases that were connected.

(Note: Another method is to close the client database and then re-open it, but this is usually more work than
using the Reconnect to Available Servers command.)

Page 118 Panorama Handbook
Disconnecting from a Server

Once a shared database is open and connected to the server, it normally remains connected until you close
the database. However, sometimes you may want to disconnect from the network without closing your
shared databases (for example to take a laptop on the road). You can simply unplug from the network, but if
you do the server will continue to think you are connected (see “Forcing a Session to Close” on page 79).

If you know you are going to be disconnecting from the network, first open the Available Servers wizard
and choose the Disconnect Servers command from the Connections menu.

A dialog will appear listing all of the currently connected servers.

Select the servers you want to disconnect from and press the Disconnect button. Any open databases con-
nected to these servers will be disconnected, but will remain open in offline mode (see “Offline Database
Sharing” on page 173). If you later reconnect to the server, you can use the Reconnect to Available Servers
command to re-establish the connection with the server (see previous section).

Chapter 3:Online Database Sharing Page 119
Changing the Design of a Shared Database

In a perfect world you might be able to design a perfect database the first time, never having to add, remove
or change fields, forms or procedures. In the real world you’ll often have to make these sort of changes. The
following sections describe how to do this.

Sharing “Generations”

The Panorama Server does not allow you to make design changes directly on the server. To make a design
change (adding fields, etc.), you have to download the data to a local computer, make the design changes,
then upload the database to the server again. Each time you do this is called a sharing generation.

The shared database will be offline during the process of creating a new sharing generation. This means that
other users cannot use the database until the new generation is complete (Panorama will not let you start the
new sharing generation process if anyone else is currently using the database.) If possible, you’ll usually
want to perform this operation during “off hours,” for example in the evening or on a weekend.

Starting a New Sharing Generation

The first step in the process of creating a new sharing generation is to open the Database Sharing Options
wizard (in the Sharing submenu of the Wizard menu). Make sure that the database to be changed is selected
in the pop-up menu (if the database is not already open, open it now).

Page 120 Panorama Handbook
Now press the New Sharing Generation button

or choose the Start New Sharing Generation command from the Maintenance menu.

This command displays a dialog that explains what this command is about to do:

This dialog has several options that will be explained later. In most cases, however, you can simply leave
these options alone and press the New Sharing Generation button.

Chapter 3:Online Database Sharing Page 121
When the process is complete the wizard will display a dialog like this.

Note: If anyone else is currently using the database the wizard will refuse to perform any of these steps, and
will display an error message indicating that other users are currently using the database. You’ll have to wait
until the other users are finished before starting the new sharing generation process. (Or, if you want to be
really rude, you can use the Server Administration wizard to terminate the other users sessions, see “Forcing
a Session to Close” on page 79. Of course this is pretty much guaranteed to make you very unpopular, so this
should be avoided if at all possible.)

Adding and/or Removing Fields

At this point you are ready to make whatever design changes you want to the database. We don’t have any
special tips for adding or removing fields — simply use either the Design Sheet or the Setup menu to add or
remove fields as needed. In this case we have added a new Zip field for zip codes.

See Chapter 5 of the Panorama Handbook for more information on adding and removing fields.

Page 122 Panorama Handbook
Uploading the New Sharing Generation

When your design changes are complete, you can use the Database Sharing Wizard to upload the new gen-
eration to the server. To do so, simply press the Re-Share button that magically appeared when the Start
New Sharing Generation command was complete. You can also use the Re-Share Database command in the
Maintenance menu.

Pressing this button will upload the new generation of this database to the server, completing the new shar-
ing generation process.

Note: If for any reason the Re-Share button does not appear (for example if you have quit and relaunched
Panorama) you can still re-share the database. Simply check the desired sharing options (Local Database
Sharing, Internet Database Sharing, etc.) and press the Apply Changes button, just like you did when you
first shared the database. When using this technique the wizard will ask you to confirm that you want to
replace the database that was previously uploaded to the server.

Distributing the New Database Generation to All Clients

The final step is to distribute the updated database generation to all of the other clients on the network
(replacing the local copy of the database they already have). The easiest way to do that is to let Panorama do
it for you. If a user tries to open an older generation of the database they’ll see a message like this:

Click the Yes button and Panorama will automatically download the revised database from the server and
open it. That’s all there is to it!

Chapter 3:Online Database Sharing Page 123
Of course you can also transfer the file directly to the client computers. You can transfer the file any way you
like — using the Download Shared Database wizard (see “Using the Download Shared Databases Wizard”
on page 110), the Server Administration Wizard (see “Downloading with the Server Administration wiz-
ard.” on page 113), or manually using file sharing, FTP, .Mac., via sneakernet using a CD, USB thumb drive,
zip drive or (gulp) floppy. You can even e-mail the file as an attachment. Or you can use a combination of
these techniques (see “Duplicate Database Conflicts on the Server” on page 108 for additional tips).

Design Changes to Forms (Graphics) and/or Procedures (Programming)

The previous discussion explained how to add and remove fields. You can use the same technique to change
forms and programming. However if you are only making changes to forms and/or programming and are
not adding or removing fields there is a shortcut you can take that streamlines the new sharing generation
process.

When adding or removing fields you must make the actual design changes in the middle of the new sharing
generation process, like this:

You can make form or procedure changes in the middle of the new sharing generation process as well. But
you can also make these changes before you start the new sharing generation, like this:

Page 124 Panorama Handbook
Here are the step-by-step instructions for doing this. Start by opening the database and editing the graphics
and/or procedures as needed. (You can actually do this over an extended period of time — it doesn’t have to
be done immediately before the new sharing generation process is started.)

When the graphics and programming changes are complete, open the Database Sharing Options wizard.
Then choose the Start New Sharing Generation command.

Since you’ve already made the design changes you need, check the Re-Share & Re-Upload option, then press
the New Sharing Generation button. The wizard will download the lastest data from the server and then
immediately re-upload the new database generation with the graphic and programming changes you have
made.

That’s it! The only remaining step is to transfer the new generation to the other clients on the network (see
“Transferring the Database to Other Client Computers” on page 110).

Chapter 3:Online Database Sharing Page 125
New Sharing Generation Options and Advanced Topics

The following sections describe the options available in the Start New Sharing Generation dialog, and also
explain how to perform the New Sharing Generation process manually (without using the Start New Shar-
ing Generation dialog).

Synchronization vs. Force Sync

After taking the database offline, the first step in the new sharing generation process is downloading the
most recent data from the server to the local computer. This is normally done by synchronizing, which trans-
fers only the records that have actually changed. These updated records are merged with the existing
unchanged records in the local database. However you also have the choice of using the Force Sync option.

When this option is used Panorama will transfer the entire database from the server to the local database,
including both changed and unchanged records (so it will be slower than the normal synchronization pro-
cess). Theoretically you should never need to use the Force Sync option, but the option is there if for any rea-
son you think a database might not synchronize properly (see “Synchronization” on page 144 for more
information on this topic).

Removing Sharing History

Previously you learned how Panorama can automatically download updates to clients across the network
(see “Distributing the New Database Generation to All Clients” on page 122). To do this Panorama keeps a
sharing history for each shared database. If it detects that you are trying to open an older generation of a
shared database, it will offer to download the latest version for you.

However in some situations you may want to distribute the new client databases manually, rather than
allowing automatic downloads. For example, you may decide that some users that had access to this data-
base in the past should not have access in the future. You can do this by removing the sharing history from
the database (if these users also had access to the Download Shared Databases wizard you will also need to
change the appropriate auxiliary passwords, see “Changing the Auxiliary Passwords” on page 80).

Page 126 Panorama Handbook
To remove the sharing history simply check the appropriate checkbox on the Start New Sharing Generation
dialog box.

When the database is re-shared it will no longer contain the history of any previous sharing generations. If a
user tries to access the server with an older generation of the database it will open, but the database will not
connect to the server.

Open the Sharing Info wizard to see exactly what the problem is.

To see the full error message either make the Sharing Info window wider or double click on this line.

Chapter 3:Online Database Sharing Page 127
Since the fields in this copy of the database do not match the fields in the server copy of the database Pan-
orama cannot connect them.

If you later decide that you want this user to be able to access the database you’ll need to make arrangements
to manually copy the updated generation of the database onto their computer, either with the Download
Shared Databases wizard (see “Using the Download Shared Databases Wizard” on page 110), the Server
Administration wizard, (see “Downloading with the Server Administration wizard.” on page 113) or using
some other method (see “Transferring the Database Manually” on page 114).

Page 128 Panorama Handbook
Making a New Sharing Generation Manually

You’ll normally want to use the Start New Sharing Generation and Re-Share Database commands to create
new generations of a database. However, it is also possible to do this manually, using separate commands.

Take the Database Offline. This can be done with the Database Offline command in the Maintenance menu
of the Database Sharing Option wizard, or with the pop-up menu in the Server Administration wizard (see
“The Pop-up Database Context Menu” on page 72).

Synchronize/Force Sync. This can be done from the within Database Sharing Options wizard using com-
mands in the Transfer menu.

It can also be done by clicking on the database itself and using the Synchronize command in the File menu
(see “Synchronization” on page 144).

Download Server Variables. Use the Transfer menu in the Database Sharing Options wizard for this step.

Convert Local Copy of Database to Single User. Using the Database Sharing Options wizard, uncheck all
of the sharing options for this database. (Note: If you are using "Expert" mode (in the Form menu) this win-
dow will look slightly different.)

Then press the Apply Changes button (at the bottom of the form) or choose Apply Option Changes in the
Maintenance menu. The wizard will ask you to confirm, then will convert the local copy of the database to
single user.

Make Design Changes. If you need to add or remove fields, now is the time to do that (see “Adding and/or
Removing Fields” on page 121).

Chapter 3:Online Database Sharing Page 129
Remove Sharing History (Optional). If you want to remove the history of previous generations you can do
so now using the command in the Maintenance menu.

See “Removing Sharing History” on page 125 for more information on this topic.

Re-Share & Re-Upload Database. Simply check the desired sharing mode options (Local Database Sharing,
Internet Database Sharing, etc.). (Note: If you are using "Expert" mode (in the Form menu) this window will
look slightly different.)

Then press the Apply Changes button (at the bottom of the form) or choose Apply Option Changes in the
Maintenance menu. The wizard will ask you to confirm the options, then it will ask you to confirm that you
want to replace the database that was previously uploaded to the server. Click Yes to complete the process.

Distributing the New Shared Generation of the Database. Distribution of the new generation of this data-
base is handled the same way as it was after using the Start New Shared Generation command, see “Distrib-
uting the New Database Generation to All Clients” on page 122.

Page 130 Panorama Handbook
“Unsharing” a Shared Database

Occasionally you may want to permanently convert a shared database back into a single user database. To do
this, first open the database, then open the Database Sharing Options wizard. (You may want to Synchro-
nize first, to make sure you have the most recent data.) This wizard will show that the database is currently
being shared. (Note: If you are using "Expert" mode (in the Form menu) this window will look slightly differ-
ent.)

To convert back to single user operation, uncheck the Local Database Sharing and Internet Database Sharing
options, then choose Apply Option Changes from the Maintenance menu (or press the Apply Changes but-
ton at the bottom of the form). The wizard will ask you to confirm the new settings.

Chapter 3:Online Database Sharing Page 131
The wizard will give you one last chance to back out.

If you press Yes, the database will be “un-shared.”

This copy of the database is now a single user database again, with no connection to the server.

IMPORTANT NOTE: Converting a copy of the database on a client computer only affects that copy of the
database. It does not affect the server or other users of the database, which can continue to share the database
even though you’ve converted this one copy of the database back to single user. If you want to actually
remove the database from the server see “Permanently Deleting a Database from the Server” on page 133.

Page 132 Panorama Handbook
Forcing a Shared Database Back to Single User

Sometimes the unsharing process described in the previous section may not work for one reason or another.
For example the original server may no longer be available, or the database sharing information inside the
database may be garbled. If the normal conversion to single user described above does not work, you can use
the Force to Single User command in the Maintenance menu of the Database Sharing Options wizard.

The command displays a dialog listing the currently open databases.

Choose the database that you want to force to single user and press the Ok button. This will force the data-
base to single user mode and reset all server related options back to their default values, removing any trace
of the fact that this database was once shared (including the sharing history, see “Removing Sharing History”
on page 125). For example you might want to use this command if you wanted to send a single user copy of
the database to another person. If you plan to convert the database back to shared again on the original server
you should probably avoid this command.

Note: Forcing a database to single user on a client computer only affects that copy of the database. It does not
affect the server or other users of the database, which can continue to share the database even though you’ve
forced this one copy of the database back to single user. If you want to actually remove the database from the
server see “Permanently Deleting a Database from the Server” on page 133.

Chapter 3:Online Database Sharing Page 133
Permanently Deleting a Database from the Server

There are two ways that you can permanently delete a database from the server — using the Database Shar-
ing Options wizard or using the Server Administration wizard. Either method is permanent and cannot be
reversed or undone. (The Server Administration wizard method has the advantage that you can delete a
database without having a copy of the database on your local computer.)

To delete a database using the Database Sharing Options wizard, first open the database on the local com-
puter and then open the wizard. Before you can actually delete the database you must first take it offline. This
can be done with the Maintenance menu.

If any other users are currently using the database, Panorama will refuse to take the database offline. You’ll
have to wait until they finish to delete the database. (On the other hand, if other users are using this database
perhaps you should reconsider whether or not it should be permanently deleted!)

Once the database is offline you can delete it from the server using the Remove from Server command.

Deleting a database with the Server Administration wizard is similar. Once the wizard is open, hold down
the Control key while you click on a row in the database table (or right-click if you have a two button mouse).
This will cause a pop-up context menu to appear. The exact contents of this menu depend on the current sta-
tus of the database, but it will look something like this:

Page 134 Panorama Handbook
Use this pop-up menu to take the database offline.

Notice that when a database is temporarily offline, it is dimmed (gray) in the database table.

Once the database is offline, use the pop-up menu again to actually delete the database from the server.

database is offline

Chapter 3:Online Database Sharing Page 135
Shared vs. Single User Database Operation

So far we’ve discussed how to create, open and change the design of shared databases. The following sec-
tions describe how shared databases work once they are opened. Operation of shared Panorama databases is
very similar to single user use, but there are some differences.

The majority of Panorama databases can be easily converted to shared databases with little or no modifica-
tions to data, graphics or procedures.

If you have previously used the Panorama 3-4/Butler database sharing system the Panorama Enterprise Edi-
tion Server is similar, but with some big improvements. See “Enterprise Sharing vs. Butler” on page 489 for
information on these differences and for instructions on converting a database shared with this previous sys-
tem to the new Enterprise server.

Operation Notes

Open Database Opens database from local hard disk, then connects to and synchronizes with
server (see “Synchronization” on page 144).

Close Database Closes database on local computer (may remain open on other computers and on
server)

Save
Saves database on local hard disk, and also saves on server as well. (Note: Server
will maintain changes even if server operation is interrupted without saving, see
“Handling Interruptions in Server Operation (Crash Recovery)” on page 153.)

Revert to Saved
Cannot roll back data with this command (master copy of data on server cannot
be reverted), however you can still use this command to revert work done in
graphics mode or procedures.

Searching, Sorting, Printing,
etc.

Exactly the same as single user. Operations which don’t modify the database take
place entirely in the local computer’s RAM and are just as fast as when using a
single user Panorama database.

Data Editing Works the same as single user unless someone is already editing the same record.
The Panorama Server has full record locking to prevent conflicts.

Summary Records

Grouping and summary operations (Total, Average, etc.) work exactly the same
as single user. Summary records are not shared and are not record locked, so dif-
ferent users can group and summarize the database different ways at the same
time. You cannot manually create or destroy individual summary records.

Fills

To ensure record locking Panorama must contact the server for every cell that is
filled, making these commands (Fill, Formula Fill, etc.) significantly slower than
when used in single user mode. As much as possible you should minimize the
number of cells that are filled. There is also a new programming statement that
performs the fill on the server instead of the client, this is much faster but
requires modification to your procedures. See “ServerFormulaFill — A Much
Faster Option for Select/Formula Fill Operation” on page 163.

Procedures
Procedures operated exactly the same as single user. Additional statements allow
the programmer to take explicit control over record locking and to create and
access server variables.

Flash Art™

Since Flash Art is normally used to display images from the local hard drive it
usually needs to be redesigned to work in a shared environment. Flash Art can
now display images directly from the web, so one option is to put all of the data-
base images on a web server and display them from there.

Import Appending imported text is not quite as fast as single user, but pretty close.

Export Exactly the same as single user.

Page 136 Panorama Handbook
Editing Data and Record Locking

Panorama only allows one user to edit each record at a time. Once you begin editing the record remains
locked until you move to another record, another window, or save the database. The best way to understand
record locking is to see it in action. We’ll follow along as “Bob Blue” and “Rudy Red” both edit the Real Estate
Listings database.

Bob gets a phone call that there is an offer of $675,000 on the Geneva Street house! So he opens the listings
database and double clicks to enter the new offer.

At the same time, Rudy is checking his e-mail and receives a message that Tim Tobin is not the Agent on the
632 Geneva Street house, it should be Mary Jackson. So he opens the listing database and double clicks on the
agent name.

Bob Rudy

ddouble click

Chapter 3:Online Database Sharing Page 137
But when Rudy double clicks, Panorama doesn’t let him edit the agent name. Instead, it tells him that this
record is already being edited by someone else.

Bob has finished entering the new value, but he still hasn’t moved to another record.

When Rudy tries again to edit the Agent name he finds that it is still locked.

Page 138 Panorama Handbook
Now Bob moves on to a different record.

This unlocks the 623 Geneva Street record so that Rudy can now edit it.

Notice that the new $675,000 offer that Bob entered now appears in Rudy’s copy of the database. Whenever
you begin editing a record Panorama not only locks that record, it also updates your copy of the record with
the latest data from the server.

Rudy completes his modification by typing in the new agent name and then moving to another record to
unlock the record he just modified. (A record can also unlock automatically after a specified period of inactiv-
ity, see “Record Lock Timeout (Client)” on page 139.)

Chapter 3:Online Database Sharing Page 139
Bob can’t see Rudy’s change right away, but it will appear if he edits this record again or chooses Synchro-
nize from the File menu.

Synchronization will be discussed in detail later in this chapter (see “Synchronization” on page 144).

Record Lock Timeout (Client)

When you edit a record, Panorama normally keeps it locked until you do one of three things—move to
another record in the same database, bring a different database to the front, or save the database. But what if
someone starts editing a record and then gets distracted? Perhaps they get a phone call, or leave for lunch.
Meanwhile no one else can edit that record.

Fortunately this can be resolved by enabling Panorama’s record lock timeout. You may recall that when we
made Real Estate Listing sharable we set this timeout to 45 seconds.

Let’s revisit the record locking example from the previous section. Suppose Bob starts editing the record and
then walks away.

After 15 seconds, nothing has changed.

Page 140 Panorama Handbook
Still no change after 30 seconds.

After 45 seconds, however, Panorama automatically completes Bob’s editing and unlocks the record.

Now Rudy (or anyone else) can edit the record.

Changing the Record Lock Timeout

To change the timeout value, start with the database you want to change on top. Then open the Database
Sharing Options wizard. The wizard will ask you to enter the server password.

After you enter the password, it will display the current settings. Scroll down to the Basic Database Sharing
Options and change the auto unlock timeout to the desired setting.

When editing, the timer is reset every time you hit a key or click the mouse. So setting this value to 20 means
that the record will automatically unlock if you don’t hit a key or click the mouse for 20 seconds.

Chapter 3:Online Database Sharing Page 141
Choose Apply Changes from the Form menu or press the Apply Changes button at the bottom of the form to
submit the change. The wizard will ask you to confirm the new value.

After you press Apply Options the wizard will ask you for the server password again and then confirm that
the change has been made.

Note: When the timeout is modified after the database has already been changed to a sharable database the
change applies only to the current computer. You must repeat it on the other computers on the network if you
want them to use the same settings. (Conversely, this allows you to use different timeouts on different com-
puters.)

Page 142 Panorama Handbook
Record Lock Timeout (Server)

In addition to the record lock timeout described above, which happens on the client computer, the server
administrator can also set up a timeout on the server itself (see “Automaticaly Unlock Records” on page 92).
In normal operation the server timeout is unnecessary if you use the client timeout feature. However, if a cli-
ent becomes disconnected from the network (for example if a laptop is unplugged from the network or loses
its WiFi signal, or if there is a power outage that affects the client but not the server) the server timeout will
ensure that any records locked by that client will not remain stuck indefinitely, innaccessible to other users.
(Note: If a client locks a record, then is disconnected or crashes, then logs back on, any record they had locked
will automatically become unlocked when they log back on, which also helps to prevent “orphan” locked
records.)

Locked Records Wizard

Usually the server handles record locking and unlocking automatically, with no intervention from the users
or the server administrator. In certain situations, however, you may want to manually monitor record locking
operation, or even manually intervene to unlock a record that appears to be orphaned (you can almost com-
pletely eliminate orphan record locks with judicious use of client and server record lock timeouts).

The Locked Records wizard can be used to examine the locked records for any open database. With a shared
database open, simply choose Locked Records from the Sharing submenu of the Wizard menu.

As you can see, the wizard lists each of the locked records in this database. For each record, the table lists the
record ID, the amount of time the record has been locked, the user name, and the name of the computer that
user is using.

Finding a Locked Record

The window above indicates that record 23 is locked. But which record is 23? To find out, simply double click
anywhere on the line (except for the lock icon). Panorama will bring up the original database and find the
locked record.

record 23

Chapter 3:Online Database Sharing Page 143
Manually Unlocking a Record

To manually unlock a record, click on the lock icon for that record.

The wizard will ask you to confirm that you really want to unlock the record.

Think carefully before pressing the Yes button. Once you do so, the person who originally locked the record
will no longer be able to complete the editing they were working on. If they are still connected to the network
they probably won’t be very pleased with you!

Manually Unlocking All Records in a Database

To manually unlock all of the records in a database, click on the open lock in the top right corner of the wiz-
ard.

You’ll be asked to confirm that you really want to do this.

Make sure you really know what you are doing, or you could create quite a few unhappy co-workers by
pressing the Yes button.

click to unlock record

Page 144 Panorama Handbook
Synchronization

Since Panorama database sharing uses duplicate databases spread out all over the network, synchronization
is the key to keeping all the data in order. Synchronization happens automatically whenever a shared data-
base is opened, and can also be done “on command” at any time from the File menu.

Synchronizing updates the local copy of the database with the server. When you synchronize a database, you
may see any of these changes happen on the local database:

1) Existing records may change.
2) New records may be added.
3) Existing records may be deleted.
4) The order (top to bottom) of records may change, and summary records will be removed.
5) If a subset of records is visible, all records will now be selected (as if you had performed a Select All command).

These changes all happen simultaneously so you won’t see individual records appearing, changing, and
deleting.

Chapter 3:Online Database Sharing Page 145
Synchronization and Record Order

The last point in the list above merits more attention. If you have been using the single user version of Pan-
orama, you are accustomed to the record order staying the same each time you open the file. When working
with multi-user databases, that isn't the case. Each time the database is synchronized, the order of the data
may (and probably will) change.

For example, suppose you have used the Sort Down command to rank the listings database by asking price,
so that the highest price properties appear at the top.

When you synchronize your local copy of the database, the data is no longer sorted by asking price. If you
need to see the updated data in sorted order, simply use the Sort command again (fortunately, Panorama’s
RAM based sorting is very fast).

Page 146 Panorama Handbook
The same principle applies to grouping and summary records. The following four steps have been used to
rank the cities in this database by average home prices.

1) Click on City field and Group Up.
2) Click on Asking field and Average.
3) Using the Outline Level command, collapse to see only cities.
4) Rank cities from most to least expensive using Sort Down..

(See Chapter 10 of the Panorama Handbook for more detail on these steps.)

Choosing Synchronize from the File menu updates the local database with all of the changes made by other
users. It also removes all of the summary records and goes back to the original data record display.

If you are going to frequently produce a summary or report you can automate the process with a procedure
that starts by synchronizing before it does any data processing. This ensures that your summary or report
will contain the latest, most up-to-date information.

Chapter 3:Online Database Sharing Page 147
Regular Synchronization vs. Force Synchronization

When Panorama synchronizes with the server, it transfers only the records that have actually changed. These
updated records are merged with the existing unchanged records in the local database. However if you hold
down the Option key when you choose the Synchronization command then Panorama will transfer the
entire database from the server to the local database, including both changed and unchanged records. This is
called Force Synchronization. Theoretically you should never need to do a Force Synchronize, but the option is
there if for any reason you think a database is not synchronizing properly. You can also perform this opera-
tion in a procedure with this statement.

forcesynchronize

Adding New Records

You can add new records to a shared database just as you would in single user mode. Just add the record and
start entering data into it. The new record will appear in other user’s copies of the database the next time they
synchronize.

Note: When working with a shared database, you can use the Insert Record tool (or the Return key in a data
sheet) to insert a record in the middle of a database. However, if you do this, keep in mind that the order of
the records will change every time you synchronize the database. A record inserted in the middle will not
stay in the same position for long in a shared database. If you need a record to appear in a specific spot you
should include a field with a value that will position the record in the proper spot when you sort the record.

Deleting Records

You can delete records from a shared database just as you would in a single user database. The deleted record
will disappear from other user’s copies of the database the next time they synchronize. If another user
attempts to edit a record that has already been deleted by another user, Panorama will not let them edit the
record. Instead, an alert will appear warning them that this record has been deleted.

Panorama has two commands that can delete large numbers of records at a time — the Delete All command
(in the Edit menu) and the Remove Unselected command (in the Search menu). Both of these commands are
disabled when using a shared database. The only way to delete records from a shared database is one record
at a time.

Working With Summary Records

Unlike ordinary data records, summary records are not shared with other users or stored in the server copy
of the database. Instead, summary records are always kept individually on each local database. This allows
each individual user to group his or her local database in his or her own way. Because summary records are
not shared, they are also not locked. Double clicking on a summary record does not lock the summary record
(because no one else could possibly modify your summary record). Likewise, the Group, Total, Average, and
other Math menu commands are not affected by record locking.

In general, summary records work pretty much the way they do in single user databases (described in Chap-
ter 10 of the Panorama Handbook). You start by using the Group command to organize the database into sec-
tions (you may want to synchronize the database first to make sure you are analyzing the latest data, see
“Synchronization” on page 144). Then you can use the commands in the top section of the Math menu (Total,
Count, Average, etc.) to calculate subtotals, averages, etc. If desired, you can use the Outline Level command
to collapse the summaries and hide the original detail. When you’re done with the summary records you can
use the Remove Summaries command to remove them (synchronizing will also remove the summary
records). All of this happens on your local computer — no one else on the network can see your summaries,
and different users on the network can do the same or different summaries simultaneously.

Page 148 Panorama Handbook
Toggling Summary Records (not!)

The single user version of Panorama allows you to convert an ordinary data record into a summary record or
a summary record into a data record. This is done using the Toggle Summary Level command in the Sort
menu. This command does not work with shared databases, and an error alert will appear if you try to use it.
(Why doesn’t this command work? Since summary records are not shared, converting a data record into a
summary record would require deleting it from the server and all other users. We hope you agree that it
wouldn’t make any sense to do this.)

Automatic Record Numbering

Many databases applications require that each record contain a unique number that can be used to identify
the record. Common examples include invoice numbers, batch ID's, employee numbers, etc. Panorama can
automatically assign a unique number to each new record as it is created, even if several people are using the
database simultaneously over a network.

Setting up automatic record numbering must be done before you convert the database from single user to
sharable. First set up the field that will contain the automatic record number. This field must be a numeric
field. To specify that this field should contain a unique record number, the default should be + . Do not spec-
ify any increment value, just use a single + character.

For each database, the server has a counter that keeps track of the next record number. Every time a new
record is created, the local copy of Panorama will ask the server what the next record number should be (the
server then automatically increments the counter for next time). Even if the record is later deleted, the num-
ber will never be re-used (unless you reset the counter manually as described below).

To illustrate automatic numbering works let’s assume that Bob Blue and Rudy Red have been hired to do
some data entry on this personnel roster. The database starts looking like this:

Chapter 3:Online Database Sharing Page 149
The first field, EmployeeID, has been set for automatic numbering. So far the employees have been assigned
numbers from 1 to 7. Now Bob starts by adding a new record to the database. As you can see, this adds
employee number 8 to the database.

Before Bob can even enter any date, Rudy gets to work and adds a record himself. The server knows that 8
has already been used, so this is employee number 9.

Page 150 Panorama Handbook
Meanwhile Bob has finished entering the first record and adds another. This is employee number 10.

As they are adding new records, Bob and Rudy cannot see the records added by each other (or anyone else).
If they want to see all of the new records, they can simply choose Synchronize from the File menu, and the
records entered by other users will appear.

If you want Panorama to automatically synchronize each time a new record is added, simply set up a
.NewRecord procedure containing a synchronize statement. This procedure will automatically be trig-
gered whenever a new record is added. See Chapter 24 of the Panorama Handbook for more information
about .NewRecord procedures.

Chapter 3:Online Database Sharing Page 151
Manually Changing the Record Number Counter

The automatic record number normally increments by one each time a new record is added, but you can
manually change the record number counter at any time using the Privileges dialog. To open this dialog on a
Macintosh computer, hold down the Command or Option key and choose About Panorama from the Apple
menu. To open this dialog on a Windows system, hold down the Control or Alt key and choose About Pan-
orama from the Help menu. (The User Level portion of this dialog is discussed in Chapter 3 of the Panorama
Handbook.)

To change the next record ID # simply type in a new number and press Ok. For example, suppose you want
the next employee number to be 50. Simply type in 50 and press Ok.

The next record added will be 50.

Keep in mind that this is the next record added anywhere on the network. If someone else adds a record
before you do you’ll see 51, 52, or a higher number on your computer.

Page 152 Panorama Handbook
Accessing the Next Record Number in a Procedure

It is also possible to access and modify this ID number in a procedure with the GetAutoNumber and
SetAutoNumber statements. To access the next record ID # use the GetAutoNumber statement. Here is a
simple procedure that displays the next record ID number.

local id
GetAutoNumber id
message "The next record number will be "+str(id)+"."

Keep in mind that since this is a multi-user system someone else may use that number before you get a
chance to, even if the addrecord statement is the next statement after the GetAutoNumber statement.

To change the next automatic record number use the SetAutoNumber statement. This one line procedure
uses the SetAutoNumber statement to reset the record ID number to 1000.

SetAutoNumber 1000

This is exactly the same as setting the number with the Privileges dialog.

Saving the Database

Like most programs that work with files (but unlike most databases) Panorama has a Save command in the
File menu. However, when working with a shared database this command works a bit differently than it
does with most programs.

The Save command saves a local copy of the database on the local hard disk. However, Panorama also keeps
a copy of the data on the server. Even if you never, ever use the Save command, Panorama will still keep a
permanent copy of the database on the server. Theoretically you could never use the Save command at all
and all of your data would still be safe. However, you should still use the Save command periodically
because doing so will make synchronization faster the next time you open the database. If you’ve saved
recent changes on the local hard disk Panorama won’t have to update those records the next time it synchro-
nizes the database, so synchronization will happen faster. Over time this performance increase could become
substantial.

There is another reason to use the Save command — this is the only way to save changes you’ve made to
graphics (forms) and procedures. Only data is saved on the server. So if you’ve made changes to graphics or
to procedures be sure to use the Save command (just as your normally would with any single user Panorama
database).

Revert to Saved

The Revert to Saved command reloads the local copy of the database from the local hard drive. With a shared
database this doesn’t revert the data, because it does an immediate synchronization which brings the latest
data back from the server. However, it can still be useful if you decide you want to discard unsaved changes
you’ve made to graphics (forms) or procedures.

When does the Server Save?

When working in single user mode Panorama will save the database from RAM to disk on your command.
The server will save it’s RAM copy of a database when any one of these three actions occurs.

1) Any user on the network saves their local copy of the database.
2) Any user on the network closes their local copy of the database.
3) Any multi-record operation is performed (fill, append, etc.).

It’s possible under these rules that the server copy of a database may not get saved for a long period of time,
even hours at a time. However, as you’ll see in the next section, your changes can never be lost even if server
operation is interrupted for any reason (power failure, system crash, etc.)

Chapter 3:Online Database Sharing Page 153
Handling Interruptions in Server Operation (Crash Recovery)

This section describes how the server saves data, and how it recovers after any kind of interruption in server
operation (power failure, system crash, etc.) If you’re not interested in the details, the short version is that
your data is safe no matter what (the only exception is data you’ve just modified in the current record, before
the record is unlocked).

Whenever you add, delete, or modify a record, Panorama updates the database on the server as well as the
local database. But the server database is RAM based, so the data could be lost if there is any interruption in
server operation. Therefore, Panorama also saves changes to a special transaction log file. Each entry in this
log file contains the operation being performed (add/modify/delete), the record id number, and for modifi-
cations, the new data. Because this is a simple sequential file writing to it is very fast (it has none of the over-
head associated with the type of indexed file typically used by disk based database programs).

When the server copy of the database is saved to disk the transaction log file is deleted, since it is no longer
needed. But if the server is interrupted for any reason before getting a chance to save, the transaction log
remains on the disk. The next time Panorama Server starts up again it checks to see if there are any transac-
tion log files. If there are, it immediately re-applies the changes saved in the transaction log and then saves
the database. Server operation can then continue normally with no data loss, as if nothing had happened.
(When the server needs to use the transaction log to recover changes it will record this in both the sharing
and sharing error logs (see “Monitoring Server Logs” on page 82), and it will also send you an e-mail if you
have configured it to do so (see “Configuring the Notification Wizard” on page 85)).

Page 154 Panorama Handbook
Programming Shared Databases

So far in this chapter, we’ve concentrated primarily on manual operation of shared databases. However,
shared databases fully support Panorama’s programming language. A Panorama procedure can lock and
unlock records, synchronize, create and modify server variables, connect to and disconnect from the server,
rapidly modify selected records, and more. (Note: Unless otherwise specified, the statements described in the
following sections are completely ignored if the current database is not a shared database.)

Record Locking

Procedures often modify the data in a database. When a procedure modifies data in a shared database record
locking is in effect just as it is when data is modified manually.

Implicit Record Locking

As a procedure runs, Panorama will automatically lock and unlock records as necessary. This is called
implicit record locking. Implicit record locking follows two simple rules — 1) The record is locked whenever
any field in the record is about to be modified, and 2) The record remains locked until the procedure moves to
another record, moves to another database, saves, or explicitly unlocks the record (see next section).

The most common method for a procedure to modify a record is with an equation. For example, consider the
equation below which adjusts the quantity level in an inventory database. This example assumes that Qty is
a numeric field in the current sharable database, and SaleQty is a field or variable that contains a numeric
value.

Qty=Qty-SaleQty

When Panorama is running a procedure and encounters an equation that modifies a field in a sharable data-
base it first attempts to lock the current record (if it is not already locked). To do this Panorama contacts the
server to see if anyone else has locked this record. If not, the server responds that everything is ok and
updates the record that is about to be locked (see “Editing Data and Record Locking” on page 136). It then
calculates the formula and modifies the Qty field. Since the data in the local copy of the record is updated as
part of the record locking mechanism, the formula result is guaranteed to be based on the most recent data.
(For example suppose the quantity starts at 100. Then Bob subtracts 11 and Kelly subtracts 14. The final quan-
tity will always be 75, not 89 or 86.)

But what if the record is already locked by another user on the network? In that case the procedure will
simply wait for the other use to finish and unlock the record. The computer running the procedure will be
frozen until the other user finishes (actually only Panorama is frozen, other applications work fine). When the
record is available, Panorama will lock the record on this machine and continue as described in the previous
paragraph.

Before this equation begins running, Panorama automatically locks the current record. That way another user
cannot change the Qty value while the equation is being calculated, possibly causing a calculation error. (If
another user (or another procedure equation) has already locked this record, the procedure will stop and wait
for this user to finish and unlock the record. The user running the procedure will be frozen until the other
user finishes.) When the calculation is complete, the procedure stores the new Qty value and unlocks the
record. (If you don’t like the part about Panorama becoming temporarily “frozen”, continue on to the next
section for a solution.)

Explicitly Locking/Unlocking Records in a Procedure

In the last section, you saw how a Panorama will implicitly lock and unlock a record during a procedure.
However, sometimes the programmer may want to control exactly when and how records are locked and
unlocked. The programmer may also want to control what happens when a record is already locked by
another user. To accomplish these goals, the programmer can use the LockRecord, LockOrStop and
UnlockRecord statements.

Chapter 3:Online Database Sharing Page 155
The LockRecord statement attempts to lock the current record. If the current record is not already locked by
someone else on the network, the record is locked and the procedure continues. If the current record is
already locked, the procedure will wait until the record is available. While it is waiting the statement displays
a dialog telling the person running the procedure to wait. If the person doesn’t want to wait, he or she can
press Command-Period. If the user presses Command-Period the procedure stops and an error dialog
appears. However, the programmer can intercept this error by putting an if error statement after the
LockRecord statement. In that case when the user presses Command-Period, the procedure will continue
running with the first statement after the if error statement.

local ReceivedQuantity
ReceivedQuantity=""
gettext "How many "+Item+" were received?",ReceivedQuantity
ReceivedQuantity=val(ReceivedQuantity)
lockrecord
if error

message “These items could not be added to the database quantity. “+
“Be sure to process them again later.“

rtn
endif
Qty=Qty+ReceivedQuantity

The LockOrStop statement attempts to lock the current record. If the current record is not being edited by
someone else, the record is locked and the procedure continues. If the current record is already locked, the
procedure stops immediately and an error dialog appears. However, the programmer can intercept this error
by putting an if error statement after the LockOrStop statement.

The UnlockRecord statement unlocks the current record. If the record wasn’t locked, the UnlockRecord
statement does nothing. Remember, a locked record is also unlocked automatically whenever Panorama
moves to another record in the current database or any other database.

Here is an example of a procedure that explicitly locks and unlocks the current record to get around the fro-
zen user problem mentioned in the last section. In this example, the user is not frozen if another user has
locked the record, they simply see an error message.

local ReceivedQuantity
ReceivedQuantity=""
gettext "How many "+Item+" were received?",ReceivedQuantity
ReceivedQuantity=val(ReceivedQuantity)
LockOrStop
if error

message "Could not update inventory, try again later."
stop

endif
Qty=Qty+ReceivedQuantity
UnlockRecord

What Records are Locked?

The lockedrecordlist statement returns the number of records locked in the current database, and also
returns a list of those records (listed by record ID number). This statement has one parameter, the name of a
field or variable to receive the list. The result will be formatted like this:

Ok: 2 records locked
378
864

This procedure displays the number of records locked in the current database.

local locks
lockedrecordlist locks
message firstline(locks)[4,-1]

Page 156 Panorama Handbook
Forcing the Server to Unlock All Records

The forceunlockallrecords statement will tell the server to unlock ALL of the records in the current
database. You should only use this statement if a client has disconnected from the network or crashed, and no
other clients have any locked records at the moment. If another client had locked any of these records, they
will be unlocked behind their back. They will get an error message when they try to unlock the record, and
their changes will not be saved. This makes most users very unhappy, so be very careful before using this
command. Note: You can also manually unlock records with the Locked Records wizard, see also.

Forcing the Server to Unlock a Specific Record

The forceunlockrecord statement will tell the server to unlock the current record in the current database.
You should only use this statement if a client has locked this record and disconnected from the network or
crashed. Make sure that you know that it is the disconnected client that locked this record. If another client
that is still running is the one who locked this record, they will be unlocked behind their back. They will get
an error message when they try to unlock the record, and their changes will not be saved. This makes most
users very unhappy, so be very careful before using this command. Note: You can also manually unlock
records with the Locked Records wizard, see also.

Forcing the Server to Lock a Specific Record

The forcelockrecord statement tells the server to lock this record (the current record on the client) on the
server, as if another client had locked the record. Once this is done, the only way to unlock the record is with
the forceunlockallrecords or forceunlockrecord statement (or with the Locked Records wizard,
see also). This statement can be used for debugging if you don’t have two client computers available for test-
ing.

Chapter 3:Online Database Sharing Page 157
Temporarily Disabling Record Locking (and Server Updates)

When using a shared database, Panorama normally updates the server with full record locking every time
any change is made to the database. Sometimes, however, you may want to make temporary changes to a
database simply for the purposes of data analysis. For example, perhaps you need to use the formulafill state-
ment to prepare data for printing, but will no longer need the calculated data after the report is printed. If
you don’t want to keep these changes you can temporarily turn off record locking, essentially turning a
shared database back into single user mode for a short while.

To temporarily disable record locking use the serverupdate statement.

serverupdate truefalse

This statement has one parameter: truefalse. This parameter indicates whether you want to disable or
enable record locking and server updates. To disable updates and record locking, use "off", "no", or "false". To
enable updates and record locking, use "on", "yes", or "true".

The example below turns off server updates, then uses the formulafill statement to calculate P/E ratios.
Since server updates (and record locking) are turned off, the formulafill will be very fast. In this case we
don’t need to keep the calculated P/E ratios after we are finished printing, so it is acceptable to turn off the
server update.

serverupdate "off"
field Ratio
formulafill Price/Earnings
print dialog
serverupdate "on"
forcesynchronize /* restore original data from server */

The last line in this example may not be necessary. If you don't ever use this procedure for permanent
changes to the database for permanent data, you can leave this line out.

You can only turn server updates off for a short time. We recommend that you explicitly turn them back on as
soon as possible, but if you don't, they will automatically turn back on when the procedure finishes, or if the
procedure switches to another database (via the window or openfile statements).

The info("serverupdate") Function

The info("serverupdate") can be used to check if server updates are currently enabled. The function
returns the true if the server update option is currently turned on (this is the default). The example below
shows how this function can be used. The procedure turns off server updates and performs a formula fill. It
then turns server updates back on, but only if they were already on before this procedure began.

local sup
sup=info("serverupdate")
serverupdate "off"
field Z
formulafill A+B
if sup
 serverupdate "on"
endif

If serverupdate was off before this procedure was called, it will remain off.

Page 158 Panorama Handbook
Synchronizing

To synchronize the current database with the server use the synchronize statement.

synchronize

This is exactly the same as choosing Synchronize from the File menu (see “Synchronization” on page 144).

Force Synchronization

When Panorama synchronizes with the server, it transfers only the records that have actually changed. These
updated records are merged with the existing unchanged records in the local database. A more drastic way to
synchronize is called Force Synchronization which transfers the entire database from the server to the local
database, including both changed and unchanged records. Here’s how to do this in a procedure:

forcesynchronize

Theoretically you should never need to do a Force Synchronize, but the option is there if for any reason you
think a database is not synchronizing properly. This statement is the same as holding down the Option key
when you choose the Synchronization command from the File menu (see “Regular Synchronization vs.
Force Synchronization” on page 147).

Automatic Pre and Post Synchronization Procedures

You may want to run a procedure automatically before and/or after each synchronization is performed. For
example, you may want to make sure that the database is sorted a certain way after each synchronization, or
you may want the current record to remain the same after a synchronization. To make this possible, Pan-
orama checks for two special procedures in your database — ..PreSynchronize and ..PostSynchronize. If it
finds a ..PreSynchronize procedure it will run it before the synchronization is performed. If it finds a
..PostSynchronize procedure it will run after the synchronization is complete. The ..PostSyncrhronize proce-
dure has four parameters that tell you about what happened during the synchronization process:

The ..PreSynchronize procedure can be used to save status about the database before the synchronization.
For example, here is a typical ..PreSynchronize procedure that saves the ID of the current record.

fileglobal BeforeSyncRecordID
BeforeSyncRecordID=info("serverrecordid")

If you also add this ..PreSynchronize procedure to your database Panorama will make sure that the current
record is the same before and after the synchronization process (unless the current record has been deleted).

fileglobal BeforeSyncRecordID
findbackwards BeforeSyncRecordID=info("serverrecordid")

Note: We used the findbackwards statement (instead of find) because in most cases on average it will be
slightly faster (it makes no provision for undo). However, find could also be used.

Note: The pre and post synchronization procedures are both Handler procedures, which means that they
should not switch database windows or open or close any databases.

Parameter Description

1 True if one or more records downloaded from the server, false
if no records downloaded.

2 True if one or more records deleted from the local copy of the
database (because they were deleted by another user), false if
no records deleted.

3 True if one or more records uploaded to the server (can only
happen if off-line sharing is allowed, see Chapter 4).

4 Number of conflicts with other users, if any.

Chapter 3:Online Database Sharing Page 159
Server Variables (Shared Variables)

When programming a single user database, you can store values (text or numbers) that you want to keep in
one or more permanent variables. These values will be saved when you save the database. Permanent values
can be used with shared databases, but they aren’t shared. Each local copy of the database has it’s own pri-
vate copy of the permanent variables. There is no way that one user can find out what another user’s perma-
nent variables contain, and no way to change what values are stored in another user’s variables.

If you want to share a variable across the network, you have to use a new kind of variable, a server variable.
As you might guess, server variables are kept on the server. Panorama has several statements and functions
that allow a procedure to create, modify and access server variables.

To create or modify a server variable, use the setservervariable statement.

setservervariable database,variable,formula,initialvalue,response

This statement has five parameters:

As you can see using the setservervariable statement can be quite involved, but in most real applica-
tions it is much simpler. This example creates a a shared variable named PrintCount for the current database,
and assigns it the value 1.

setservervariable "",PrintCount,1

Parameter Description

database

This is the name of the database that contains the variable (like per-
manent variables, server variables are always associated with a spe-
cific database). The specified database must be an open shared
database that is currently connected to the server. If the database
name is specified as "" then the current database will be used.

variable
This is the name of the variable. (You should NOT put quotes
around the variable name.) The variable name must not contain
spaces or other punctuation.

formula

This formula specifies the value to be stored in the variable. This can
be a constant (37, "Arizona") or a more complex formula. If you
want to include a field or variable you must enclose the field or vari-
able with « and », even if that would not normally be required (for
example «Name» or «factor».
The formula can include server variables. These are typed in
directly, not using the servervariable(function, and must not have «
and » around the name. For example if there is a server variable
named ReportCount the formula should simply say ReportCount to
reference this variable. (Note: these special rules apply only to this
formula in the setservervariable statement, not to any other type of
formula.)

initialvalue
This optional parameter specifies the initial value of the permanent
variable if it hasn’t been defined yet. This could be a numeric or text
value. If no initial value is specified, the default value is "".

response

This is an optional parameter that you should usually leave off. It is
used by the adjustservervariable statement. If this parameter is sup-
plied, it should be true or false. If it is true, then when done, the glo-
bal variable _ServerVariable is set to the new value of the variable.
This allows you to not only set the value of the server variable, but
also to find out what the new value is (if the formula contains a
server variable this is the only way to find out the new value).

Page 160 Panorama Handbook
Here’s a slightly more complex example. This procedure prompts the user to enter a tax rate, then stores the
value in a server variable named TaxRate. Notice that in the setservervariable statement the local vari-
able newTaxRate must have « and » around it, i.e. «newTaxRate». If you don’t include the « and » the state-
ment will assume that you mean a server variable named newTaxRate and the procedure will stop and
display an error message (unless there is such a server variable).

local newTaxRate
gettext "Tax Rate:",newTaxRate
setservervariable "",TaxRate,val(«newTaxRate»)

Variable names without « and » are assumed to be server variables, all other fields or variables must have «
and » around them. This example increments (adds one) the PrintCount server variable. Notice that the ini-
tialvalue is set to zero, so if the PrintCount server variable has never existed before, it will be set to 1.

SetServerVariable "",PrintCount,PrintCount+1,0

In a real world application, you’ll often want to use the adjustservervariable(function to increment a
server variable (see “Adjusting a Server Variable (Atomic Calculation)” on page 160, just below).

Accessing Server Variables

To find out the current value of a server variable, use the servervariable(function. This function has two
parameters — the name of the database (which may be "" if the variable is in the current database) and the
name of the variable (which must be in quotes). This procedure calculates the sales tax based on the shared
TaxRate server variable.

SalesTax=SubTotal*(servervariable("","TaxRate")/100)

Adjusting a Server Variable (Atomic Calculation)

Suppose you want the footer of a document to include something like this:

This form has been printed 327 times.

You could do this by using a procedure to print the form, like this:

SetServerVariable "",PrintCount,PrintCount+1,0
print dialog

and then including a formula like this in a Text Display SuperObject near the bottom of the form.

"This form has been printed "+str(servervariable("","PrintCount"))+" times."

But wait! What if someone else prints this form 1/10th of a second after you do? They will update the print
count and your print count will be wrong (because it will include both increments). It’s not very likely to hap-
pen, but in a shared system the goal is to design your application so that problems like this can never happen.
Happily this is easy to do with the adjustservervariable(function. Here is a revised version of the pro-
cedure.

fileglobal myPrintCount
myPrintCount=adjustservervariable("","PrintCount",1)
print dialog

and the revised formula for the Text Display SuperObject.

"This form has been printed "+str(myPrintCount)+" times."

Now the print count is always correct, even if two users print at exactly the same time? How can that be? If
the server gets two requests simultaneously, it randomly picks one and saves the other for later. The
adjustservervariable(function increments the variable and returns it’s value all in one request. So
there’s no way for two or more users to get mixed up.

Chapter 3:Online Database Sharing Page 161
The adjustservervariable(function has three parameters:

adjustservervariable(database,variable,adjustmentvalue)

The first parameter is the name of the database (which may be "" if the variable is in the current database).
The second parameter is the name of the variable (which must be in quotes). The final value is the amount
that the variable will be adjusted by. This must be a numeric value. If the adjustment is positive, the value
will be increased. If it is negative, it will be decreased.

Maintaining Server Variables when a database is Re-Shared

If a database contains server variables, you need to perform an extra step if you manually unshare and then
share the database (see “Making a New Sharing Generation Manually” on page 128). In addition to synchro-
nizing the database to get the latest data, you should also download the server variables (this step is taken
care of for you automatically if you use the Start New Sharing Generation command, see “Starting a New
Sharing Generation” on page 119). This is done with the Download Server Variables command in the Main-
tenance menu of the Database Sharing Options wizard.

Once the server variables are downloaded, you can continue with the process of converting the database to
single user, modifying the database (adding or removing fields, etc.) and then re-sharing the database. The
server variables will be re-uploaded to the server when you re-share the database.

Page 162 Panorama Handbook
Data Transformations

The rest of this chapter deals with operations on individual data cells and records. Panorama, however, also
has a number of powerful commands that modify the current field in every selected record (Fill, Empty Fill,
Formula Fill, Propagate, UnPropagate, Running Total, Running Difference and Change). In a shared data-
base, these commands operate just as if you edited each cell by hand, with full record locking. In other words,
these commands start with the first record, locks and synchronizes it, modifies it, unlocks the record, then
goes on and repeats for each selected record in the databases. Since the server must be contacted twice for
each record (once to lock, then again to unlock) this process is much, much slower than you are accustomed to
when working with single-user databases. You’ll want to minimize the use of these commands when work-
ing with shared databases, and be sure to select the minimum number of records necessary for the operation.
When working with a single user database, it’s no big deal to use Formula Fill on the entire database instead
of just the few records that are actually going to change, but when working with a shared database, you want
to make sure that, if possible, you select only the records that are actually going to be affected.

What if one of these commands (fill, etc.) encounters a locked record? In that case the locked record will be
skipped and the command will continue with the next record. When the command is complete it will display
an error message indicating that one or more records is locked. Depending on the situation, you may wish to
repeat the operation later (when the record [or records] is no longer locked) or you may wish to Undo the
data transformation operation. (Note: The Undo command may itself run into locked records that could
cause errors!)

When you are using a procedure to perform a data transformation, the programmer can use the if error
statement to trap and automatically process the record lock problem, as in the example below. In this exam-
ple, the procedure will restore the fields to it’s original state if it is unable to complete the propagate process.

propagate
if error

undo
message "Could not complete because someone else is editing one or more cells!"
stop

endif

Here is another procedure that tries up to 5 times to fill a field, then gives up.

local try,maxtries
try=1
maxtries=5
field Total
loop
 formulafill Qty*Price

if error
try=try+1

else
 rtn
endif

while try<=maxtries
rtnerror "Cannot complete operation."

Minimizing the amount of data changed by Fill commands

In the single user version of Panorama the various fill commands are lightning fast, and it doesn’t really mat-
ter if you fill more data than you need to. In a shared environment, however, you need to be more careful and
as much as possible only fill cells that actually need to change. Not only will this make the fill operation
faster, but filling cells unnecessarily can interfere with and slow down Panorama’s synchronization logic.

Chapter 3:Online Database Sharing Page 163
As an example, consider this procedure from an invoice database. The procedure re-calculates how much is
owed on each invoice, then selects the unpaid invoices that are more than 30 days old.

field Balance
selectall
formulafill Total-Payments
select Balance>0 and InvoiceDate<today()-30

The problem with the procedure above is that it will fill a cell in every record in the database. If your database
contains 20,000 invoices then all of them will be modified, even though most probably haven’t really
changed. The formulafill operation will take a long time, and subsequent synchronizations will take a long
time also since they will have to synchronize all 20,000 records.

A better approach is to select only the records that actually are going to change and fill only those. Here is a
rewritten version of this procedure:

field Balance
select Balance <> Total-Payments
formulafill Total-Payments
select Balance>0 and InvoiceDate<today()-30

Suppose you run this procedure every week — probably only few dozen records will have their balance
change from week to week. So instead of filling 20,000 records only a few dozen will be filled. The fill will be
much faster than before, possibly even hundreds of times faster, and synchronization will be smoother also.
When converting a database from single user to shared operation, you should review any fill or
formulafill statements to see if this technique could be used to improve multi-user operation.

You can improve this procedure even further by using the serverformulafill statement — see the next
section.

ServerFormulaFill — A Much Faster Option for Select/Formula Fill Operation

It’s very common to write a procedure that uses the select and formulafill statements consecutively.
For example the procedure snippet below selects invoices that are ready to print, fills in the PrintDate field
with today’s date, then prints the invoices.

field PrintDate
select Ready match "yes"
formulafill today()
print dialog

If there are a lot of records ready to print the formulafill statement can be quite slow, as described in the
previous section. This procedure can be made much faster by using the serverformulafill statement,
which combines the selection and fill into a single statement, as shown here.

field PrintDate
serverformulafill «Ready» match "yes",today()
print dialog

This procedure is much faster than the first. Instead of individually locking and unlocking each record from
the client, the serverformulafill statement performs the bulk of the work on the server. This allows the
statement to modify 1000 records in a couple of seconds, rather than the several minutes it would take using
the regular formulafill statement. Panorama still checks each record to see if it is record locked (more on
that in a minute), but this checking is done completely on the server with no network overhead at all.

The serverformulafill statement has two parameters:

serverformulafill selectionFormula,fillFormula

Page 164 Panorama Handbook
The first parameter is a formula that specifies what records to select. After the statement is complete these
records will be selected, just as if you had used the regular select statement. Important Note: You cannot
select the records to fill in advance (for example with a series of select, selectadditional and/or
selectwith statements, or simply an ad-hoc selection of records). You must specify the records with the
first parameter of this statement. If you cannot come up with a single formula that will select the records you
want to modify you cannot use the serverformulafill statement.

The second parameter is a formula that specifies the new values for the data, just like the formula parameter
to the formulafill statement (subject to the restrictions in the next section).

Here’s how this statement works. First, it checks the two formulas and then passes them to the server. Only
the formulas are passed to the server — this statement does not move any data in either direction. The server
then selects the records specified by the selection formula and fills the cells in the current field with the new
data calculated by the fill formula. This all happens very quickly because it is all happening in RAM on the
server computer. Once the process is complete Panorama performs the same steps on the client computer —
select and fill. In other words it performs the same select and fill operations twice — once on the server and
once on the client. Since the calculations are the same the results are the same on both computers. (The only
possible fly in the ointment is if one or more records are locked. This will be discussed in a moment.)

ServerFormulaFill Formula Restrictions

Because these formulas will be processed both on the server and the client they cannot use any variables
(including server variables), only fields and constants. This means that the procedure below will not work.

local TaxRate,OurState
TaxRate=7.75
OurState="CA"
field Tax
serverformulafill State=OurState,Subtotal*(TaxRate/100)

If you try to run this procedure an error message like this will appear:

One way to fix this is to simply embed the actual values into the serverformulafill statement:

field Tax
serverformulafill State="CA",Subtotal*(7.75/100)

Another option is to use the execute statement and the constantvalue(function, as shown in this exam-
ple:

local TaxRate,OurState
TaxRate=7.75
OurState="CA"
field Tax
execute {serverformulafill State=}+constantvalue("OurState")+
 {,Subtotal*(}+constantvalue("TaxRate")+{/100)}

This example works by building a short procedure with the variable values embedded into the formulas,
then executing that.

Chapter 3:Online Database Sharing Page 165
Record Locking and the ServerFormulaFill Statement

When the ServerFormulaFill statement fills data on the server it will skip any records that are locked by
another user on the network. These records will be skipped both on the server and on the client. If the state-
ment was unable to fill all requested records because some were locked the procedure will stop and display
an error message. If necessary, the procedure can trap this error with the if error statement. The error mes-
sage, which can be retrieved with the info("error") function, will indicate the number of locked records
and also contain a list of the record ID numbers for the locked record. The procedure shown below will try up
to 5 times to fill the selected records, then it will give up.

local try,maxtries
try=1
maxtries=5
field Tax
loop
 serverformulafill State="CA",Subtotal*0.0775

if error
try=try+1

else
 rtn
endif

while try<=maxtries
rtnerror "Cannot complete operation."

Minimizing the amount of data changed by ServerFormulaFill commands

Although the ServerFormulaFill statement is much faster than the formulafill statement it is still
important for smooth synchronization to keep the number of records modified to a minimum. Here is an
example of how to do this, using the same Invoice database to calculate Balances as in the example on the
previous page (see “Minimizing the amount of data changed by Fill commands” on page 162).

field Balance
serverformulafill Balance <> Total-Payments,Total-Payments
select Balance>0 and InvoiceDate<today()-30

When this procedure runs only records where the Balance has actually changed will be modified.

Page 166 Panorama Handbook
Looking Up Data From Another Database

Panorama has several functions that look up data from other open databases. Most of these work just as they
do in single user mode, looking up data from the local RAM copy of the requested database. The
lookupselected(, lookuplast(, table(and lookupall(functions always lookup from the local copy
of the database.

The lookup(function, however, goes straight to the server copy of the database in some situations. This
ensures that the lookup(function always retrieves the most up-to-date information. The lookup(function
will get data straight from the server except in the following situations:

1) If the serverlookup statement has been used to temporarily disable looking up data directly from the
server (see below).
2) If the lookup(function is in an object on a form and the Use Server for Lookup option is turned off in
the Form Preferences dialog.
3) If the local computer is not connected to the server.
4) If the lookup(function specifies a summary record (because summaries are not stored on the server)
5) If the formula containing the lookup(function is being calculated repeatedly, for example if the func-
tion is being used in a formulafill, select, arraybuild, arrayfilter, etc.

In any of these five situations the lookup(function will retrieve from the local copy of the database. In the
last situation you should synchronize the target database if you want to ensure that the looked up values are
completely up-to-date.

Temporarily Disabling Direct Lookups from the Server

The serverlookup statement controls whether lookups are made from the local copy of the target database
or are made directly to the server. This statement allows the database designer to trade off speed vs. up-to-
the-minute accuracy in lookups made in a procedure. This option only affects shared databases. For up-to-the
minute accuracy lookups should be made directly from the server. However lookups from the server are sub-
stantially slower than lookups from the local database. The example below forces the status to be looked up
from the local database instead of from the server.

serverlookup "off"
Status = lookup("Patients","SSN","SSN","Status","",0)
serverlookup "on"

The info("serverlookup") function allows you to determine if server lookups are enabled. If they are, it
returns true (this is the default). This example turns off server lookups and looks up a value. It then turns the
server lookup option back on, but only if it was already on before this procedure began.

local slook
slook=info("serverlookup")
serverlookup "off"
Z=lookup("Prices","Item",i,"Price","",0)
if slook
 serverlookup "on"
endif

The formserverlookup statement allows a procedure to turn the Use Server for Lookup option on or off.
(This option can also be turned on or off in the Form Preferences Dialog.) This statement allows the database
designer to trade off speed vs. up-to-the-minute accuracy in lookups on a form. This option does not affect
lookups made in procedures, only lookups in auto-wrap text objects and Text Display SuperObjects. The
example forces lookups in the form Patient Status to be made from the local database instead of directly from
the server.

openform "Patient Status"
formserverlookup "off"

Chapter 3:Online Database Sharing Page 167
Controlling and Monitoring the Server Connection

Panorama normally connects to the server automatically when a database is opened, and disconnects when it
is closed. However it is possible to override this default behavior and connect and disconnect on command.

ConnectToServer Statement

 The connecttoserver statement tells Panorama to connect the current database with the server (of course
this only works for shared databases, and only if it is not currently connected). The statement has no parame-
ters. For example suppose the network was not working when a shared database was opened — perhaps the
Ethernet cable was not plugged in. After plugging in the cable you can use a procedure with the
connecttoserver statement to establish the connection (otherwise you would have to close and re-open
the database). The statement can also be used with databases that do not automatically connect to the server
when they are opened (see “Automatically Connect” on page 189).

DropServer Statement

The dropserver statement tells Panorama to disconnect the current shared database from the server (of
course this only works for shared databases, and only if the database is currently connected). For example
you might use this statement if you are planning on unplugging your network connection but want to con-
tinue working with the database offline (see “Making and Dropping Server Connections” on page 184). This
statement has no parameters.

The info(“serverconnection”) Function

The info("serverconnection") function returns true if the current database is currently connected to
the server, false if it is not connected. The example below displays an error message if the database is not cur-
rently connected.

if (not info("serverconnection"))
 message "Database is not currently connected."
 rtn
endif

In a real procedure the code would probably perform some function after the endif.

The sharedusers(Function

The sharedusers(function returns a list of users that are currently sharing a database. The function has
one parameter, the name of the database. The specified database must currently be connected to the server on
this computer. If the database is not connected, or is not a sharable database, the result will be "". If the data-
base name is "" then the current database will be used.

If this is a connected database the result will be a carriage return separated array, with each line containing
the session id, user name, and user's computer's name separated by tabs. Here’s a typical example of the out-
put from this function.

12 Rudy Red Conference Room Computer
15 Marie Ellis Marie’s Computer
29 Mark Watson Mark’s Computer

This example procedure checks to see if Rudy Red is using the same shared database we are right now.

if sharedusers("") contains ¬+"Rudy Red"+¬
message "Rudy is online right now!"

endif

The sharedusers(function can also be used to list all users on the server, not just the ones using a specified
database. To do this set the database name to "*" (the current database must be a shared database for this to
work).

Page 168 Panorama Handbook
The servername(Function

This function returns the name of the server associated with a shared database. The function has one param-
eter, the name of the database. If the database name is "" the server name for the current database will be
returned.

The serverdatabasename(Function

The name of a database on the server is not necessarily the same as the name of the same database on the cli-
ent computer. (In fact, you can actually have more than one copy of a single database on a client computer
with different names even though each connects to the same database on the server, though we can’t think of
any reason why you’d want to do that.) Procedure’s usually don’t need to know the name of the database on
the server, but if they do they can use the serverdatabasename(function. This function has one parame-
ter, the name of the database. If the database name is "" the server name for the current database will be
returned. (One case where you do need this name is if you want to delete the server database, see “Deleting a
Database from the Server” on page 171).

Shared Database Configuration

Configuration of shared databases is usually done through the Database Sharing Options wizard. This wiz-
ard, however, is actually a graphical front end for the eesetdbconfig and eegetdbconfig statements,
which do the actual work.

The EESetDBConfig Statement

This statement is used to configure a shared or web publishing database. If the database is currently single
user, this statement can set it up on server. If the database is already on the server, this statement can change
sharing and web publishing options as specified (or even convert the database back to single user mode).
This statement is used by the Database Sharing Options wizard, but may also be used separately by applica-
tions that need to automatically set up shared or web published databases. (Note: You will be prompted for
the server password when this statement is used.) The statement has three parameters

eesetdbconfig database,options,performed

The first parameter, database, is the name of database on this computer. The database must be already open.

The second parameter, options, is a dictionary of sharing and web publishing options (see “The Configura-
tion Dictionary” on page 169).

The third parameter, performed, is the name of a field or variable. When the eesetdbconfig is complete
this field or variable will be set to a list of the changes actually made. The Database Sharing Options wizard
displays this result to let the user see what has happened, you may want to do the same.

If the eesetdbconfig statement can’t complete the requested changes (for example if the server is not cur-
rently available on the network) it will return an error. The procedure can trap this with the if error state-
ment, and can find out what the error was with the info("error") function.

Chapter 3:Online Database Sharing Page 169
Here is a basic procedure which takes the current database (a single user database) and converts it into a
shared database on the server Acme Widgets Server.

local cfoptions,cfresult
initializedictionary cfoptions,

"ServerURL","Acme Widgets Server",
"ReplaceExisting","no",
"ZapSummaries","yes",
"Sharable","yes",
"AutoTimeOut","20"

eesetdbconfig "",cfoptions,cfresult
if error

message info("error")
rtn

else
giantmessage cfresult

endif

If the database is already on the server then you should first use the eegetdbconfig statement (see below)
to get the current configuration, then change the settings you want to change, then use the eesetdbconfig
statement. This example changes the record lock auto timeout value to 40 seconds.

local cfoptions,cfresult
eegetdbconfig "",cfoptions
setdictionaryvalue cfoptions,"AutoTimeOut","40"
eesetdbconfig "",cfoptions,cfresult

The EEGetDBConfig Statement

This statement is used to get the current sharing configuration of any database (including a single user data-
base). This statement is used by the Database Sharing Options wizard, but may also be used separately by
applications that need to find out how a database is configured. (Note: If the database is set up on the server,
you will be prompted for the server password when this statement is used.)

The statement has two parameters

eegetdbconfig database,options

The first parameter, database, is the name of database on this computer. The database must be already open.

The second parameter, options, is a field or variable. The statement will set this field or variable to a dictio-
nary of sharing and web publishing options (see “The Configuration Dictionary” on page 169). You can then
use the getdictionaryvalue(function to check how individual settings are configured.

See the previous section for an example of this statement in use.

The Configuration Dictionary

Both the eesetdbconfig and eegetdbconfig statements use a “data dictionary” structure to work with
the sharing configuration. This is not an English dictionary, but a set of key/value pairs. If you are not famil-
iar with data dictionaries you should review Data Dictionaries in Chapter 25 of the Panorama Handbook.
You can also look in the online Programming Reference wizard for SetDictionaryValue,
GetDictionaryValue(and InitializeDictionaryValues.

Page 170 Panorama Handbook
The table below lists each of the dictionary keys used by the eesetdbconfig and eegetdbconfig state-
ments.

Key Description

"ServerURL" Server on which this database is to be hosted (or already hosted).

"ServerDatabaseName"

Name to be used on for this database on the server. The name does not have to
be the same as the original database name, but it there must not be a database
with this name already on the server. If this key is omitted, the original data-
base name will be used.

"ReplaceExisting"

If the ServerDatabaseName is already in use, this option specifies what to
do. The options are:

 Yes (delete the previous database without asking),
 No (do not delete previous database, this is the default if not specified),
 YesNo (ask user if they want to delete, defaulting to yes),
 NoYes (ask user if they want to delete, defaulting to no).

"ZapSummaries"

If a database contains summary records they must be removed before the data-
base can be made sharable. This option determines what should be done if the
database contains summary records. The options are:

 Yes (automatically delete summary records without asking),
 No (do not delete summary records, do not convert database to shared,
 and statement returns an error),
 YesNo (ask user what to do, defaulting to yes),
 NoYes (ask user what to do, defaulting to no).

If the user chooses not to remove summary the database is not converted which
can be checked by examining the results (the performed parameter).

"Sharable"
This option must be set to "yes" if the database is to be made (or continue to
be) sharable remotely over the internet. Otherwise this option should be "" (the
default).

"RemoteSharable"
This option must be set to "yes" if the database is to be made (or continue to
be) sharable. Otherwise this option should be "" (the default).

"AutoTimeOut"
Number of seconds of inactivity before client unlocks record (0 = no timeout,
which is the default value if not specified).

"AllowOfflineModification"
This option must be set to "yes" if the modifications are allowed when the
database is disconnected from the server (see Chapter 4). Otherwise this option
should be "" (the default).

"SyncPriority"
This option controls how the database is synchronized after being modified
offline (see Chapter 4). It should be set to "local" or "server".

"AutoConnect"
This option must be set to "yes" if the database should automatically attempt
to connect to the server when opened. Otherwise this option should be "" (the
default).

"AutoSync"
This option must be set to "yes" if the database should automatically attempt
to synchronize each time it is connected to the server. Otherwise this option
should be "" (the default).

"KeepOfflineChangesLocal"
This option must be set to "yes" if offline changes should not be updated to
the server. Otherwise this option should be "" (the default).

"AllowOfflineAddRecord"
This option must be set to "yes" if the database allows adding records when
disconnected from the server. Otherwise this option should be "" (the default).

"AllowOfflineDeleteRecord"

This option must be set to "yes" if the database allows deleting records when
disconnected from the server. Otherwise this option should be "" (the default).
Note: The records are deleted from the local copy only, there is no way to delete
records on the server when off-line.

Chapter 3:Online Database Sharing Page 171
Deleting a Database from the Server

Deleting a database from the server is usually done using the Server Administration wizard (see “Server
Management (The Server Administration Wizard)” on page 68). However, this can be done in a procedure,
though we normally don’t recommend doing it that way. To actually delete a database from the server in a
procedure use the deleteserverdatabase statement.

deleteserverdatabase server,database

The first parameter, server, is the name of the server that contains this database.

The second parameter, database, is server name of the database to be deleted. Keep in mind that this may not
be the same as the name of the database on the client. If the database is open you can find out the server name
using the serverdatabasename(database) function. However, you must close the database before you
delete it. The Panorama Server will not delete any database that is currently open.

Here is a procedure that will convert the current database to single user, then delete the current database
from the server.

local cfoptions,cfresult,svname,dbname,svdbname
eegetdbconfig "",cfoptions
if getdictionaryvalue(cfoptions,"Sharable")<>"yes"
 message "This database is already single user (not sharable)."
 rtn
endif
setdictionaryvalue cfoptions,"Sharable",""
eesetdbconfig "",cfoptions,cfresult /* convert to single user */
save
dbname=info("database")
svname=servername("") /* what is name of this server? */
svdbname=serverdatabasename("") /* what is name of this database on server? */
closefile
loop
 deleteserverdatabase svname,svdbname
 if error
 if info("error") notcontains "currently open"
 message info("error")

"WebPublish"
This option must be set to "yes" if the database is to be made (or continue to
be) web publishable. Otherwise this option should be "" (the default).

"StartOpen"
This option must be set to "yes" if this a web publishing database and should
be loaded when the server launches. Otherwise this option should be "" (the
default).

"AutoOpen"
This option must be set to "yes" if this a web publishing database and should
be loaded automatically when needed. Otherwise this option should be "" (the
default).

"AutoClose"
This option must be set to "yes" if this a web publishing database and should
be closed automatically after each access. Otherwise this option should be ""
(the default).

"UseSecret"
This option must be set to "yes" if this a web publishing database and should
use "secret" windows instead of a real window. Otherwise this option should be
"" (the default).

"Initialize"

This option must be set to "yes" if this a web publishing database and the
server should call its .Initialize procedure when opening the file. Generally this
should be avoided if possible, especially if the StartOpen option is not used.
Otherwise this option should be "" (the default).

Key Description

Page 172 Panorama Handbook
 stoploopif 1=1
 else
 superalert "This database ("+dbname+") cannot be deleted "+
 "because other users currently have it open. "+
 "When everyone has closed the database press OK to delete this database, "+
 "or press Cancel to give up.",{}
 stoploopif info("dialogtrigger") contains "cancel"
 endif
 else
 stoploopif 1=1 /* always stop loop if no error */
 endif
while forever

Of course once you’ve deleted the database from the server no one can open it again anywhere on the net-
work.

Chapter 4: Offline Database Sharing

Unlike a traditional client/server database, Panorama database clients don’t “go dark” if a network connec-
tion is unavailable. Panorama database sharing allows off-line database browsing and even modification
(configurable on a per database basis). If allowed, offline changes are automatically synchronized with the
server when the client re-connects to the network. Because both client and server are RAM based, this syn-
chronization is extremely fast. If there is a potential conflict between the modifications made offline and the
modifications made by other users you will be notified and given the option to resolve the conflict manually.

A Panorama database can even be configured to operate primarily offline. This is similar to the way e-mail
works - users perform data entry offline, then press Submit or Connect to submit their data and receive
updates. In the past applications like this had to be built from scratch, but Panorama database sharing allows
this with little or no custom programming.

Offline Sharing Options

Each shared database has its own separate settings that specify how the database will behave when it is
offline and what will happen when the database is connected to the server after being modified offline. These
settings can be set up and modified with the Database Sharing Options wizard.

Page 174 Panorama Handbook
Important Note: The Database Sharing Options wizard affects only the current copy of the database on the
current computer. If you’ve already set up a database on several client machines (see “Duplicate Database
Conflicts on the Server” on page 108) then changing the options, one client won’t affect any of the other cli-
ents (each client will retain its own previous settings). You’ll either need to use the Database Sharing
Options wizard on each client or you’ll need to transfer a copy of the modified database to each of the other
clients. (In some cases you can use this feature to advantage — for example you might want the offline set-
tings for a supervisor to be different from the settings for other employees.)

Is Offline Modification of Existing Records Appropriate for your Application?

The first decision you’ll need to make is whether offline modification is appropriate for a particular database.
When a modifications are made offline, there is no record locking (see “Editing Data and Record Locking” on
page 136), no network wide automatic record numbering (see “Automatic Record Numbering” on page 148)
and no access to shared server variables (see “Server Variables (Shared Variables)” on page 159). For some
applications these limitations won’t matter, but for others, one or more of these could be deal killers. For
example, consider an application for recording results at a track meet. In this application you could have
many disconnected laptops each being used to enter results which are then synchronized to the main server
later. Since each laptop is being used at a different event, there won’t be any conflicts and off-line data entry
will work well. But an application like hotel reservations won’t work so well. If the machines aren’t con-
nected then two different computers might rent out the same room at the same time. In this application off-
line modification isn’t really an option. You’ll need to carefully consider how each database will be used
before you enable the off-line modification option.

If this option is turned off (the default) you can still open the database when the client is off-line. However,
Panorama will not allow you to modify the database. If you try to type into or click on a field to edit it, Pan-
orama will display an alert explaining that the database cannot be modified.

If the option is turned on you’ll be able to modify the database even when off-line. The changes made while
off-line will be synchronized with the server the next time the database is connected to the server (subject to
some of the other options described below).

Chapter 4:Offline Database Sharing Page 175
Is Adding New Records While Offline Appropriate for your Application?

Even if modifying existing records offline is not appropriate for a particular application, it may be acceptable
to add new records. For example this might be appropriate for the track meet application described in the
previous section. Suppose that the track meet database has the Data in existing records may be modifed
option turned off, but the Allow adding new records option turned on. In this case, each laptop could enter
new results and sync these new results to the server later, but they could not modify any data that had been
entered by anyone else unless they were connected to the server. (In fact, once synchronized they could not
even modify the data they had entered themselves.)

If you want to allow both modifying existing data and adding new data you’ll need to enable both of these
options. This allows the offline experience to be as close as possible to normal on-line database access.

Deleting Records While Offline

Bottom line — deleting shared records while offline isn’t allowed. While technically it would be possible to
delete records offline and then delete them from the server the next time the database was synchronized, we
felt that this was simply way too dangerous. So you must actually be connected to the server to delete one or
more records.

It is possible, however, to delete records from the local copy of the database while offline.

Why would you do this? Consider the track meet example with the Data in existing records may be modifed
option turned off and the Allow adding new records option turned on. In this case, you can’t modify the
records you’ve already entered after synchronizing, so perhaps you’d like to delete them and start with a
blank slate. This option allows you to do that on the local client computer without actually deleting the
shared data already on the server. If you use this option, however, be very careful. Don’t delete records when
online unless you really want them gone. If you use this option you should probably also consider turning off
the Automatically Connect option (see “Configuring a Client Database for Primarily Offline Operation” on
page 189) so that you don’t accidentally delete shared records unintentionally.

Page 176 Panorama Handbook
Two Way Synchronization

The first time a database connects to the server after being modified offline Panorama does a two way syn-
chronization, instead of the normal one way (server to client) synchronization. This is necessary because
records may have been modified at both ends.

This two way synchronization works without conflict as long as none of the records modified offline were
also modified by other clients that were connected to the network.

Managing Synchronization Conflicts

In the real world synchronization conflicts will sometimes occur. Panorama uses a two level system for
resolving such conflicts when they occur. The first level is to simply give priority to either the offline client or
the rest of the network. When a record is modified at both ends, the version on the end with priority is
retained, while the other version is discarded by the synchronization process. Use the Database Sharing
Options wizard to specify which end has priority.

When a synchronization conflict does occur, Panorama will warn you.

Chapter 4:Offline Database Sharing Page 177
Panorama normally uses the Notification wizard to warn you about conflicts, but if you have installed and
enabled Growl (see “Using Growl for Notifications” on page 87) then the warning message will appear tem-
porarily and then fade away.

To see exactly what the conflicts are (and possibly change the resolution) open the Sync Conflict Resolution
wizard (in the Sharing submenu of the Wizard menu).

The left hand side of this wizard lists all of the records that contain conflicts (data modified on both ends). In
this example there are two conflicting records. Click on a record to see the exact fields that have been changed
on the right. The right hand side of the wizard contains three columns — the names of the fields in the data-
base, the current data (after synchronization) and the alternate data that was automatically discarded by the
synchronization process. Fields containing conflicts are highlighted in red.

Page 178 Panorama Handbook
The Sync Conflict Resolution wizard is best explained by example. We’ll use a very simple database called
Thingies which has six fields and four records.

Thingies is on two clients, Client 1 and Client 2 (normally the database name would be the same on both cli-
ents, but we’ve renamed them to Thingies 1 and Thingies 2 for clarity). The database starts out exactly the
same on both client machines.

Chapter 4:Offline Database Sharing Page 179
The action starts with Client 2 making some changes. The plane is changed from blue to red, the boat from
yellow to green and from huge to big.

Page 180 Panorama Handbook
Since Client 2 is connected to the server these changes are immediately transferred to the server copy of the
database. Client 1, however, still has the original data, and now he starts making changes. If Client 1 was con-
nected to the server then the updated data would be transferred to his computer as soon as he started to
change a record (see “Editing Data and Record Locking” on page 136), but since he isn’t connected that
doesn’t happen. He changes the plane from blue to orange and the boat from yellow to white.

Now Client 1 returns to the office (or perhaps simply connects to the Internet) and synchronizes with the
server.

Chapter 4:Offline Database Sharing Page 181
During the synchronization process Panorama notices that two records have been modified both online (by
Client 2) and offline (by Client 1). Client 1 will see a notification of this conflict.

In this case the Database Sharing Options wizard has been used to give the offline client priority, so the syn-
chronization process has automatically kept the changes made by Client 1 and discarded the changes made
by Client 2.

Page 182 Panorama Handbook
Perhaps, however, Client 1 isn’t sure that his changes should be given priority. He now has the opportunity to
open the Sync Conflict Resolution wizard which he can use to manually override the automatic synchroni-
zation priority on a field by field basis. Here’s what he’ll see if he opens this wizard.

The left side of the wizard displays a list of records with conflicts, the right hand side the fields within an
individual record. Client 1 can immediately see that there is some disagreement about the color and size of
the boat. After further research he determines that the boat is actually just big, not huge, so he clicks on the
word big in the Alternate Data column.

The green arrow shifts to the Alternate Data column, indicating that the normal synchronization priority
should be overridden for this field.

Now Client 1 clicks on the second conflicting record, and further research indicates that the color of the plane
is actually red.

Now that Client 1 has researched and resolved all of the conflicts he can press the Apply Changes button to
actually update the database with the resolved changes. Panorama will confirm that the changes have been
made.

The process is complete and the Sync Conflict Resolution wizard can now be closed.

Chapter 4:Offline Database Sharing Page 183
Reviewing Conflicts in Large Fields

The Sync Conflict Resolution wizard normally shows only the first line of a data cell. If a data cell contains a
lot of data you can click on the field name to see the entire cell.

You can click in the header area to choose which version of the data you want to keep.

Overriding by Record (instead of Field)

Normally you’ll click on individual fields to decide which version to keep and which to discard. However, if
you click on the column header you can select all of the fields in the record at once.

Of course you can go back and flip individual fields after you’ve flipped the entire record.

Click here to flip
entire record

Page 184 Panorama Handbook
Making and Dropping Server Connections

Panorama normally doesn’t expect your computer to add or drop server connections while it is running. If
Panorama can connect to a server when it starts up, it expects to be able to continue to connect to that server.
If a server is not available when Panorama starts it won’t automatically check to see if the server is available
later. However you can manually tell Panorama that connections have been made or dropped with the Avail-
able Servers wizard (in the Sharing submenu of the Wizard menu).

To tell Panorama that a server is now online or offline you use the Connections menu.

If you’ve been offline and are now connected to a server, use the Reconnect to Available Servers command.
This command checks all open databases to see if they can now be connected to a server. If the server associ-
ated with a database is now available, Panorama will automatically make the connection and synchronize the
database.

If you’ve been online and are about to go offline use the Disconnect Servers command. This will display a
list of the available servers.

Pressing the Disconnect button will detach any open databases that are connected to the specified servers.
You can then unplug from the network and continue using these databases in off-line mode.

Chapter 4:Offline Database Sharing Page 185
An example will better illustrate the use of these commands. Suppose Bob is working on a shared Panorama
database in his office

Now he has to go to an off-site meeting, but he wants to continue to be able to access his database even
though the company server is not available on the internet. So Bob opens the Available Servers wizard and
chooses the Disconnect Servers command.

Page 186 Panorama Handbook
The wizard asks him which servers he wants to disconnect. Since he is going off-site, he simply presses the
Disconnect button to disconnect all of them.

Panorama responds with a list of open databases that are now disconnected from the server.

Chapter 4:Offline Database Sharing Page 187
Now Bob can unplug from the network (or simply walk away if using a wireless network) and go to his off-
site meeting.

While offsite Bob can still access his database, and even modify the data if that is allowed (see “Offline Shar-
ing Options” on page 173). When he’s done with the meeting Bob comes back to the office and hooks up with
the network again. However, even though the computer is physically hooked up, Panorama isn’t yet aware
of the hookup, as indicated by the dotted line.

To tell Panorama about the connection, Bob opens the Available Servers wizard and chooses the Reconnect
to Available Servers command.

Page 188 Panorama Handbook
Panorama will confirm that your databases are now connected.

It will also synchronize each of the databases as it connects them.

Bob is now ready to continue to use his databases in full on-line sharing mode.

Chapter 4:Offline Database Sharing Page 189
Designing a Database Primarily for Offline Operation

Normally if there is a connection to the server, Panorama will automatically open a connection to that server
and operate the database in full shared mode, with record locking. It will only drop into offline operation if
there is no connection to the server. It is possible, however, to configure a database so that it operates in
offline mode all the time unless specifically programmed to connect or synchronize. If a database is set up
this way it will always operate offline unless specifically commanded to connect (usually by a custom proce-
dure).

When used this way, Panorama operates similarly to an e-mail client like Apple’s Mail.app or Microsoft Out-
look. When using these e-mail programs you normally compose and read e-mail offline, then connect briefly
to send and receive mail. In primarily offline mode Panorama works the same way — mostly working offline
but occasionally connecting briefly to synchronize. For example, a database for submitting orders could be
set up this way. Actual order entry would be done offline. When an order (or orders) is complete the user
presses a button to submit the order to the server. Behind the scenes this button triggers a procedure which
briefly connects to the server, synchronizes, then disconnects.

Configuring a Client Database for Primarily Offline Operation

To configure a database for primarily offline operation use the Database Sharing Options wizard. The
options for configuring primarily offline operation are described below.

Automatically Connect

If this option is turned off Panorama will not automatically connect to the server when the database is
opened.

When this option is turned off, a procedure can still connect and disconnect when you want it to using the
ConnectToServer and DropServer statements. The info("serverconnection") function returns the
current status. See “Controlling and Monitoring the Server Connection” on page 167 for more information
about these statements.

You can also temporarily connect using the Synchronize command. If this command is used when the
Automatically Connect option is turned off, Panorama will temporarily connect, synchronize, and then dis-
connect from the server.

Automatically Synchronize

If this is turned off Panorama will not automatically synchronize when the database is opened (including
with the ConnectToServer statement).

If the Automatically Synchronize option is turned off then synchronization must be done manually. A proce-
dure can do this with the Synchronize or ForceSynchronize statements (see “Synchronizing” on
page 158).

Page 190 Panorama Handbook
Offline changes synchronized with server later

If this option is on then changes will be two-way synchronized with the server the next time this client syn-
chronizes.

This is the normal setting.

Offline changes are local only

In this mode a user can change data, but changes are local only and will be erased if this record is changed by
another user and then synchronized.

Usually this option would be used only if the automatically connect/synchronize options are turned off. In
that case it could be used to create a database in which new records can be added but old records can never
be changed on the server (or only changed under program control). However, users could add their own
local changes (for example adding notes).

For example, consider the order submission database discussed earlier. Once an order is submitted to the
server it should not be changed. Turning on this option allows new orders to be created and submitted, but
orders that have been previously submitted can no longer be modified (or at least these modifications cannot
be sent to the server, just as you can’t make changes to an outgoing e-mail once you have submitted it).

Allow deleting records

Panorama normally doesn’t allow existing records to be deleted when the database is offline — deleting
records is only allowed when the database is connected to the server. (You can, however, delete new records
that haven’t been submitted to the server yet.)

However, if the Allow deleting records option is turned on then you can delete records. However, these
records will only be deleted from the local copy of the database. They will not be deleted from the server,
either immediately or later when the database is synchronized.

For example, consider the order submission database discussed earlier. Once an order is submitted to the
server it should not be changed, but it still hangs around in the client database. Turning on the Allow deleting
records option allows an order to be deleted from the local client copy of the database after it is submitted.
Out of sight, out of mind. You might even want to automate this with a procedure, so that orders are auto-
matically deleted from the client database as soon as they are submitted. Though the orders are deleted from
the client that submitted them, they are still available on the server where they can be accessed by other cli-
ents (see next section).

Chapter 4:Offline Database Sharing Page 191
Mixing Offline and Online Clients

The Database Sharing Wizard configures only the local copy of the database, on that machine. This means
that it is possible to have clients on different machines with different options. For example, some computers
might have databases that operate in primarily offline mode, while others are allowed full online access to
the database.

For example, consider the hypothetical order submission database discussed in several locations earlier in
this chapter. In this application a number of clients create orders offline and submit them to the server.

But how are these orders processed? The solution is to set up the clients in the order processing department
so that they have full online access to the database.

As orders come in from the off-line clients they are processed and fulfilled by operators using the on-line cli-
ents.

Page 192 Panorama Handbook
Simulating Offline Operation (for testing)

In the process of creating the Panorama Server’s offline capabilities we needed to connect and disconnect
Panorama from the server dozens and even hundreds of times. Since plugging and unplugging the ethernet
cable that many times would be very tedious (and also knock out all of our other network connections —
web, e-mail, etc.) we designed a method for simulating a disconnected network connection within Panorama.
This method is available for testing your own offline database applications.

Step 1 — Open the Sharing Info wizard.

Step 2 — Select the Disable Connections command in the Sharing menu. (Alternate shortcut: Hold down the
Control key and click anywhere in the body of the wizard.)

The Sharing Info wizard display will change to indicate that connections are currently disabled.

To turn the connections back on again either use the Enable Connection command in the Sharing menu,
hold down the Control key and click anywhere in the body of the wizard, or simply close the Sharing Info
wizard.

Chapter 5: Web Publishing

This chapter explains how to create and use Panorama databases for web publishing, and introduces the fun-
damentals of designing a web application. It assumes that you already have a working Panorama Server
available (see Chapter 2).

Web Publishing a Database

The first step in creating a shared database is to create a single user database. This database can be old or new,
empty or full. For this example we’ll use a database called Customers.

If it’s not already open, double click on the database to open it.

So far this is a garden variety single user database. You can sort, select, add data, delete data — it all happens
privately on your computer and has nothing to do with anyone else on another computer or the web. In other
words, it’s not shared or web published, but we’re about to change that.

Page 194 Panorama Handbook
Preparing the Web Layout and Logic

Before a database can be used for web publishing the web layout (forms & tables) and logic (how database
activity flows from web page to web page) must be designed and implemented. There are three components
to this preparation:

You can do this preparation either before or after the database has been uploaded to the server (or both). In
the following sections we’ll assume that the Customers database already has all of the forms, tables, and web
logic set up. This prep process can be as simple as setting up a few forms and filling in a few dialogs for a
simple web database, or it can take months of programming for a complex web application.

Uploading the Database to the Server

To start the process of changing this database into a web published database open the Database Sharing
Options wizard (in the Sharing submenu of the Wizard menu).

Start at the top of this form and work your way down. The first choice is the database. If it doesn’t already list
the database you want to convert then select it from the pop-up menu.

Forms (see “Web Forms” on
page 231) Tables (see “Web Tables” on page 277) Logic & Programming (see “Web

Programming 101” on page 317)

Chapter 5:Web Publishing Page 195
The next choice is the server. Use the pop-up menu to select the server that will host this shared database. (If
no server appears in the pop-up menu then see “Client Configuration” on page 58.)

The next choice is the sharing mode. At a minimum you must check the Web Publishing option.

Database Sharing and Web Publishing

ProVUE highly recommends that whenever you web publish a database you also make it sharable (at least
locally).

There are three reasons for this recommendation. First, when Panorama makes a database sharable it adds a
unique ID number to every record (and any new records that get added later). This makes it much simpler to
generate a URL that uniquely links to a particular record in the database. If your database isn’t shared you’ll
have to rely on one or more fields for this — hopefully there is a combination of fields that can be guaranteed
to uniquely identify a record. Using a shared database eliminates the possibility of any confusion or duplica-
tion.

The second advantage of using a shared database is that it makes it much easier to manage the data in the
database. When you open the database on the client it will automatically synchronize with the server, and
then allow you to make changes on the live database. You don’t have to worry about uploading or down-
loading data or the possibility of the local database being out of sync with the server — Panorama manages
that for you.

The third advantage of using a shared database is that only shared databases can take advantage of the
server’s journal capability for recovering the database after a power failure or crash (see “Handling Interrup-
tions in Server Operation (Crash Recovery)” on page 153). This allows your web databases to operate as fast
as possible without any worry about losing data. Journalling is automatically enabled when you turn on the
sharing option.

recommended

Page 196 Panorama Handbook
If you have a specific reason not to share the database, that’s fine, web publishing will still work though with-
out the advantages listed above. (Of course making the database sharable doesn’t mean that you actually
have to share the database with anyone else — only users that you have given copies of the client database to
will be able to access the shared database.) Even if you have purchased only an Enterprise Server web shar-
ing license you can still make the database sharable — in that situation the server will only allow one user to
share the database at a time (probably you as administrator).

For the most part the design and operation of web published databases is the same whether database sharing
is turned on and off. We will point out any situations where this is not the case as they occur through the next
few chapters.

Web Publishing Options

Towards the bottom of the Database Sharing Options wizard are a handful of options that allow you to cus-
tomize how the server works with your web shared databases.

You can use the default settings or modify them as needed.

Open automatically when server starts up. When this option is checked, the database will be opened auto-
matically when the server starts up, before any requests come in. The database will remain open permanently
(as long as the server is running). This allows for faster access to the database, but may increase the amount
of memory required on the server computer.

Automatically open as needed. When this option is checked, the database will not be opened until it is
accessed, either by a web request or by a Panorama client for database sharing.

Close database after each access. When this option is checked, the database will be closed after each web
request (unless it is currently being shared by one or more Panorama users).

Automatically save database after each access. When this option is checked, the server will automatically
save the entire database after each web request. This option will save the database whether or not the data-
base has actually been modified. If the database is shared you should leave this option off — saving is han-
dled automatically in that situation.

Use secret windows. When this option is checked, the server will open the database without any windows. If
the database is not shared, this makes access a bit faster. If the database is shared, it’s better to leave this
option off.

Chapter 5:Web Publishing Page 197
Server Database Name

The name of the database doesn’t have to be the same as the original database name. You can type in a differ-
ent name here.

If the database name contains non “url-friendly” spaces or punctuation, it’s a good idea to pick a server name
that eliminates these characters. (For example Real Estate Listings might become RealEstateListings, while
Products & Services might become ProductsServices.)

Uploading the Database to the Server

Once all of the options are set, it’s time to actually upload the database to the server. Just scroll to the bottom
and press the Apply Changes button

or choose Apply Changes from the Maintenance menu (or press Command-1).

Page 198 Panorama Handbook
The wizard will display a summary of the proposed new sharing options for this database.

Double check to make sure the options are correct, then press the Apply Options button. The database will
be uploaded to the server. You’ll be notified when this process is complete.

Chapter 5:Web Publishing Page 199
If you want to verify that the database has been uploaded, check the list of server databases in the Server
Administration wizard.

Be sure to save your original copy of the database. You’ll need it if you need to make changes to the web data-
base, including changing forms, tables, or procedures.

Testing a Web Database

To test your new web database you could simply open your web browser and type in the url for a form or
procedure. But who wants to do all that typing? If you know the password, Panorama allows you to access
any web form or procedure with a few mouse clicks.

Page 200 Panorama Handbook
The Server Status Page

The Server Status Page displays the current status of the web server on any web browser, including links for
each database on the server.

To access this page enter the URL as shown below. Substitute your actual server IP or domain name (or local-
host if on the same computer as the server) for www.yourserverdomain.com. Substitute your Web Status
Auxiliary password for password (see “Changing the Auxiliary Passwords” on page 80).

http://www.yourserverdomain.com/cgi-bin/panorama.cgi?serverstatus@password

From this page you can access any database form or procedure on the server within two clicks. We recom-
mend that you bookmark this page for easy access as you are developing your web database applications.
For more information see “Testing Web Database Publishing (Server Status)” on page 64.

Chapter 5:Web Publishing Page 201
As an alternative to typing in the URL for the server status page you can open the Server Administration
wizard and choose the Server Web Status command.

This command will open your default web browser and open the server status page in a new browser win-
dow. The command automatically types in the correct domain name and password for you. See “Server Man-
agement (The Server Administration Wizard)” on page 68 for more information on this wizard.

Page 202 Panorama Handbook
The Database Web Links Page

The database names in the Server Status page are actually links. Clicking on the link displays the web links
page for that database.

Server Status Page

Database Web Links Page

Chapter 5:Web Publishing Page 203
The web links page lists all of the forms and procedures for that database. From this page you can click on
any web form to open that form (see “Testing a Web Form” on page 204), or click on any procedure in the
database to trigger the procedure (see “Testing a Web Procedure” on page 206). (If the web links page doesn’t
appear, see “Debugging Web Link Page Problems” on page 207).

This page is divided into three columns. The first column displays basic information about the database. The
second column lists all of the web forms in the database (only Panorama forms that have been specifically
converted to web forms will be listed, see “Converting a Panorama Form into a Web Form” on page 231). The
third column lists all of the procedures in the database.

Note: In addition to opening the Database Web Links page from the main server status page you can also
open it using the Database Sharing Options wizard. Choose the Browse Database Web Links command
from the Maintenance menu.

Page 204 Panorama Handbook
You can also open this Web Links page from the Server Admin wizard. Hold down the Control key and click
on the database name to see the pop-up menu with the Browse Database Web Links command:

You can also open this page by simply typing in the url yourself in the format shown below, substituting the
actual domain, database name and password.

http://www.yourserverdomain.com/cgi-bin/panorama.cgi?database~admin@password

If you do type in the url manually and have a Web Admin Password set up, you must include this password at
the end of the url, as shown above. See “Changing the Auxiliary Passwords” on page 80 for more information
on this password.

Testing a Web Form

To test a web form simply click on the name of the form. For example, clicking the Advanced Search link will
display the corresponding form:

Chapter 5:Web Publishing Page 205
Forms accessed directly from the admin page will always be displayed as blank forms, with no data filled in.
This allows you to start a process such as a search or adding a new record. In this case we can fill in the city to
start a search:

Pressing the Search button starts the search process, which in this case displays the first 15 records that
match.

To learn more about how to set up a search process like this see “Standard Form Action — QUERY” on
page 249.

Page 206 Panorama Handbook
Testing a Web Procedure

A web procedure is a procedure that is designed to produce a web page. To test a web form simply click on
the name of the procedure from the third column of the web links page. For example clicking on the info link
will trigger the info procedure. WARNING: The admin page lists ALL of the procedures in the database,
whether they have been designed for producing web pages or not. Before you click on a procedure name be
sure that you know that it is a web procedure. Clicking on an procedure that is not designed as a web proce-
dure can cause unpredictable results, including the possibility of data loss or crashing Panorama. So be care-
ful out there!

The info procedure is a simple procedure that displays a few facts about the database.

To learn more about how to write web procedures see “Web Programming 101” on page 317.

Chapter 5:Web Publishing Page 207
Debugging Web Link Page Problems

If the server is set up properly, you should have no problem getting the database’s web link page to appear
(see “Testing a Web Database” on page 199). If it doesn’t appear the most likely problem is an incorrect
domain name/ip address. Check the browser’s address bar to make sure the domain name/ip address is cor-
rect.

The Database Sharing Options wizard gets the domain name/ip address from the server itself, so if this
address is incorrect you’ll need to adjust this on the server.

To fix this, you’ll first need to unlock the server by clicking on the lock icon (see “Unlocking the Server Con-
figuration” on page 49) and then click the globe icon to change the domain name/ip address (see “Setting the
IP Address/Domain Name” on page 56).

Once the domain name/ip address has been fixed on the server you must open the Available Servers wizard
and refresh the Server List.

Now you should be able to go back to the Database Sharing Options wizard’s and select the Browse Data-
base Web Links from the Maintenance menu to open the admin page in your browser (see “Testing a Web
Database” on page 199).

Disabling the Web Link Page

If you want to completely disable the web link page (so others can’t see the list of your forms and procedures
even if they have the password) simply add a procedure named admin to the database, with a single line.

cgiHTML="Unauthorized."

You can change the message to whatever you want to appear if someone tries to access this page.

domain name / ip address

Page 208 Panorama Handbook
Modifying a Web Published Database

You can modify a web published database at any time. To do so you’ll need the original copy of the database.
No matter what you are modifying, the basic sequence is the same — modify the original database, then
upload the change to the server.

Updating a Web Form/Adding a new Web Form

This manual includes an entire chapter about setting up forms for the web (see “Web Forms” on page 231).
But the short story for updating a form is very simple:

• If this is a new form, create the form.

• Make whatever changes are necessary to the form (create/move objects, etc.).

• Using the commands at the bottom of the Web submenu in the Setup menu, make any changes that are
necessary to the web form settings (see “Preparing a Form” on page 236).

• Using the Render or Preview commands in the Web submenu in the Setup menu, convert the revised form
to HTML (also called rendering the form, see “Converting a Panorama Form into a Web Form” on
page 231).

web form settings

these commands
convert the form
to HTML

Chapter 5:Web Publishing Page 209
• Use the Upload Web Form command to update the server.

The final step is to test the revised/new form (see “Testing a Web Database” on page 199).

Updating All Web Forms

In rare circumstances you may need to re-render and re-upload all of the forms in a database. (For example,
all the forms need to be re-rendered if you change the name of the database on the server (this includes mak-
ing a new copy of the database with a different name.) To re-render all of the forms, first open the Web Form
Converter wizard using the Web Form Options command.

Now choose the Re-Render All Forms command from the Preview menu.

Depending on how many forms are in your database this process may take a while. Only forms that have
already been rendered to HTML already will be re-rendered. When the process is complete, open the Data-
base Sharing Options wizard and choose the Update Form Templates command from the Update menu.

Page 210 Panorama Handbook
You can also choose the Update All Procedures & Templates command from the Transfer menu, which also
uploads all of the procedures and web tables.

Updating a Table/Adding a new Web Table Template

This manual includes an entire chapter about setting up web table templates (see “Web Tables” on page 277).
But the short story for updating a template is very simple:

• Open the Text Export wizard.

• If this is a new template, create the template. Otherwise select the template from the Template menu.

• Use the dialogs in the HTML menu to customize the template (see “Customizing the Table Appearance” on
page 283).

Choose Upload Templates to Server from the Templates menu (this actually uploads all of the web table
templates in this database).

• You can also upload web table templates from the Update menu of the Database Sharing Options wizard.

The final step is to test the revised/new web table (see “Testing a Web Database” on page 199).

Chapter 5:Web Publishing Page 211
Updating a Procedure/Adding a new Procedure

This manual includes an entire chapter about writing and debugging procedures for performing web actions
(see “Web Programming 101” on page 317). But the short story for updating a procedure is very simple:

• Open the procedure, or create the new procedure.

• Make any changes that are necessary.

• Choose Upload Procedure from the Setup menu.

That’s all there is to it! The final step is to test the revised/new web table (see “Testing a Web Database” on
page 199).

Uploading Multiple Procedures

If you make changes to more than one procedure you can either upload each one separately (as described in
the previous section) or you can use the Update menu in the Database Sharing Options wizard to upload a
bunch of procedures at once.

To update all of the procedures that are currently open (visible on the screen) use the Update Open Proce-
dures command. To update all of the procedures in the database, whether they are open or not, use the
Update ALL Procedures command or the Update ALL Procedures & Templates command. (Note: When
uploading is complete, these commands will list all of the procedures that have been updated. Only proce-
dures that actually changed will be listed! If no procedures have changed, you’ll see that zero procedures
have been updated.)

Page 212 Panorama Handbook
Synchronizing data between the original copy and the server

If you’ve set up your web published database with database sharing turned on (see “Database Sharing and
Web Publishing” on page 195) then you don’t have to worry about synchronizing data with the server. Just
open your local copy of the database and Panorama takes care of everything for you. If you didn’t turn on
database sharing then follow the steps in one of the sections below to either download data from or upload
data to the server.

Downloading Data from the Server

If you are collecting data on the server (for example a guest book) then you can periodically download the
data to your local copy of the database for further analysis, etc. Start by opening the Database Sharing
Options wizard, then choose Download Data from the Transfer menu (if the database is shared this menu
option will be disabled, use Synchronize instead).

WARNING! When you use the Download Data command any data that is in the local copy of the database is
erased, and cannot be recovered. The local data is completely replaced by the data downloaded from the
server. If you want to make changes both using web browsers and using Panorama itself we recommend
enabling the database sharing option.

Uploading Data to the Server

If you are updating the local Panorama database (for example making changes to a product catalog) then you
can periodically upload the data to the server (in other words publish the changes). Start by opening the
Database Sharing Options wizard, then choose Upload Data from the Transfer menu (if the database is
shared this menu option will be disabled, use Synchronize instead).

WARNING! When you use the Upload Data command any data that is in the server copy of the database is
erased, and cannot be recovered. The data on the server is completely replaced by the data uploaded from the
local copy of the database. If you want to make changes both using web browsers and using Panorama itself
we recommend enabling the database sharing option.

Removing a Database from the Server

There are three methods for removing a database from the server.

Chapter 5:Web Publishing Page 213
Method 1 - Open the original database on your client computer, then open the Database Sharing Options
wizard. Then choose Remove from Server from the Maintenance menu.

Method 2 - Open the Server Administration wizard. Find the database you want to delete in the list of server
databases. Hold down the Control key while you click on the database name, then select Database Offline
from the pop-up menu.

The database will go dim indicating that is now offline (can no longer be accessed).

Finally, hold down the Control key, click on the database name and choose Delete from Server from the pop-
up menu.

Method 3 - You shouldn’t have any trouble with the first two techniques, but if you do, here is a sure fire
method. Go to the server computer and shut down the server (see “Shutting Down the Server” on page 45).
Open the Public Databases folder (see “Public Databases” on page 494) and erase the database file and the
database.cfd file. (Note: If the database is shared then the database file will be named database.ees. In that
case you should also erase the journal file, if any, which is named database.jnl.) Then restart the server.

database is offline

Page 214 Panorama Handbook
Associating a Database with Multiple Servers (Clones)

Normally a database is only associated with a single server. However there are situations where you might
want to have a single database with clones on two or more servers:

Clones share procedures and forms, but not data. Each clone has it’s own separate data, and there is no syn-
chronization or linkage of data between the different clone databases.

Creating a Clone

To illustrate creating a clone we’ll start with a database named Customers which is already on a server
named TiBook.

Checking our available servers, we have one more server available (MacMini PanServer):

Test vs. Production
Servers

In many situations you may want to run an internal test server
for debugging as well as a separate production server for pub-
lic access. This allows you to do in-house testing on your local
network, resolving any problems with procedures or forms
before actually deploying them on the public server.

“Canned”
Web Applications

If you are a developer or web consultant that creates standard
web applications that are sold to multiple customers, you can
create clones on each customer’s server. As you make updates
to your application, it is very easy to update each of the clones
on all of your customer’s servers.

Chapter 5:Web Publishing Page 215
To make a clone of the Customer database on the MacMini PanServer server use the Database Sharing
Options wizard’s Clone menu.

This command will display a list of available servers. (Any server that already contains a copy of this data-
base is excluded from the list, which is why TiBook doesn’t show up.)

Choose the server you want to use, then press OK (or double click on the server name). Panorama will
upload a copy of the database to the new server (in this case MacMini PanServer) where it can then be
accessed from web browsers.

Page 216 Panorama Handbook
Updating a Clone Database’s Procedures and Forms

After you’ve created one or more clones, you can continue to use and modify the original database. When-
ever you update procedures or forms (see “Updating a Procedure/Adding a new Procedure” on page 211
and “Updating a Web Form/Adding a new Web Form” on page 208) the original master database will be
updated — the clones on other servers aren’t touched. When you are ready to update one or more clones
open the Database Sharing Options wizard and use the Update Clones command in the Clone menu.

The dialog lists all of the clones for this database (in this case there is only one). Select the clones that you
want to update, then press the Update button. Panorama will update the procedures and forms on the clone
databases. (Note: You don’t need to take a database offline to update it.) When it’s done, it will display a list
of the forms and procedures that it has changed. (Note: Only procedures that have actually changed will be
listed.)

Remember that each clone has it’s own separate data, so updating does not transfer any data.

Chapter 5:Web Publishing Page 217
Changing the Primary Server

Though you can easily update any clones you’ve created with the Update Clones command (see above) the
primary server remains the one you originally uploaded the database to. If necessary, however, you can
change the primary server at any time using the Change Primary Server command in the Clone menu of the
Database Sharing Options wizard.

Use the pop-up menu to select the new primary server. If this is a shared database, the wizard will force syn-
chronize the local client database with the new primary server. In other words, all of the data in the local cli-
ent will be discarded and the data from the new primary server downloaded into the client.

Distributing Shared Clients for Clone Servers

When a shared database is cloned, each server will have it’s own set of clients linked to it. There is no data
sharing between the different servers or the clients of different servers.

Page 218 Panorama Handbook
To set up these sets of servers you’ll need to at least temporarily change the primary server. Start by setting
up the primary server and its clients as described in Chapter 3 (see “Creating a Shared Database” on
page 103). The green arrows show how copies of the master database are distributed from client to client,
either by copying in the Finder, e-mail, USB drive, or some other file transfer mechanism.

Next, use the New Clone command to set up a new clone of the database (see “Creating a Clone” on
page 214).

Chapter 5:Web Publishing Page 219
Then change the primary server so that the clone is now the primary, and the original server is now a clone
(see “Changing the Primary Server” on page 217).

Now distribute copies of the master database to the clients of the clone server, again using finder copying, e-
mail, usb drives, or whatever other method you want to use to copy files. (Once you have at least one copy
you can always make more duplicates later.)

Repeat for any additional clone servers. When you’re done, switch the primary back to the original server,
and all of your servers and clients are ready to use.

Page 220 Panorama Handbook
Designing Your Web Database Application

So far we’ve discussed the nuts and bolts of working with the server, while skipping over the most important
part — designing the actual web database application. A web application is divided into discrete steps or
actions. Each step begins with someone using a web browser making a request to the server. The server pro-
cesses the request and generates a new custom web page which it sends back to the web browser.

The diagram below illustrates the operation of a single step in a web application.

The original request is triggered by typing in a URL, clicking on a link, or pressing the Submit button on a
web form. Each request may have multiple components. Every request has a URL. The request may also con-
tain data that has been submitted from a form.

Web Database URL Format

When the server receives a request it starts by analyzing the URL. The information in the URL tells the server
what sort of action it should take. You can type the URL into the web browser, but more commonly you’ll
include the URL’s in links from other web pages (using the tag). The URL for access-
ing a Panorama database is always in the format shown below.

Chapter 5:Web Publishing Page 221
The http: and /cgi-bin/Panorama.cgi? portions of the URL are always the same. The rest of the URL
is divided into three sections.

You can use the database web link page to generate and copy a URL without typing (see “Testing a Web
Database” on page 199). This illustration shows how to generate a URL for the Advanced Search form.

Once the URL is in the clipboard it can easily be copied to BBEdit, Dreamweaver, or the web authoring pro-
gram you prefer.

Section Description Examples

Domain

This is the overall location of the entire web site.
If you don’t know the domain you’ll need to
contact your ISP or IT department. If this is a
public web site then this will be a name like
www.mycompany.com, etc. If this site doesn’t
have a name you can use the ip address
(192.168.1.50), or you can use localhost if the
server is on the same computer as the browser
(for testing)

www.acme.com

192.169.1.100

localhost

Database
This is the name of the database being accessed.
Be sure to use the name on the server (if it is dif-
ferent than the original name).

Contacts
Invoices

Action

This is the action to be performed by this URL.
The Panorama server has several built in
actions (for displaying forms, performing que-
ries, and other common tasks) or any procedure
in the database can be used as an action. The
action is always separated from the database
name by a ~ character. Sometimes the action
may include one or more extra parameters, in
that case these extra parameters are separated
from the main action name by a ~ character.

form~DataEntry
updaterecord

displayshoppingcart
newitem~4~widgets

Page 222 Panorama Handbook
Standard Actions

The Panorama Enterprise Server has a handful of standard built-in actions that perform common actions like
displaying a form (see “Form Actions and Sequence” on page 241), performing a query (see “Standard Form
Action — QUERY” on page 249), adding a new record (see “Standard Form Action — NEWRECORD” on
page 243), updating an existing record (see “Standard Form Action — UPDATERECORD” on page 253) and
displaying submitted data (see “Standard Form Action — FORMDUMP” on page 242). Standard actions can
also be connected together to perform more complicated sequences, as will be described in a moment.

Custom Actions

Custom actions are created by writing procedures. Using custom actions gives you the greatest flexibility and
power, but has the disadvantage of requiring programing skills. To be used as a custom action a procedure
must fill the global variable cgiHTML with the HTML text to be displayed on a browser. A very simple cus-
tom action procedure might contain only one line. This example displays the current time.

cgiHTML=“The time is ”+timepattern(now(),"hh:mm am/pm")+“”

Of course most custom actions are much more complicated than this. To learn more about writing custom
actions see “Web Programming 101” on page 317.

Action Sequences

A single server action can be used all by itself, but more often each action will be part of a larger sequence. A
typical sequence might be displaying a search form, then displaying a list of results, then displaying a
detailed form of a particular item. From the users point of view, the sequence of actions flows from page to
page to page.

The Panorama Enterprise Server’s standard actions have been designed so that they can easily be connected
into larger sequences. To set up these standard sequences you simply fill in dialog boxes specifying how the
sequence flows from page to page. In this chapter you’ll learn about the overall theory and operation of these
standard sequences. The nitty gritty details of setting up a sequence are covered in detail in the following
chapters.

Standard Data Entry Sequence

The simplest standard sequence is the data entry sequence. This sequence allows the user to fill in a form and
add the new data to a database. In it’s most basic form this sequence has only two elements: a data entry form
and a thank you form.

Chapter 5:Web Publishing Page 223
You can also configure this sequence to check for missing fields, in which case the sequence is slightly more
complicated.

Let’s look at a typical data entry sequence in action. The sequence starts by clicking a link from another page
on the site.

Page 224 Panorama Handbook
This link brings up the data entry form, which generally starts out blank.

Once the form is filled out press the Submit button to complete the sequence.

Chapter 5:Web Publishing Page 225
Oops — the sequence is not complete because some required fields were missing. In this case the server is
displaying the default missing fields page, but later you’ll learn how to customize this page any way you
want. For now we’ll simply press the browser’s back button to get back to the data entry form.

Once the missing fields are entered press Submit again to actually add a new record to the database on the
server with the new information.

This final form is called the “thank-you” form. Once again you can customize it any way you want — it can
even be set up to allow the user to edit the newly entered data. The new record has been added to the data-
base on the server.

This entire sequence can be set up without any programming simply by setting up forms and filling in a few
dialogs.

Page 226 Panorama Handbook
Search —> List —> Detail Sequence

This standard sequence allows a web user to search an online database and display a table listing the match-
ing records. The sequence can stop there, or each table entry can include an automatically generated link that
flows to a detailed form for that record. The detailed form can simply display data or it can be designed to
allow the user to modify the record. With some additional programming the user can request that the server
perform other operations on the data (for example add the item to a shopping cart). Here is the flow chart for
this standard sequence.

Let’s look at a typical search-list-detail sequence in action. The sequence starts by clicking a link from
another page on the site.

Chapter 5:Web Publishing Page 227
This link brings up the search form, which generally starts out blank.

Fill out one or more fields to specify what data to search for, then press the Submit button.

Page 228 Panorama Handbook
The server will search the database and display a list of all records that match the requested search criteria. (If
no records match, a customizable form appears.)

This table has been configured to display a maximum of 15 records per page. Since there are 35 records
selected, the Panorama server automatically splits the display into three pages. You can navigate between the
pages using the automatically generated links. Click NEXT to display the next 15 records.

Click NEXT again to display the final 5 records (or you can simply press 3 to go right to the end).

Chapter 5:Web Publishing Page 229
This table has been configured to display links for each record (links are underlined above). Clicking a link
brings up a detail form for this record. For example, clicking John Wilson displays the detail form for this
record.

This form displays the record and in this case also allows the user to modify the data. Pressing the Submit
button updates the database on the server with the new data and displays a customizable “thank-you” form
(similar to the data entry sequence). This entire sequence can be set up without any programming simply by
setting up forms and filling in a few dialogs.

Page 230 Panorama Handbook

Chapter 6: Web Forms

The Panorama Enterprise Edition Server can publish any kind of HTML web page, but there are two basic
building blocks that are the most common elements of any dynamic site — forms and tables. This chapter
describes forms, while the next chapter describes tables.

Converting a Panorama Form into a Web Form

If you’ve been using Panorama for a while you are probably familiar with creating forms using Panorama’s
graphics tools. Starting with version 5.5 Panorama has a special wizard that allows you to convert forms cre-
ated in Panorama into forms that can be used on the web. You can access this wizard directly, but usually
you’ll access it’s features directly through the Web submenu of the Setup menu while in graphics mode.

The commands in the Web menu are used to convert Panorama forms into web page forms and to customize
how that conversion is performed.

Page 232 Panorama Handbook
Converting a Panorama Form into a Web Page Form

Panorama can convert a form for web use directly from graphics mode (this is sometimes called “rendering”
the form). Use the Web submenu of the Setup menu to convert the current form. (Note: The current database
does not have to be installed on a server to convert the form, though of course you cannot actually use the
HTML form unless the database has been published for the web, see “Uploading the Database to the Server”
on page 194. In other words, you can set up your HTML forms while the database is still in single user mode.)

The Render Web Form command performs the conversion to HTML format. Use this command if you don’t
need to see what the finished HTML page will look like.

The Preview Web Form (Blank) command renders (converts) the form to HTML, then opens your web
browser and previews what the form will look like without any data (use this option if the form is to be used
for data entry or searching) (Note: This previewed version of the form is not functional, but it does show you
exactly what this form will look like in this browser).

Panorama Form

Web Form

Chapter 6:Web Forms Page 233
The Preview Web Form (with Data) command renders (converts) the form to HTML, then opens your web
browser and previews what the form will look like with data (the data in the current record is used for the
preview). (Note: This previewed version of the form is not functional, but it does show you exactly what this
form will look like in this browser).

Panorama Form

Web Form

Page 234 Panorama Handbook
The Preview Web Form (Blank) and Preview Web Form (with Data) commands render the form to HTML,
then open a window to display the actual HTML source code. You can examine this code or even copy it to a
separate text editor.

Panorama Form

Web Form HTML Source

Chapter 6:Web Forms Page 235
The Web Form Converter Wizard

Whenever you render a form to HTML Panorama will automatically open the Web Form Converter wizard.
This wizard will appear centered at the bottom of the screen.

The wizard displays the status of last form that was rendered, including any errors or warnings (see “Con-
version Limitations” on page 236). You can close this wizard any time you want — it will re-open the next
time you render a form to HTML. You can also manually open this wizard using the Web Form Options…
command in the Web submenu of the Setup menu.

Page 236 Panorama Handbook
Preparing a Form

Although any form can be converted for use on the web, you’ll usually want to build forms specifically
designed for the web — just as you probably build forms specifically for use as printed reports. As described
below, some Panorama features cannot be converted for the web, so these elements of the form will not be
included in the converted web version of the form. You may also want to adjust fonts and images for the best
presentation on web browsers.

Conversion Limitations

The table below lists types of Panorama form objects that can be converted to equivalent web entities, along
with any limitations. In general, Panorama includes many options for customizing buttons, pop-up menus,
text editing, etc., but most of these don’t work with web browsers. If you stick to standard appearance objects
you will usually be ok.

Object types not listed in the table above cannot be converted, and will be skipped completely when convert-
ing a form to HTML. This include tiles, ovals, round rectangles, super matrix, auto grow, "classic" button,
word processor, charts, "classic" flash art, pictures, flash art buttons, sticky push buttons and scroll bars.

Object Limitations

Rectangle Fill pattern must be solid, outline or hollow, pen pattern must be solid or none.

Line
Horizontal lines work very well (they are implemented with the <hr> tag).
Vertical lines are possible, but will be twice the width specified (the minimum
width of a vertical line is two pixels). Diagonal lines are not supported.

Click Text See “Font selection” on page 255.

Autowrap Text Cannot contain embedded fields or formulas (use Text Display SuperObject
instead). Also see “Font selection” on page 255.

Text Display Cannot display a scroll bar, also see “Font selection” on page 255.

Data Cell Uses default browser appearance for text editing objects (see “Data Cells and
Text Editor SuperObjects” on page 238),

Text Editor
Uses default browser appearance for text editing objects, cannot control bor-
ders, scroll bars, etc. (see “Data Cells and Text Editor SuperObjects” on
page 238),

Push Button Buttons cannot trigger a procedure, a button either submits the form data or
resets the form data (if it is called Reset).

Data Button Only standard checkbox or radio button styles are supported, cannot trigger a
procedure.

Pop-Up Menu Only standard pop-up appearance is supported. No multi-column menus.

List Super Object Cannot trigger a procedure. Also see “Font selection” on page 255.

Super Flash Art
Can only display images from web, not from local hard drive. No scaling,
alignment must be to upper left, no scrolling. See “Displaying Images in a Web
Form” on page 264.

Chapter 6:Web Forms Page 237
If a form contains one or more objects that cannot be fully converted, these objects will be listed in the Web
Form Converter wizard when the form is rendered. For example, consider this form, which has several
objects that cannot be converted or can only be partially converted.

(Of course the objects with problems will not usually line themselves up neatly on the edge of the form! If
you have trouble determining which objects are causing the problems you can locate the objects by object ID
using the Form Explorer wizard.)

Page 238 Panorama Handbook
Fields and Variables in Web Forms

Most forms handle data in fields and variables. Data can be displayed using formulas in Text Display Super-
Objects. Data editing is done with data cells, Text Editor SuperObjects, checkboxes, radio buttons and pop-up
menus.

Data Cells and Text Editor SuperObjects. Panorama has many formatting options for editing data. You can
use data cells, or Text Editor SuperObjects with various types of borders. Web browsers, however, only have
a single formatting option for editing data. No matter what option you use in Panorama, the result looks the
same on the web browser. The illustration below shows four different data editing styles on a Panorama form
on the left. The right side of the illustration shows these same four sets of data editing objects rendered as a
web page — now they all look identical.

The moral of the story? Go ahead and choose any style you like for your Panorama form, but know that when
the form is rendered as a web page it may look completely different (and may look different in different
browsers and on different platforms, as well).

Data Buttons (Checkboxes and Radio Buttons). Panorama has many display options for checkboxes and
radio buttons. Web browsers, however, support only plain buttons. No matter what option you select for
your radio button or checkbox in Panorama, it will always be converted to a generic button when the form is
rendered as a web page.

Chapter 6:Web Forms Page 239
Panorama supports multiple checkboxes assigned to a single field or variable, allowing a single field or vari-
able to contain multiple values (pizza toppings, for instance). Web browsers do not support this, so a Pan-
orama form that uses this feature will not work properly if converted to a web page. Instead you must have a
separate field or variable for each option.

Pop-Up Menus. Like the other data entry objects, Panorama has many options for pop-up menus. As you
can imagine, none of these are supported by web browsers, so all pop-up menus are converted to generic sys-
tem standard pop-up menus. In addition, the width of the pop-up menu is determined automatically from
the length of the longest pop-up option. So you may find that your pop-up menu gets narrower or wider
when the form is rendered as a web page.

When used in a Panorama form the pop-up menu option list can be calculated on the fly when the menu is
clicked on. This allows the menu to change depending on current conditions. Web pop-up menus don’t allow
this, so you should not use any fields or variables in the formula used to calculate pop-up menus.

Lists. Lists generally look pretty similar when converted from a Panorama form to a web form.

When used in a regular form Panorama allows the list of items to be included in the list to be calculated on
the fly, or even to be created by scanning the database. These options are not allowed in a web form — the list
must be a fixed list of options with no fields or variables.

Page 240 Panorama Handbook
Push Buttons. In Panorama forms push buttons can come in many sizes, shapes, styles and colors — even
transparent! Push buttons on web pages come in only one size and style (though you can make buttons from
an image, see “Making an Image Link to Another Page” on page 267). No matter what option you select for
your push button in Panorama, it will always be converted to a standard generic button when the form is
rendered as a web page.

Panorama buttons normally trigger procedures, but in a web form they normally submit the contents of the
form to the server. Unless you specify otherwise (as described in a moment), any button on a form will act as
a Submit button. There are two exceptions. If the button title is Reset, the button will clear the contents of the
form (actually set the form back to it’s default state.) The second exception involves the Button Scripts dia-
log, which allows one or more buttons to trigger JavaScript code. See “Triggering JavaScript with a Button”
on page 270 for more information.

Chapter 6:Web Forms Page 241
Form Actions and Sequence

On the web, a form doesn’t exist in a vacuum, but is part of a larger sequence. The basic sequence is:

• Form is displayed.
• User fills in form
• User submits form data to server
• Server processes the submitted data and displays the next page

The following section discusses the last step in this sequence — processing the form data and displaying the
next page. This processing is called the form action. The Panorama server has several built in standard
actions that you can use (for entering new data, querying data, etc.) or you can create your own custom
action by writing a program.

To specify what action should be taken when the form is submitted, use the Form Action & Follow Up com-
mand in the Web submenu of the Setup menu (see “Converting a Panorama Form into a Web Form” on
page 231).

The first option in this dialog is the Submit Form Action. You can type in the name of the action you want to
use, but usually you’ll select the action you want from the pop-up menu on the right. This menu lists the 4
standard built in actions along with all of the procedures in this database. Whatever you select (standard
action or procedure) will be triggered when the form is submitted to process the data and display the next
page. (The other four options in this dialog are used with various standard actions, and are described in the
following sections.)

Page 242 Panorama Handbook
Standard Form Action — FORMDUMP

The formdump standard action simply takes the data submitted and generates a web page that lists all of the
values that were submitted (including hidden values, see “Hidden Data” on page 271). This is primarily use-
ful for debugging — you wouldn’t normally use this action in a production web site. For example, suppose
the form below has been set up to use the formdump action.

When the Sign Up button is pressed the form is submitted and the fields and their values are displayed.

Note: If you don’t assign an action to a form the formdump action is assigned by default.

Chapter 6:Web Forms Page 243
Standard Form Action — NEWRECORD

The newrecord standard action takes the submitted data and adds it to the database (in a new record). It then
displays a “thank you” page that by default looks like this:

Setting Up a Custom Response Page. For most applications you will probably want to design your own
“thank you” page. To do this, create another Panorama form and convert it to a web page. Here’s an example
of a typical “thank you” form. This form uses Text Display SuperObjects to display the newly added data.

Page 244 Panorama Handbook
To tell the server to display this “thank you” form use the Form Action & Follow Up dialog in the Web sub-
menu of the Setup menu (see “Converting a Panorama Form into a Web Form” on page 231). Select the form
from the Followup (Normal) pop-up menu.

Now when new data is entered the server will respond with this custom “thank you” page.

Note: If you are making this change to a database that has already been uploaded to the server then you’ll
need to re-render and upload the form (see “Updating a Web Form/Adding a new Web Form” on page 208).

click here for pop-up list of forms in this database

Chapter 6:Web Forms Page 245
Checking for Required Fields/Preventing Missing Fields. When entering new records into the database
you may want the server to make sure that some fields are filled in (not left empty). To enable this feature, use
the Required Fields dialog in the Web submenu of the Setup menu (see “Converting a Panorama Form into
a Web Form” on page 231). Simply check each field that is required, as shown here. (In addition to database
fields this list also shows permanent variables.)

Before the new record is added to the database, the server checks to make sure that all these fields are present.
(Note: The required field feature will not work with checkboxes or radio buttons on the form, only with Text
Editor, Pop-up Menu and List objects.) If any are missing then a special “missing fields” page is displayed,
like this:

Page 246 Panorama Handbook
Is this page too plain for you? Then set up your own! Start by creating a Panorama form with the layout you
want.

The Text Display SuperObject uses the webformmissingfields(function to list the fields that are missing.

""+webformmissingfields("<field>
")+""

This function has one parameter, a template that specifies how each field name should be listed. The field
name itself is specified by the <field> tag, while other text, punctuation and tags can be added to control the
formatting. In this example each field name is displayed on a separate line (because of the
 tag). Here’s
how this page will actually look when there are missing fields (but first you must set up the Form Action &
Follow-Up Dialog, described later in this section).

text display superobject

Chapter 6:Web Forms Page 247
Here are several additional examples of how the text display formula can be adjusted to produce different
formats for the missing fields.

""+trim(webformmissingfields("<field>,"),1)+""

""+webformmissingfields("<field>")+""

""+webformmissingfields("<field>")+""

"<table border=0 cellspacing=2 width=150>"+webformmissingfields({<tr><td
bgcolor="#CCCCCC" align=center><field></td></tr>})+"</
table>"

Page 248 Panorama Handbook
To tell the server to use your new “missing fields” form, go back to the original form (in this case the Signup
form) and use the Form Action & Follow Up dialog in the Web submenu of the Setup menu (see “Convert-
ing a Panorama Form into a Web Form” on page 231). Select the form from the Missing Fields pop-up menu.

Now if data is missing, the server will respond with your new custom “missing fields” page, as shown earlier
in this section. Note: If you are making this change to a database that has already been uploaded to the server
(see “Uploading the Database to the Server” on page 194) then you’ll need to re-render and upload the form
(see “Updating a Web Form/Adding a new Web Form” on page 208).

click here for pop-up list of forms in this database

Chapter 6:Web Forms Page 249
Standard Form Action — QUERY

The query standard action selects one or more records in the database and displays a table showing the
selected records. It’s sort of the web equivalent of Panorama’s Find/Select command.

The query process starts with a blank form which has one or more fields. When the form is submitted, the
server scans the database to find all of the records that match all of the fields that have been entered (for
example, if the last name and city have been entered then only records with the same last name and city will
be listed).

An alternate query technique starts with a blank form with just one field, which must be set up to edit a vari-
able named SearchAllFields. When the form is submitted, the server scans the database to find records with
any field that contains the submitted text. We’ll come back to this alternate method later.

Here’s an example of a typical search form.

As you can see, this form is very similar to a data entry form. What makes it a search form is the fact that the
action has been set to query instead of newrecord in the Form Action & Follow Up dialog in the Web sub-
menu of the Setup menu (see “Converting a Panorama Form into a Web Form” on page 231).

When the query option is selected in the pop-up menu, an additional menu appears listing all of the web
tables that have been set up for this database. (A web table is a template that controls the appearance of a
table of records, see “Web Tables” on page 277.) In this example there is only one web table, WebSheet.
Choose the web table you want to use with this query.

list of web tables

Page 250 Panorama Handbook
That’s all there is to setting up a query! Make sure the form is rendered (converted to HTML) and uploaded
to the server and you can use the query. For example, you could use this form to locate everyone named Wil-
son in California.

Pressing the Search button shows that there are 4 Wilson’s in this state.

Chapter 6:Web Forms Page 251
Searching All Fields. To search all fields simultaneously create a form with a single search field that edits a
variable named SearchAllFields.

Just like a regular search form, set the form action to query and select the web table using the Form Action &
Follow Up dialog in the Web submenu of the Setup menu (see “Converting a Panorama Form into a Web
Form” on page 231).

list of web tables

Page 252 Panorama Handbook
Make sure the form is rendered (converted to HTML) and uploaded to the server and you can use the query.
For example you could use this query form to locate every occurrence of charles in the database.

This search will find charles no matter what field it is in.

Searching Multiple Fields instead of All Fields. Using the Live Clairvoyance wizard you can customize the
all field search to include only a subset of the fields in the database. First make sure the database you want to
modify is active, then open the Live Clairvoyance wizard.

Chapter 6:Web Forms Page 253
Now press the button to configure Live Clairvoyance. The configuration dialog will appear:

(Note: You may wonder why the search fields section contains «Scale» Scale. This allows searches to made for
HO Scale, N Scale, etc., which would be a common way for model railroaders to specify a search.)

Follow the on-screen instructions to set up the fields to be searched, then press the Ok button to close the dia-
log. Close the wizard and save the database, then if necessary re-upload the form to the server. Instead of
searching all fields, the search will use the configuration you have just set up.

Handling Failed Searches. What if a search query turns up no results? For example, suppose you search for
zumi. There is no zumi in the database, so the server displays an empty table.

The server’s response to a failed search can be modified with a custom program, see “Displaying an Empty
Table” on page 426.

Standard Form Action — UPDATERECORD

The update standard action is similar to newrecord but instead of adding a new record it modifies an existing
record. This action cannot be used by itself but must be part of a sequence that displays the form from the
database. See “Editing/Updating a Record” on page 313 for more details on this process.

Page 254 Panorama Handbook
Custom Form Actions

Any action other than the four standard form actions discussed above (formdump, newrecord, query and
update) is a custom form action. Custom actions are created by writing a procedure to process the form input
(see “Web Programming 101” on page 317). To specify that a procedure should be triggered when the form is
submitted, use the Form Action & Follow Up dialog in the Web submenu of the Setup menu (see “Convert-
ing a Panorama Form into a Web Form” on page 231).

The first option in this dialog is the Submit Form Action. You can type in the name of the procedure preceded
by the ~ character, but usually you’ll select the procedure you want from the pop-up menu on the right. This
menu lists the 4 standard built in actions along with all of the procedures in this database. Whatever you
select (standard action or procedure) will be triggered when the form is submitted to process the data and
display the next page.

list of procedures in this database

Chapter 6:Web Forms Page 255
Advanced Form Techniques

This section describes advanced techniques for customizing forms, including techniques for embedding
HTML directly into your form.

Font selection

On your own computer you can use any font you want because you have complete control over what fonts
are installed and available for use. A web page, however, is the opposite situation since you have zero control
over what fonts may be available when the page is viewed. Because of this it is usually best to pick from a
restricted subset of fonts that are almost universally available. The fonts that are most commonly available
are: Arial, Comic Sans MS, Courier, Georgia, Helvetica, Times and Verdana.

You may want to use fonts beyond this very restricted list. If you use one of the primary fonts listed below,
the web browser will automatically substitute the first alternate font if the primary font is not available. If the
first alternate is not available, the second alternate will be used. If even that is not available, the web browser
will select a generic font based on the final alternate column.

Primary Font Alternate 1 Alternate 2 Final Alternate

Arial Helvetica sans-serif

Arial Black Gadget Helvetica sans-serif

Charcoal Impact sans-serif

Chicago Impact sans-serif

Comic Sans MS cursive

Courier Courier New monospace

Courier New Courier monospace

Gadget Arial Black Helvetica sans-serif

Geneva Tahoma Arial sans-serif

Georgia serif

Helvetica Trebuchet MS Arial sans-serif

Impact Charcoal sans-serif

Lucida Console Monaco monospace

Lucida Grande Lucida Sans Unicode sans-serif

Lucida Sans Unicode Lucida Grande sans-serif

Monaco Lucida Console monospace

MS Sans Serif Geneva sans-serif

MS Serif New York sans-serif

Palatino Linotype Book Antiqua Palatino serif

Palatino Palatino Linotype Book Antiqua serif

Tahoma Geneva Arial sans-serif

Times Times New Roman serif

Times New Roman Times serif

Trebuchet MS Helvetica sans-serif

Symbol symbol

Verdana Geneva sans-serif

Webdings fantasy

Page 256 Panorama Handbook
For example, suppose that you have specified that a text object be displayed using the Verdana font. If Verdana
is not available, then Geneva will be used. If Geneva is not available then a generic sans-serif font will be used.
(Of course this means that your form should not rely on the dimensions of a certain font for exact form lay-
out.)

If you use a font that is not on the list above, then all bets are off. If that font is not available when the web
page is displayed, the results are unpredictable. You can, however, use the Font Substitution dialog (in the
Web submenu of the Setup menu, see “Converting a Panorama Form into a Web Form” on page 231) to set
up custom substitutions. The example below shows how to set up substitutions for the Futura font.

This example sets up four alternates for the Futura font. Notice that when actual font names are specified they
should be specified in quotes, while generic font names (serif, sans-serif, monospace, cursive or fantasy) should
not be enclosed in quotes.

Embedding HTML in a Text Display SuperObject

If you want to display text in a Text Display SuperObject, Panorama normally takes care of all the details for
you. If you are familiar with HTML you know that special characters like <, >, and & normally require special
processing, but Panorama takes care of that for you. There is one exception to this rule, however. If the text
you are displaying contains HTML tags, then Panorama does not special processing. This allows you to place
custom HTML tags (bold, italic, links, etc.) into the final page. For example, here is a formula that will display
some text in bold and italic.

Chapter 6:Web Forms Page 257
In the Panorama form you see the actual tags.

Here’s what this form looks like when it is converted to HTML:

If you embed HTML tags into the Text Display formula you must take care to make sure that any data
included in the formula is converted to web format. This can be done with the webtext(function. Suppose,
for example, you want to display a person’s name and company, with the company name in bold. You might
think to use a formula like this:

But what if the data contains a special character, like this:

This special character will not display properly on the browser without conversion:

Page 258 Panorama Handbook
Adding the webtext(function around each field fixes the problem.

Here’s the finished result, with the correct accent character:

A common mistake is to enclose the entire formula with the webtext(function, like this:

As you can see below, this results in a mess. Don’t include any HTML tags within the webtext(function,
only data (or text that does not include tags).

Remember, the webtext(function is only necessary if your formula contains HTML tags. If the result of
your formula doesn’t contain any tags then the webtext(function should not be used. (Note: Panorama
assumes the text contains HTML tags if the first character is < and the last character is >, or if the text contains
</ anywhere within the text.)

Chapter 6:Web Forms Page 259
Linking to Other Web Pages

To link to another web page, use the weblink(function. This function has two parameters, the URL to link
to and the caption for the link. Here’s an example that will create a link to the ProVUE Development home
page.

In the Panorama form only the caption will appear.

When the form is converted to a web page, the text becomes a link to the ProVUE Development home page.
Clicking on the link will jump to that page.

You can combine a link with other text, or even put multiple links in a single Text Display object.

Page 260 Panorama Handbook
The Panorama form will look like this:

and the web page like this:

The weblinknewwindow(function works exactly the same except that the new web page will automatically
be opened in a new window (instead of in the same window).

Linking to Blank Panorama Forms (from a Panorama Form)

To link to a blank Panorama form (for example to add a new record or start a search) use the webformlink(
function. For example, suppose you have created a form called Advanced Search in the same database. This
formula will link to the search page:

In the Panorama form, this object will simply say Advanced Search. When rendered to HTML this becomes a
link.

The webformlink(function actually has four parameters (though as we have seen, often only one is
needed).

webformlink(database,form,record,caption)

Chapter 6:Web Forms Page 261
The database parameter specifies the database that contains the requested form. This should be the name of
the database on the server. If the form is in the same database as the current form, the database parameter can
be left blank.

The database parameter specifies the form being linked to.

The record parameter must be left blank to create a blank form. (If non-blank it specifies a record to be used to
populate the form, see “What Record Are We Talking About?” on page 395.)

The caption parameter specifies the text that will be displayed for this link (the text that the user sees). If left
blank the form name will automatically be used as the caption.

Like the weblink(function, the webformlink(function can be used as part of a more complex formula
that may include multiple links, tags, etc. There is also a webformlink(function that causes the blank form
to open in a new browser window.

Linking to Blank Panorama Forms (from a standard web page)

The illustration below shows how to build a URL to a Panorama form from a standard web page (a web page
built with a text editor or web design program like Dreamweaver). The black parts of the URL never change,
while the blue sections must be adjusted for your site, database, and form.

The database name and form name must be exact, including upper and lower case. If the database name or
form name contain any special characters they must be converted to % notation, for example a space becomes
%20. The example below shows how to build a link to an Advanced Search form in the Registration database.

Advanced Search

Linking to Panorama Procedures (from a Panorama Form)

In a later chapter you’ll learn how to write a Panorama procedure that creates a web page (see “Generating
HTML” on page 369). To link to such a procedure use the cgilink(function. The cgilink(function has
three parameters:

cgilink(database,urlsuffix,caption)

The database parameter specifies the database that contains the requested procedure. This should be the
name of the database on the server. If the procedure is in the same database as the current form the database
parameter can be left blank.

The urlsuffix parameter specifies the form being linked to, along with any additional parameters. If there are
any parameters they must be separated from the procedure name with the ~ character.

The caption parameter specifies the text that will be displayed for this link (the text that the user sees).

Here is an example that will display statistics from 2006 (assuming, of course, that the Statistics procedure
has been written to process an extra parameter this way.

Page 262 Panorama Handbook
Linking to Panorama Procedures (from a standard web page)

The illustration below shows how to build a URL to a Panorama form from a standard web page (a web page
built with a text editor or web design program like Dreamweaver). The black parts of the URL never change,
while the blue sections must be adjusted for your site, database, and procedure.

The database name and procedure name must be exact, including upper and lower case. If the database name
or procedure name contain any special characters they must be converted to % notation, for example a space
becomes %20. The example below shows how to build a link to a statistics procedure in the Registration data-
base.

Stats

Chapter 6:Web Forms Page 263
Linking to a JavaScript Script

The weblink(function can also be used to trigger a JavaScript script. Simply start the URL with
javascript: instead of http:, as shown below. The script itself must not contain any " characters, and
should not return a value.

In the web browser clicking on the word Hello will display a short message.

If the script you want to run has more than a couple of statements in it, it’s usually best to define a custom
JavaScript function separately (see “Adding JavaScript to a Page” on page 275) and simply trigger the func-
tion with the weblink(.

Page 264 Panorama Handbook
Displaying Images in a Web Form

Many forms include images. Images may be fixed, like a logo, or variable, like a catalog photo that changes
for each record. In a regular Panorama form, images can be displayed by pasting them directly into the form,
they can be displayed from the Flash Art catalog or from a file on disk, or they can be displayed directly from
the web. When a form is exported for the web, however, only the last option is available. If a form contains
images that are pasted in or stored locally these images must be converted into web images before they can
be displayed on a web form.

To display an image from the web create a Flash Art SuperObject (see Chapter 16 of the Panorama Hand-
book) and use the webimage(function to specify the URL of the image you want to display (usually a GIF or
JPEG image).

Be sure that the Include Pictures on Disk and Top/Left options are checked. None of the other options will
work when the page is converted to HTML. When the Panorama form is displayed, the image will be fetched
over the internet and displayed (assuming that the computer is connected to the internet!). There may be a
delay the first time the image is displayed.

Chapter 6:Web Forms Page 265
When the form is converted to HTML, the image will be displayed just as it was on the Panorama form:

There’s one problem with this example — it’s displaying an image from somebody else’s web site. In many
cases this may not be appreciated. First of all, you are poaching someone else’s bandwidth. Secondly, you
may be violating the copyright of the person or organization that created the images. (However, it may be ok
to directly access photo sharing sites like flickr if you are accessing your own images or images that are in the
public domain — check the terms of service for the site in question).

Because of the issues described in the previous paragraph, you’ll usually want to create your own images
and upload them to your own web site. If you’re using Mac OS X with Apache then you’ll want to put the
images in a subfolder of the WebServer Documents folder, which you’ll find inside the Library folder on the
main hard drive of the computer. Usually you’ll want to put the images in a subfolder, like the HobbyShop-
Photos folder shown below.

Here’s the formula for displaying the image of the Amtrak Genesis locomotive:

Page 266 Panorama Handbook
But what if you don’t know the URL for your web site yet, or perhaps you want to first test your database on
a separate local server before deploying it on your live web server. By adjusting the formula to use the
dbServerDomain() function, the form can automatically display the image from whatever server is being
used to host the database itself. This function automatically generates the first part of the URL (http:// and
the domain name).

You can move the database from server to server and the images will continue to display correctly (of course
you’ll need to move the images also).

Note: The dbserverdomain() function does not work until you have assigned the database to a server
with the Database Sharing Options wizard (see “Uploading the Database to the Server” on page 194).

Displaying Images Based on a Field or Variable

To display an image based on a field or variable simply include that field or variable in the formula. In this
example the Item field contains image names. The urlencode(function is necessary to make any special
characters in the image name URL friendly, for example spaces become %20. However, the image name
should not contain the ‘ character and should not contain any accented characters or other characters that
use the upper 128 positions of the ASCII character set.

Chapter 6:Web Forms Page 267
The Panorama form will display the image (if any) that matches the data in the Item field:

and so will the converted web form.

Making an Image Link to Another Page

To make an image a clickable link to another web page, combine the webimage(function with the
weblink(function (see “Linking to Panorama Procedures (from a Panorama Form)” on page 261). Use the
webimage(function as the caption parameter for the weblink(function.

Page 268 Panorama Handbook
The addition of the weblink(function turns the image into a link to the http://www.nmra.org web page.

You can also use the weblinknewwindow(, webformlink(, webformlinknewwindow(, cgilink(and
cgilinknewwindow(functions in an image formula.

Making an Image a Submit Button

To make an image act as if it is a submit button use the webimagesubmit(function instead of webimage(.

The image displays normally, but can also be clicked to submit the form.

Chapter 6:Web Forms Page 269
Making an Image a JavaScript Button

If you use the webimagescript(function clicking on the image will trigger a JavaScript. The second func-
tion parameter is the text of the script. Important: The script text must not contain the " character. In the
example below the text of the JavaScript script is highlighted, in this case a simple script that displays an
alert.

In the Panorama form, the image is displayed normally. (However, since Panorama does not have a built-in
JavaScript interpreter, clicking on the link does not trigger the JavaScript.)

When the form is rendered as a web page the JavaScript becomes activated. Clicking on the image triggers
the script, in this case displaying a message.

If the script you want to run has more than a couple of statements it’s usually best to define a JavaScript func-
tion separately (see “Adding JavaScript to a Page” on page 275) and simply trigger this function with the
webimagescript(.

Page 270 Panorama Handbook
Triggering JavaScript with a Button

Buttons are normally used to submit the form, or to reset the form data (see “Push Buttons” on page 240).
They can also be used to trigger JavaScript. To set this up, use the Button Scripts dialog (in the Web submenu
of the Setup menu).

To use this dialog enter one or more button javascripts, one per line. Each line starts with the button title, then
an equals sign (=), followed by a the script (which must not include the " character).

For example, suppose you have created a form with several buttons, like this:

Once the buttons are set up, open the Button Scripts dialog and type in the JavaScript for each button.

Chapter 6:Web Forms Page 271
Now when the form is converted to a web page pressing these buttons triggers the corresponding JavaScript,
in this case displaying a message.

To learn more about how to add JavaScript to a form see “Adding JavaScript to a Page” on page 275.

Hidden Data

When the Submit button is pressed, the web browser collects all of the data that has been entered on the form
and submits it to the web server (hence the name of the button). The web server then processes this data to
perform the requested operation — searching, entering data, etc. In addition to normal visible data values
(text editing cells, checkboxes, radio buttons, etc.) web browsers also support hidden values. These values are
generated when the web form is displayed, then stored invisibly within the web form and submitted with the

Page 272 Panorama Handbook
other data values when the Submit button is pressed. Essentially these hidden values allow the server to pass
values to itself, allowing it to remember a value or calculation from a previous interaction with the server. For
example a hidden value could contain the time the form was displayed, allowing the server to calculate how
long it took you to fill in the form.

To set up one or more invisible values choose the Hidden Fields command in the Web submenu of the Setup
menu (see “Converting a Panorama Form into a Web Form” on page 231).:

Using this dialog you can enter one or more hidden field assignments, one per line. Each line starts with the
name of the hidden field, then an equals sign (=), followed by a formula that specifies the value for that hid-
den field. The formula must calculate a text result (not numeric or date). In the example above three hidden
values are created — Currency, SubmitDate and Discount.

To learn how to process hidden values see “Accessing Form Item Values in a Formula” on page 435.

Chapter 6:Web Forms Page 273
Customizing the form HTML (Advanced)

If you are into HTML, you can customize the web pages Panorama generates. Otherwise you can simply
leave these options alone and let Panorama do the heavy lifting for you!

Customize Page Dialog

Open this dialog from the Web submenu of the Setup menu (see “Converting a Panorama Form into a Web
Form” on page 231).

This dialog allows you to customize seven aspects of the generated HTML page.

Web Page Title. Enter the title of the web page here. The title will appear at the top of the browser window.

If you leave the title blank the Panorama form name will be used.

Form Tag Parameters. The action= and method= parameters are inserted into the form tag automatically.
Enter any additional parameters that you want included in the form tag here. Typical parameters that you
might want to add to the form tag include name=, onsubmit=, and onreset=.

Form Prefix. This text will be placed at the top of the form, right after the <form> tag and before any objects
generated from the Panorama form.

Form Suffix. This text will be placed at the end of the form, right before the </form> tag and after any
objects generated from the Panorama form.

Page 274 Panorama Handbook
Style Tag Parameters. Enter any additional parameters that you want included in the style tag here (for
example media= parameters).

Style Prefix. This text will be placed at the top of the style section of the page, right after the <style> tag
and before any styles generated from the Panorama form. This is where you should put @import elements to
import external style sheets, if necessary.

Style Suffix. This text will be placed at the bottom of the style section of the page, right before the </style>
tag and before any styles generated from the Panorama form.

Page Template Dialog

This dialog modifies the template Panorama uses for generating the HTML page. Using this dialog you can
add additional items to the <head> section of the page (for example JavaScript), modify the <body> tag to
change the background color, etc. The illustration below shows this dialog with the default HTML template
(which was inserted into the dialog by pressing the Default button).

The Default button inserts the default page template into the dialog. This is usually the first step, from there
you can modify the template for your specific needs.

The File button allows you to select an external text file to use as the template. This allows you to use a page
built by an external program like Dreamweaver or Freeway.

The Clear button erases the text in the dialog. If the text is empty, the default template will be used.

Chapter 6:Web Forms Page 275
Changing the Page Background Color. In this example the <body> tag has been modified to change the
background color of the page to pale blue.

Here’s what a page might look like if rendered with this template:

Adding JavaScript to a Page. In this example a JavaScript function has been added to the header of the
HTML template.

Page 276 Panorama Handbook
This function is triggered by the onload= parameter of the <body> tag so the message will appear automat-
ically when the page finishes loading from the server.

Building a form in an external program. There are many web development programs that can create web
forms (Dreamweaver, GoLive, etc.). When working with Panorama databases, it’s usually much simpler to
generate the web form from a Panorama form, because then all of the details are taken care of for you. How-
ever, if you want to build a web form using an external editor you can. If the page template doesn’t contain
the tags <style></style> and <form></form> then the page template becomes the actual finished form
(any Panorama objects on the Panorama form are ignored). If you do this, you can embed Panorama formulas
into the form by including the formula between ~{ and }~ tags (see “Rendering Using an External Text File
as a Template” on page 483). You also need to make sure that any <input>, <textarea> and other form
item tags use the special format required by Panorama’s form processing actions. See “Rendering Using an
External Text File containing a Form as a Template” on page 484 for more information about these special for-
mats.

Chapter 7: Web Tables

The Panorama Enterprise Edition Server can publish any kind of HTML web page, but there are two basic
building blocks that are the most common elements of any dynamic site — forms and tables. This chapter
describes tables (see the previous chapter to learn how to create Panorama web forms).

Web Tables

Web table templates are created and modified with the Text Export wizard. This may seem like an odd choice
until you remember that web pages are simply text pages with HTML tags in them. Before the Panorama
Enterprise Edition Server was created, the Text Export wizard already had the capability to create web pages
from a database, so we simply added the options necessary to integrate this feature with the server.

Text Export Wizard Refresher

Haven’t used the Text Export wizard lately? Don’t worry, we’ll cover the portions of this wizard you need to
know for setting up server web tables right now. For complete documentation of this wizard see Chapter 1 of
the Panorama Handbook. You’ll find the Text Export wizard in the Import-Export submenu of the Wizards
menu.

Page 278 Panorama Handbook
The wizard starts out looking like this.

Creating a Template

If you are setting up a table for use with the server the first thing you’ll need to do is create a new template (or
select a template you’ve created previously). To create a new template use the Save Template As… com-
mands in the Template menu.

pop-up menu of fields
titles for exported fields

formulas for exported fields

width and alignment of each column

forward/back

export preview

format

Chapter 7:Web Tables Page 279
The wizard will prompt you to type in a name for the new template (the default is the name of the text file
being exported).

Using an Existing Template

Once a template has been saved you can open it again by selecting it from the list at the top of the Template
menu.

The wizard loads the entire export configuration, ready to go. You can use the configuration as is or modify it
before you actually export the data.

If you want to delete or rename a template choose the Rename/Delete Templates… command from the Tem-
plate menu. To rename a template, first click on it and then press the Rename button. A dialog appears allow-
ing you to type in a new name. To delete a template, press the Delete button.

When you are done press the OK button.

Page 280 Panorama Handbook
Configuring the Table Columns (Title, Formula, Width and Alignment)

The main body of the wizard is used to configure the columns that appear in the table. To set up a field to be
exported, simply choose that field using the pop-up menu

When you make your choice the wizard will fill in one line of the configuration.

Repeat the process to select all of the fields you want to export. If a numeric field is selected, the wizard will
use the pattern(function to convert the number into text, as shown below. If a date field is selected, the
datepattern(function will be used to perform the conversion.

click triangle to select field
from pop-up menu

Chapter 7:Web Tables Page 281
To edit a column title simply double click on it.

Type in the new title, then press the Enter key.

The formula for the column can also be edited by double clicking. For example you can use a formula to com-
bine two database fields into one column in the web table, like this.

When you press the Enter key, the Sample Data will update to show what the data in this column will look
like.

double click, then type in new name, then press ENTER

double click, type in new formula, then press ENTER

Page 282 Panorama Handbook
You can make the formula as complicated as you like. To make the editing area larger just drag on the bottom
right corner like you would for a data sheet data cell.

If you leave the width blank, the web browser will automatically assign the width of each column (based on
the width of the widest item in the column). You can also fill in a specific value for the column width, either in
pixels (for example 180) or as a percentage (for example 35%). If you specify a width for one column you
should specify a width for all of them.

The final option is the alignment of the text with each column, which may be left, center or aligned on the
right.

Chapter 7:Web Tables Page 283
Click the HTML radio button to specify that this template should be exported in HTML format. Then press
the web preview button to see what your table is going to look like in the web browser.

Here’s what this table looks like so far.

Not very exciting, but functional. We’ll look at how to dress up the table in the next section.

Customizing the Table Appearance

The HTML Table Appearance dialog gives you control over many aspects of the table format.

web preview button

web output format

Page 284 Panorama Handbook
This dialog allows you to control the title, margins, font and color of the table.

Web Page Title

The Web Page Title is the title that appears in the title bar of the browser window when this table is dis-
played. It defaults to the database name. For example, suppose you set the title to Phone List.

Here’s the table with title displayed in a browser.

Chapter 7:Web Tables Page 285
Table Header Form

The Header Form option allows you to “stick” a form on top of the table. For example, suppose you’ve cre-
ated a Panorama form that looks like this:

To use this as a table header, first render the form as an HTML page, as described in the last chapter (see
“Converting a Panorama Form into a Web Page Form” on page 232). Then you can select this form from the
pop-up list of potential header forms.

Page 286 Panorama Handbook
When you table is previewed in a web browser the Search Results form appears at the top of the page.

As you can see the server isn’t always 100% successful at positioning the table relative to the form. In the next
section you’ll learn how to adjust the table position.

Table Margins

The Left Margin and Top Margin allow the table to be precisely positioned relative to the upper left hand cor-
ner of the page.

The margins are specified in pixels (1 pixel = 1/72th of an inch). The margins shown above move the table
down and to the right.

You may need to “twiddle” with the numbers a bit to get the position you want. Just press the Preview in
Browser button to see what the current margins look like.

Chapter 7:Web Tables Page 287
Table Border

The Table Border is a numeric value that specifies the thickness (in pixels) of the border around each cell in
the table. If the value is set to 0 then there is no border at all. Here are some examples of different border set-
tings.

When combined with the cell spacing, cell padding, and cell color options there are literally dozens of
options for customizing the table appearance.

Border Example

0

1

2

Page 288 Panorama Handbook
Cell Spacing

This option controls the space between each cell in the table (in pixels).

It’s easier to see the cell spacing if the table cells have a colored background. In this example there are 4 pixels
between each cell.

Cell Padding

This option controls the space between the contents of each cell (text or image) and the edge of each cell (in
pixels).

In this example there are 6 pixels of padding around each cell.

4 pixels

4 pixels

6 pixels

6pixels
6pixels

6 pixels

Chapter 7:Web Tables Page 289
Table Font

This option specifies the font to use to display the table. (If left blank, the browser’s default font will be used.)
You can either type in the font name or choose from a pop-up menu listing the most common web fonts.

On your own computer you can use any font you want because you have complete control over what fonts
are installed and available for use. A web page, however, is the opposite situation since you have zero control
over what fonts may be available when the page is viewed. Because of this, it is usually best to pick from a
restricted subset of fonts that are almost universally available. The fonts that are most commonly available
are: Arial, Comic Sans MS, Courier, Georgia, Helvetica, Times and Verdana. Here’s what the phone number table
looks like using Comic Sans.

Page 290 Panorama Handbook
Text Size

This option specifies the size of the text to be used for the table. But take note — the size is not specified in
pixels. Instead it is specified using a special HTML text size specification. Absolute values (1-7) specify a fixed
font size from extremely small (1) to huge (7). Negative values specify sizes smaller than the text size in the
rest of the page, for example -2 is two sizes smaller than normal font. Positive values specify sizes larger than
the text size in the rest of the page, for example +2 is two sizes larger than normal font. You can type in the
size or select from a pop-up menu of common sizes.

Here’s the same table as the previous example but with the text displayed in a smaller (-2) size.

Chapter 7:Web Tables Page 291
Text and Background Colors

By default Panorama web tables use black text on a transparent background. The bottom half of the dialog
allows you to specify any custom color combination you want. There are 8 color swatches on the left hand
side, and a preview area that simulates the selected color combinations on the right (only the color selections
are previewed, this area does not show borders, cell spacing, padding, font or size).

Color Selection Techniques. There are three ways to change a color swatch in this dialog. The simplest
method is to simply click on a swatch. This opens the system’s standard color picker dialog. When you select
the color, the swatch and preview will update.

preview
area

color
swatches

Page 292 Panorama Handbook
The second method is using the palette of 216 “web safe” colors. A few years ago, when most computers sup-
ported only 256 different colors, this list of 216 “web safe” colors was suggested as a standard. (The reason
there are only 216 safe colors, not 256, is because the Microsoft and Mac operating system used 40 different
"reserved" fixed system colors (about 20 each).) Since most computers can now display millions of colors it’s
no longer all that important to use colors from this palette, but the palette is still available for your use. To use
one of these colors, simply drag it from the palette to one of the eight swatches.

When the color is dropped onto the swatch the swatch changes to the selected color.

Chapter 7:Web Tables Page 293
The third method for setting the color is to type in the color using the HTML color notation. HTML colors are
defined using a hexadecimal notation for the combination of Red, Green, and Blue color values (RGB). The
lowest value that can be given to one of the light sources is 0 (hex #00). The highest value is 255 (hex #FF). For
example #0000FF represents pure blue, #00FF00 represents pure green, and #FF0000 represents pure red.
Using this notation, you can specify millions of different colors. A few of these are shown in the table below.

Page 294 Panorama Handbook
The illustration shows how the table data can be displayed in dark green by typing #009900 into the Table
Data color.

The color will appear in the swatch and preview when you click on another area of the dialog.

You’ve probably noticed that some swatches and areas of the preview are shown with a light gray checker-
board pattern. This indicates that these colors have not been set and will be transparent.

Main Text Color. This is the default text color for the entire page, including any text outside the table. Usu-
ally there isn’t any text outside the table, but you can add extra text (headers, footers, etc.) using the HTML
Templates dialog (see “Customizing the table HTML (advanced)” on page 315). Here’s a simple example
with an extra header at the top of the page.

Technical note: What this color actually does is change the text parameter in the <body> tag of the page.

Chapter 7:Web Tables Page 295
Page Background Color. This is the default background color for the entire page (not just the table). Here is a
typical example.

Technical note: What this color actually does is change the bgcolor parameter in the <body> tag of the
page.

Title Color. This is the color for the column titles.

Page 296 Panorama Handbook
Title Background Color. This is the background color for the column titles. If you pick a dark background
color then it’s best to pick a light title color, or vice versa.

Table Data Color. This is the color for the text in the table.

Chapter 7:Web Tables Page 297
Row Background Color. This is the background color for the body of the table. If you pick a dark back-
ground color then it’s best to pick a light title color, or vice versa.

Multiple Background Colors. You can actually specify up to three row background colors. If you specify
more than one background color, the server will automatically alternate them on successive rows.

Page 298 Panorama Handbook
The default pattern is for the colors to alternate every other row — 12121212. The row pattern allows you to
change the way the colors alternate. You can either type in a pattern, for example 11221122, or you can select
from common patterns from the pop-up menu.

With this pattern, the table will have a grey background for three rows (color 1), then a blue background
(color 2), then three grey rows, one blue, etc.

Chapter 7:Web Tables Page 299
Don’t forget that you can adjust the font, borders and cell spacing with the other options described earlier in
this section.

When you are finished customizing the appearance, press the Done button to close the dialog. The changes
are automatically saved to the template.

Linking a Table with a Query Form

Once a web table is set up, it can be displayed by a custom web procedure using the htmldatatable state-
ment (see “Generating an HTML Table or List from Multiple Records” on page 413). However, the most com-
mon method for displaying a table is in response to a search form (a form that uses the standard query
action). Setting up a search form is described in detail in “Standard Form Action — QUERY” on page 249, but
we’ll review the basics here.

To start you’ll need a Panorama form. This form should have one or more database fields, or one field set up
to edit a variable named SearchAllFields.

Page 300 Panorama Handbook
In the Form Action & Follow Up dialog (in the Web submenu of the Setup menu) use the pop-up menu to
specify the web sheet from the query submenu.

The submit form action should look something like this:

Press the Ok button and then upload the form to the server (see “Updating a Web Form/Adding a new Web
Form” on page 208).

Uploading a Table to the Server

Once a web table has been set up (or modified) it must be uploaded to the server. Usually the easiest way to
do that is with the Upload Templates to Server command in the Text Export Wizard’s Templates menu.
(Note: This command uploads all of the templates to the server, not just the current one.)

You can also upload web table templates using the Maintenance menu of the Database Sharing Options
wizard (see “Updating a Table/Adding a new Web Table Template” on page 210).

Chapter 7:Web Tables Page 301
Testing the Query and Table

To test your new web table you could simply open your web browser and type in the url for the query form
you just created. An easier method, however, is to select the Browse Database Web Links from the Database
Sharing Options wizard’s Maintenance menu.

This opens your web browser and displays a page listing all of the web forms and procedures in the database
(if this page doesn’t appear, see “Debugging Web Link Page Problems” on page 207).

Page 302 Panorama Handbook
As circled above, click on the name of the new query form you just created (in the Forms column).

Fill in one or more fields to search for, then press the Search button. The table will appear.

The table appears using whatever customization options (font, colors, spacing, etc.) that were set the last time
you uploaded the table template. (The rest of this chapter will discuss more customization options for your
web tables.)

Chapter 7:Web Tables Page 303
Splitting a Long Table into Multiple Pages

By default a web table displays all of the selected records in the database. If there are hundreds or thousands
of records selected this can make the table very unwieldy (and slow to load). Fortunately the Panorama
Enterprise Edition Server can automatically split a large table into manageable pages, with links so you can
navigate to different sections of the table. Here’s an example of a long table that has been split into multiple
pages. A search for cities containing boulder in the name has turned up 38 matching records. This table has
been configured to display a maximum of 15 records so the table is split into three separate pages.

The Panorama server has automatically generated a “navigation bar” at the top and bottom of the table that
allows you skip from page to page.

In the following sections you’ll learn how to set up and customize the navigation bar.

Page 304 Panorama Handbook
The Multiple Page Table Dialog

To customize how your web table will be split into multiple pages open the Text Export Wizard and select the
HTML Multiple Page (Split) Tables command from the HTML menu.

This very wide dialog has all of the options for splitting pages and automatic generation of the intra-page
navigation bar.

After you finish setting up the options in this dialog, press Done and then upload the template to the server.

Records per Page. Set this to the maximum number of records that will be displayed in a single page. You
can either type in a value or select from the pop-up menu.

If this option is left blank then the Panorama Server will not automatically split the table into multiple pages
and the rest of the options in this dialog will be ignored (because no page navigation bar will be generated).
Note: If you specify a maximum number of records, we highly recommend that you also set up a specific
sort order for this table (see “Sort by” on page 312). This will make sure that the same order is used for each
page when navigating from page to page to page.

Chapter 7:Web Tables Page 305
Page Navigation Font. This option specifies the font to be used for the page navigation bar. (If left blank, the
browsers default font will be used.) You can either type in the font name or choose from a pop-up menu list-
ing the most common web fonts.

On your own computer you can use any font you want because you have complete control over what fonts
are installed and available for use. A web page, however, is the opposite situation since you have zero control
over what fonts may be available when the page is viewed. Because of this, it is usually best to pick from a
restricted subset of fonts that are almost universally available. The fonts that are most commonly available
are: Arial, Comic Sans MS, Courier, Georgia, Helvetica, Times and Verdana.

Text Size. This option specifies the size of the text to be used for the page navigation bar. But take note — the
size is not specified in pixels. Instead it is specified using a special HTML text size specification. Absolute val-
ues (1-7) specify a fixed font size from extremely small (1) to huge (7). Negative values specify sizes smaller
than the text size in the rest of the page, for example -2 is two sizes smaller than normal font. Positive values
specify sizes larger than the text size in the rest of the page, for example +2 is two sizes larger than normal
font. You can type in the size or select from a pop-up menu of common sizes.

Page 306 Panorama Handbook
Previous and Next Page Caption. The first and last links in the page navigation bar are usually PREVIOUS
and NEXT, displayed in bold. Use these options to change the text of these links. For example, if your web
site is in Italian you might change these captions to PRECEDENTE and SUCCESSIVO, as shown below.

You can put any HTML tags you want into the caption. If you want to display an image for these links (for
example forward/back arrows simply use an tag for the caption.

Page Navigation Header and Footer. The page navigation bar is usually centered below the bottom of the
table. However you can move the navigation bar to the top of the table, or include the navigation bar at both
the top and bottom of the table. You can also customize the HTML tags that are used to separate the page
navigation bar from the table and the rest of the page. You can either type in the header and/or footer or
select from a pop-up menu of common formats.

The header and/or footer can include any HTML tags you want. Whatever you type in must, however,
include the special tag <pagenavlinks> (this must be all in lower case). When the page is displayed the
<pagenavlinks> tag will be replaced with the actual tags and text for page navigation bar. (If the
<pagenavlinks> tag is missing then the navigation bar will be missing also!)

If both the header and footer are left blank then a default footer will be used. This default centers the page
navigation bar below the table. If either the header or footer is filled in then the default won’t be used. So if
you want the navigation bar to appear above the table but not below, simply fill in the Page Navigation
Header but leave the Page Navigation Footer blank.

Chapter 7:Web Tables Page 307
Linking Individual Table Rows to a Detail Form

In many applications, a table is a jumping off point for additional pages. For example a phone list might link
to individual address pages, while a product catalog table would probably have links to detail pages for each
product listed. This section explains how to set up links from a table to individual forms.

Page 308 Panorama Handbook
The Individual Page Linking & Sorting dialog

To set up linking from table rows to separate forms, open the Text Export Wizard and select the Individual
Page Linking/Sorting command from the HTML menu.

The dialog contains just over a half dozen pop-up menus for configuring the links.

Link Action. This option specifies what should happen when the link is clicked. Any procedure can be used
as an action, or you can select from the list of web forms that have been set up for this database.

Chapter 7:Web Tables Page 309
If the link action is a form, everything is taken care of for you. If the link action is a procedure, that procedure
must start with this code:

weburlselect cgiExtraParameters

This line will automatically select the record in the database that is linked to (see “What Record Are We Talk-
ing About?” on page 395).

Link Table Column. This option specifies the column within the web table that will contain the links.

Columns are numbered from left to right (starting with 1). The pop-up menu lists the column numbers and
column titles.

In this example, the links are in the first column of the table.

Only one column in a table can contain the links.

Page 310 Panorama Handbook
Database Link Fields. In order to complete each link, the Panorama Server must be able to uniquely identify
each record in the database. If the database is configured for sharing this is easy because each record contains
a unique ID number. If the database is shared you should simply leave all three of the link pop-up menus
blank, and you can skip the rest of this section.

If the database is not shared you’ll need to use the pop-up menus to specify from one to three fields that
when combined will uniquely identify each record (the order in which the fields are chosen does not matter).

In this example three fields have been specified – First, Last and Zip. For many databases these three fields
would be sufficient to uniquely identify each record, but what if two people in a zip code have the same
name? Or what if some records don’t have any name entered at all? Analyze your data carefully to make sure
that the fields that you choose really do uniquely identify a single record. If there is no combination of fields
that will uniquely identify each record then you will need to add a new field and make sure that it gets filled
with a unique value when each record is created. Or, better, yet, just use a shared database and let Panorama
take care of the unique ID for you.

Chapter 7:Web Tables Page 311
Broken Links. What if the link fields you set up don’t always specify a unique record? For example, a link
might be ambiguous and match more than one record. Or if the database has been modified since the table
was displayed a link could be completely broken, with no records matching the link. In that case the Pan-
orama Server will normally display an automatic error message on the browser.

If you don’t like this rather plain message, you can set up a form to be displayed when this situation occurs.
Create a web form in the database named BrokenWebRecordLink.

Then render and upload this form to the server. Now when a broken link occurs, your form will be displayed
instead of the generic error message.

Page 312 Panorama Handbook
The form can use the cgiSelectedRecordCount variable to determine the cause of the broken link. If this vari-
able is zero then the record was not found. If it is two or greater then more than one record matches the link.
In our example form, the text in red is displayed based on the value of the cgiSelectedRecordCount variable
using the ?(function to display one of two messages.

A second method for handling broken links is to set up a procedure named .BrokenWebRecordLink. If a
database contains a procedure with this name, it will be automatically called if a broken link occurs (this
overrides any BrokenWebRecordLink form that may be in the database). The .BrokenWebRecordLink proce-
dure must create the text for a web page in the cgiHTML global variable (just like any other custom web pro-
cedure, see “Generating HTML” on page 369).

Sort by. If you want the rows in your table to be in a particular order then specify the fields to sort by here.
You can specify up to three fields, and each may be sorted in either ascending (up) or descending (down)
order.

If the table is designed to automatically split into separate pages if there are too many records (see “Splitting
a Long Table into Multiple Pages” on page 303) then the table must be sorted for proper page navigation.

primary sort field

secondary sort field

tertiary sort field

ascending (up) / descending (down) — (click to toggle)

Chapter 7:Web Tables Page 313
Editing/Updating a Record

The previous section explained how to link the rows in a table to individual forms. If the form linked to
allows editing (if it includes data cells, super text editing objects, checkboxes, radio buttons, etc.) then this
form can be used to edit the actual data in the Panorama database. The sequence works like this: 1) Search the
database and display the form, 2) click on a link, 3) edit the data, 4) press the Submit button to update the
database, 5) the server displays a “thank you” page confirming that the database has been updated.

1

2

3

4

5

Page 314 Panorama Handbook
Preparing a Database Update Form

A database update form is created much like any other web form. In fact, the only difference is in how the
Form Action & Follow Up dialog is set up. Simply use the pop-up menu to set the Submit Form Action to
updaterecord.

You may also want to set up the Followup (Normal) and Missing Fields options (see “Standard Form Action
— NEWRECORD” on page 243 and “Checking for Required Fields/Preventing Missing Fields” on page 245).
Then press the Ok button, render and upload the form, and you are ready to edit your database online! That’s
all there is to it.

Broken Record Identification. When the Panorama Server displays a web form from a table link, it invisibly
embeds identifying information for the record into the form. This identifying information is based on the
tables link fields (see “Database Link Fields” on page 310). But what if the link fields you set up don’t always
specify a unique record? For example, a link might be ambiguous and match more than one record. Or if the
database has been modified since the table was displayed, a link could be completely broken, with no records
matching the link. In that case when you press the Submit button, the Panorama Server will normally dis-
play an automatic error message on the browser. This situation is very rare because it can only happen if the
record in question has been modified between the time the form was displayed and the Submit button is
pressed, but it can happen (if the database is a shared database, it can only happen if the record has been
deleted by another user).

If you don’t want the user to see Panorama’s generic error message in this situation, you can use the Form
Action & Follow Up dialog to specify a web form to display if these errors occur. The Record Not Found
form will be displayed if the record being updated no longer exists. The Multiple Records Found form will be
displayed if there is now more than one record that matches the identifying information for the database (this
can never happen if the database is shared).

Chapter 7:Web Tables Page 315
Customizing the table HTML (advanced)

The Panorama Server normally generates the HTML for a web table page automatically, possibly with the
help of a web form (see “Table Header Form” on page 285). You can, however, use the HTML Templates dia-
log (in the Text Export Wizard’s HTML menu) to customize the HTML Panorama generates.

The dialog controls how HTML is generated for each cell, row, and for the overall page.

Option Examples Description

Page HTML

<center><hr>Phone List<hr>
<table><data></table></center>

This is the template for the overall HTML of the body of the
page (the server will create the header and footer automatically.
At a minimum it should include the tags <table><data></
table>. The wizard will automatically replace the <data> tag
with the body of table generated from the database.

Row HTML <tr valign=center><data></tr>

This is the template for each line in the table. At a minimum it
should include the tags <tr><data></tr>. The wizard will auto-
matically replace the <data> tag with the body of the line
(which has been built up from individual cells, see the next
entry).

Cell HTML <td><i><data></i></td>

This is the template for each cell in the table. At a minimum it
should include the tags <td><data></td>. The wizard will
automatically replace the <data> tag with the data (an individ-
ual cell) from the database. As it does so the wizard will auto-
matically prepare the data for HTML display, for example,
converting non 7-bit characters to the appropriate HTML entity
wherever possible.

Title HTML <td><data></td>

This is the template for each title in the table. At a minimum it
should include the tags <th><data></th> or <td><data></td>.
The wizard will automatically replace the <data> tag with the
column title as specified in the wizard.

Page 316 Panorama Handbook

Chapter 8: Web Programming 101

Basic web database applications can be created using the form and table templates described in the previous
chapters. More advanced applications are created by writing custom web action procedures (programming),
sometimes called CGI procedures (CGI stands for Common Gateway Interface, and refers to a standard pro-
tocol for interfacing external application software, like Panorama, with web servers). A CGI procedure takes
a request passed to it from the web server and responds with an HTML page which is passed back to the cli-
ent’s browser. Because a CGI procedure can be programmed using all of the power and flexibility of Pan-
orama’s programming language a CGI procedure can do just about anything you could want.

The next four chapters explain how to create, test and deploy your own web procedures. These chapters
assume that you are already familiar with writing custom procedures in single user Panorama databases. If
you need a refresher, see Chapters 24 (Procedures) and 25 (Programming Techniques) of the Panorama
Handbook (you may also want to review Chapter 23, Formulas).

Creating a Simple Guestbook Web Database

To illustrate basic web programming techniques we’ll start by creating, uploading and testing a simple data-
base that includes custom programming. The first step is to create a standard Panorama database, which
we’ll do with the New Database wizard (see Chapter 1 of the Panorama Handbook for further details).

As you can see, the database contains five fields.

All of these are text fields except for the Date field. I’ve pre-filled in the first record just to get things started.

Page 318 Panorama Handbook
Creating Web Procedures

Before uploading the database to the server I’ll add two web procedures — hello and register (web proce-
dures can also be added after uploading the database, as you’ll learn later in this chapter).

These procedures are created with the New Procedure command in the View menu, just like any other proce-
dures. If you are following along you can simply type in the procedure contents shown above — we’ll
explain what the code in these procedures does later.

Testing a Procedure in Advance

Before going any further let’s test the hello procedure. This can be done right on your computer (in fact, you
don’t even need a server to run this test). Start by making sure the hello procedure is open and is the topmost
window, then choose Simulate Web Procedure from the Debug menu.

Chapter 8:Web Programming 101 Page 319
Your web browser will open and a new window will appear with the results of the procedure.

Since this procedure is only one line long, it’s not surprising that it worked perfectly the first time. Of course
more complex procedures often don’t work perfectly the first time, so later in this chapter you’ll learn how
the simulator can help you find and fix bugs.

Create a Web Form

Next I want to test the register procedure, but to do that, I need to create a new web form.

See “Converting a Panorama Form into a Web Form” on page 231 if you need to review the techniques for
making a web form.

Text Editor SuperObjects
for the Name, City, State
and Email fields.

Page 320 Panorama Handbook
Assigning a Procedure to the Form

Once the form is complete you need to assign the register procedure to it. This tells Panorama Server to run
the register procedure when the submit button is pressed, allowing the procedure to process whatever the
user typed into the form. To make this assignment first make sure the form is open and in graphics mode,
then choose Form Action & Follow Up from the Web submenu of the Setup menu.

The Form Action & Follow Up dialog will appear. The first item in this dialog is Submit Form Action, with a
pop-up menu on the right. Choose the procedure you want to assign to the form (in this case register) from
this pop-up menu.

The procedure name (in this case register) will appear in the Submit Form Action area, preceded by a ~ char-
acter.

Chapter 8:Web Programming 101 Page 321
Press Ok to close the dialog, then re-render the form by choosing Render Web Form from the Web submenu
of the Setup menu. (If this database had already been uploaded to the server, you would also need to upload
the web form to the server after rendering it.)

The register procedure is now assigned to this form.

Testing the Form and Procedure using Simulation

Just like the simple hello procedure, the Welcome form/register procedure combination can be tested by sim-
ulation before you upload the database. To test, make sure that procedure is the top window then choose
Simulate Web Procedure from the Debug menu. (Another option is to open the form in Graphics mode and
choose Simulate Form from the Web submenu of the Setup menu.)

Page 322 Panorama Handbook
Running this simulation makes the form appear in your web browser. Don’t fill out this form, though. Since
you’re not actually running a web server, the form in your web browser won’t work.

To continue with the test, click back to Panorama (a convenient way to do this is to click on Panorama’s dock
icon). You’ll see that a new CGI Simulator:Post window has appeared. This window simulates the web form.
It doesn’t show any of the graphics or layout of the form, but it does allow you to enter simulated data into
any fields on the web form.

Once the simulated data is entered press the Submit Post button. This triggers the procedure assigned to this
form, just like pressing the Submit button on the web form will when this database is running on the server.
The result will appear in a new browser window.

simulated
input data

Chapter 8:Web Programming 101 Page 323
If you go back to Panorama you’ll see that the data input into the CGI Simulator:Post window has been
added to the Guestbook database, along with the date the data was entered.

Now that I’ve verified that the procedures in the Guestbook works properly the next step is to upload the
database to a server.

Uploading the Guestbook Database

The details of uploading a database for uploading a database for web publishing were covered in Chapter 5
(see “Uploading the Database to the Server” on page 194). To share this Guestbook database I’ll open the
Database Sharing Options wizard, choose the server (TiBook) and check all three sharing mode options
(Local Database Sharing, Internet Database Sharing and Web Publishing).

Once these options are set I complete the upload by choosing Apply Changes from the Maintenance menu
(or pressing Command-1). (Or I can scroll to the bottom of the wizard and press the Apply Changes button.

After a confirmation dialog the database will be uploaded to the server.

Page 324 Panorama Handbook
Testing Web Procedures on the Server

Once the database is uploaded to the server you’ll want to test the procedures. There are several ways to do
this but the easiest is to open a client copy of the database on your local machine (if it’s not already open),
open the procedure you want to try, and then choose Run Web Procedure from the Debug menu.

This command will open your web browser and trigger the URL necessary to test the procedure. The results
will appear in a new browser window.

As you can see the URL contains the server ip address (or domain name), the database name, and the proce-
dure name. The exact details of Panorama Server URL’s will be discussed later in the next chapter (see “What
Records are we Talking About? (The WebSelect Statement)” on page 413).

procedure name
database name

server ip address or domain
(in this case the local computer)

Chapter 8:Web Programming 101 Page 325
Modifying a Web Procedure

To modify a web procedure start by modifying the local client copy of the procedure. When your changes are
done choose Upload & Run Web Procedure from the Debug menu.

Panorama will upload the revised procedure to the server, then open your web browser and trigger the URL
necessary to test the procedure. Once again, the results will appear in a new browser window.

Note: If you want to upload a revised procedure to the server without testing it, use the Upload Web Proce-
dure command from the Setup menu.

Testing a Procedure Assigned to a Web Form

To test a procedure assigned to a web form, first open the procedure, then choose Run Web Procedure from
the Debug menu.

Page 326 Panorama Handbook
Instead of running the procedure directly, Panorama will open the web form in a new browser window. (This
is because the procedure has been assigned to the form, so it doesn’t make sense to run the procedure
directly.)

Once the form appears, fill in the blanks (as shown above) and press Submit to complete the test. This will
trigger the web procedure assigned to the form (in this case the register procedure). The results are displayed
in your web browser.

In this case the web procedure has added a new record to the server database. To see this new record, bring
up the client copy of the Panorama database and choose Synchronize from the File menu.

Chapter 8:Web Programming 101 Page 327
The new record will appear at the end of the data sheet view. (The same process can work in reverse, allow-
ing you to create and edit data using Panorama that then shows up on the web. Synchronization is not
required to allow Panorama edited data to appear in the web interface — any changes made using Panorama
will immediately show up in new web pages.)

Now that you’ve got a taste of how Panorama Server web procedures work we’ll turn to a more detailed
explanation of the nuts and bolts of creating and deploying these procedures.

Page 328 Panorama Handbook
Web Procedure Inputs and Outputs

The primary job of a web procedure is to take a request from a web browser and produce a response that is
sent back to the web browser (the web procedure may perform other jobs as well, such as modifying a data-
base). As shown in the diagram below, the request may consist of up to four different components: the URL,
HTTP request information, form data, and cookie data. The response may consist of up to two components, a
web page, and cookie data (the response can also be an error).

The following sections will introduce you to each of these six components in greater detail.

Chapter 8:Web Programming 101 Page 329
Web Procedure URLs

The primary input to any web procedure is the URL. This input component is required — without a URL
your web procedure will never run.

Each database you upload to your Panorama Server may contain one or more procedures. Each of these pro-
cedures is specified by its own unique URL. The URL contains the location of the server (ip address or
domain name), the database name, and the name of the procedure. The URL can also contain additional
information that the procedure can access. Panorama Server URL’s must always be written using the format
shown in this diagram:

The text in black is always the same. The colored sections change depending on what procedure you want to
trigger. Here are some examples of typical URL’s for web procedures:

http://www.mydomain.com/cgi-bin/panorama.cgi?Checkbook~Balance
http://66.245.219.3/cgi-bin/panorama.cgi?GuestBook~RecentVisitors
http://192.168.1.12/cgi-bin/panorama.cgi?Shopping~displaycart

Page 330 Panorama Handbook
Upper and Lower Case Characters in Procedure Names and Extra Parameters

For the most part you don't need to worry about upper vs. lower case in the URL. The domain name, cgi-bin/
panorama.cgi, and the database name may all be any mixture of upper and lower case. However, the proce-
dure name in the URL must exactly match the procedure name in the database. For example, consider the
second URL in the examples from the previous section. Assuming the procedure is named RecentVisitors, all
of these URL’s would work fine to specify this procedure:

http://66.245.219.3/cgi-bin/panorama.cgi?GuestBook~RecentVisitors
http://66.245.219.3/cgi-bin/panorama.cgi?guestbook~RecentVisitors
http://66.245.219.3/CGI-BIN/PANORAMA.CGI?GUESTBOOK~RecentVisitors

These URLs, however, will not work.

http://66.245.219.3/cgi-bin/panorama.cgi?GuestBook~recentvisitors
http://66.245.219.3/CGI-BIN/PANORAMA.CGI?GUESTBOOK~RECENTVISITORS

Be careful that the case of the procedure name in the URL exactly matches the actual case of the procedure
name.

In many cases any extra parameters used after the procedure name may also be case sensitive. This depends
on how the procedure uses the extra parameters (see “URL Extra Parameters” on page 332). It’s usually best
to assume that anything after the database name is case sensitive.

Database and Procedure Names Containing Spaces

What if the database name or procedure name has one or more spaces? It turns out that the web doesn’t like
URL’s with spaces in them. To get around this, use %20 (the hexadecimal representation of a space) anywhere
you would normally put a space. For example, suppose you have a database called Real Estate with a proce-
dure called New Listings. To access this procedure from a web browser you would use a URL like this:

http://www.mydomain.com/cgi-bin/panoarma.cgi?Real%20Estate~New%20Listings

Regular text can automatically be converted into this special format by using the urlencode(function. Use
this function if you need to turn text in a field or variable into a URL — it will automatically convert any
spaces to %20 for you. This is especially useful for constructing URL extra parameters (see “URL Extra
Parameters” on page 332).

Generating a Web Procedure URL Without Typing

You can create a Web Procedure URL by manually typing it using the guidelines above, but that’s the hard
way. The easy way is to let Panorama figure out the link for you. There are a couple of ways to do that.

Run Web Procedure in the Debug menu. If you have a client copy of the web database on your computer
the simplest technique is to open the procedure and then choose Run Web Procedure from the Debug menu.

Chapter 8:Web Programming 101 Page 331
This command will open your web browser and fill in the URL for that procedure (it will also run the proce-
dure).

Now you can copy the URL into the clipboard or save it as a bookmark.

Server Status Page. Another way to get the URL is to use the Server Status Page from your web browser. This
can be done from any computer since it doesn’t require that you have a client copy of the database. See “The
Server Status Page” on page 200 for details on using the status page.

Linking to a Web Procedure from Regular Web Pages

You’ll often need to include a link to a Panorama Server web procedure from other pages in your web site.
Like any other link, this is done with the <a> tag. Here are some examples, which could be embedded in any
web page using the design tool of your choice — DreamWeaver, GoLive, RapidWeaver, BBEdit, etc.:

Balance
Recent
Shopping Cart

If you want to avoid typing the URL you can generate it using the techniques described in the previous sec-
tion.

Linking to a Web Procedure from another Web Procedure

It’s frequently necessary for a page generated by one web procedure to link to other web procedures. Your
web procedure code can manually generate an <a> tag as described in the previous section, but an even bet-
ter idea is to use the special cgilink(and webformlink(functions that will automatically generate the
<a> tag for you. See “Links to Other Web Pages” on page 378 for information on how to use these functions.

Linking to a Web Procedure from a Form

Panorama web procedures can be used to process the data when a form’s submit button is pressed. To do this
the HTML code for the form must specify the Panorama web procedure as the designated action for the form.
If you are using a Panorama web procedure this is taken care of when you use the Form Action & Follow Up
command to assign the procedure to the form (see “Assigning a Procedure to the Form” on page 320).

Page 332 Panorama Handbook
If you want to use a form developed in some other tool (DreamWeaver, BBEdit, etc.) then you’ll need to
install the link in the action parameter of the <form> tag, like this:

<form action="http://192.168.1.7/cgi-bin/Panorama.cgi?Guestbook~register" method=post>

If the form page will be hosted on the same server as the Panorama database you can omit the server location
at the beginning of the URL, as shown here:

<form action="/cgi-bin/Panorama.cgi?Guestbook~register" method=post>

URL Extra Parameters

In addition to the database and procedure name, the URL can also contain additional information at the end.
This extra information must be separated from the procedure name with the ~ character. The extra informa-
tion, also called extra parameters, is completely ignored by the Panorama Enterprise server. Here are some
examples of URLs with extra parameters (for illustration purposes the extra parameters are shown in
orange).

http://66.245.219.3/cgi-bin/panorama.cgi?GuestBook~RecentVisitors~2weeks
http://66.245.219.3/cgi-bin/panorama.cgi?GuestBook~RecentVisitors~45days
http://66.245.219.3/cgi-bin/panorama.cgi?Orders~ShowInvoice~78219
http://66.245.219.3/cgi-bin/panorama.cgi?Orders~ShipInvoices~78219~78232~78237

Your web procedure can access this information (it is in the cgiExtraParameters variable) and use it any
way it you need it to. Here is a very simple web procedure that simply repeats the extra parameter data to the
web page.

Choose the Upload & Run Procedure command in the Debug menu to try out this procedure. Since no addi-
tional parameters were supplied on the end of the URL nothing appears after the word Echo.

Now let’s add some text to echo. First add a ~ symbol, then the text to repeat. Press Enter to run the proce-
dure again.

Chapter 8:Web Programming 101 Page 333
If you want to include spaces or other punctuation you must escape them using standard URL hex notation
(see “Database and Procedure Names Containing Spaces” on page 330).

Testing Procedures with Extra URL Parameters. Earlier in this chapter you learned how to test procedures
with the Debug menu, both with the simulator and on a live server. These same Debug menu commands can
be used to test web procedures that require extra parameters. To do this you’ll need to embed the extra URL
data you want to test with into a comment on the first line of the procedure. This comment must contain a
<WebURLParameter></WebURLParameter> tag, with a formula in between the tags. Here’s a modified
version of the echo procedure with an embedded tag.

When you use the Run Web Procedure, Upload & Run Web Procedure or Simulate Web Procedure com-
mands in the Debug menu Panorama will check for the presence of this special comment and tag. If it finds
such a comment it evaluates the formula in the tag and uses that as the extra URL parameter for the purposes
of the test. (You don’t have to worry about spaces in the parameter, Panorama automatically converts them to
%20 for you.)

For example, suppose you use the Upload & Run Web Procedure command in the Debug menu to test this
echo procedure.

Panorama will automatically add How are you? to the end of the URL. (Notice that the spaces are automati-
cally encoded in hex URL format for you.)

Page 334 Panorama Handbook
If you change the embedded parameter but nothing else you don’t need to re-upload the procedure — just
choose Run Web Procedure from the Debug menu.

Of course you can also type in whatever you want directly into the URL bar of the browser (the procedure
ignores the embedded parameter in this case).

You are not limited to constant values for the extra URL parameter, in fact, you can use any valid Panorama
formula. The example below includes a field from the database (Pay To) in the formula.

Chapter 8:Web Programming 101 Page 335
Choose Run Web Procedure from the Debug menu to see the result. Notice that we haven’t actually changed
the procedure itself, just the embedded formula for testing (so you don’t need to upload to server).

Before leaving this topic let’s look at a more realistic example.

Choose Upload & Run Web Procedure from the Debug menu to see the result of this web procedure.

Page 336 Panorama Handbook
The previous example used the embedded formula in the procedure, but of course you can also type the
parameter directly into the URL bar in your browser.

These examples have used the Run Web Procedure command, but this embedded extra parameter trick
works with the Simulate Web Procedure command as well.

HTTP Request Information

A second component of the request from the web browser is the HTTP Request Information. This informa-
tion includes a variety of items, including the type of web browser the user is using, the users IP address and
port, what language they prefer (English, French, German, etc.), and much more.

The web procedure can access all of this information using the webserverinfo statement. For all of the
details see “Accessing Additional Web Server Information” on page 460.

Chapter 8:Web Programming 101 Page 337
Form Input Data

If a web procedure is assigned to a web form, any input data in the form will be passed as input to the web
procedure.

An HTML web form contains one or more items that the user can fill in. Each item has two components, a
name and a value. Each item’s name is set up by the form designer and usually describes what the item is for
(for example Company, State, Zip, Phone, etc.). When you are designing a form to use with a Panorama data-
base it’s usually a good idea to give each form item the same name as the corresponding field in the database.
Each item’s value is the text or number the user enters into the item, so the value will change each time the
form is used.

When the user presses the Submit button the browser collects all the form items (name/value pairs) and
sends them to the server. On the server, a web procedure can access the form items (name/value pairs) with
the webformitem, webformitemnames, webformselection and webformtodatabase statements.

Accessing Form Item Values in a Formula

The webformitemvalue(function gets the value of any form item. It has one parameter, the name of the
form item.

webformitemvalue(item)

This function can be used in any Panorama formula in your web procedure.

cgiHTML=webformitemvalue("Name")+" lives in "+
webformitemvalue("City")+", "+webformitemvalue("State")

The output of this function is always text.

Page 338 Panorama Handbook
Assigning a Form Item Value into a Field or Variable

The webformitem statement gets the value of any form item, then assigns that value to a variable or a data-
base field.

webformitem item,fieldorvariable

The name parameter is the name of the form item you want. The fieldorvariable parameter is the name of a field
or variable where the value of this item should be stored. For example here is a simple procedure for adding
a new record to a web based guestbook.

addrecord
webformitem "Name",Name
webformitem "City",City
webformitem "State",State
webformitem "Country",Country
webformitem "Email",Email
webformitem "Name",Name

See “Assigning Multiple Items into Multiple Fields and/or Variables” on page 435 for an even better way to
write this procedure.

Note: The webformitem statement will automatically convert data into the proper format for storage into a
text, numeric or date field. If the data submitted in the form is not the proper format (for example if the user
types tree for a number or date field) webformitem will simply leave the field or variable empty.

Getting a List of Form Item Names

The webformitemnames statement returns a list of the names of all of the form items submitted to the
server.

webformitemnames names

The names parameter is the name of a field or variable where the list should be placed. The list is a carriage
return separated array. Here is a code fragment that calculates how many form items were submitted.

local itemCount,itemNames
webformitemnames itemNames
itemCount=arraysize(itemNames,¶)

You probably won’t use the webformitemnames statement much because you usually design the forms
yourself and already know the names of the form items.

What Form Is This?

It’s possible to write a single web procedure that is assigned to more than one web form. In that case the pro-
cedure will need to know what web form is being submitted. If the web form was created in Panorama (see
“Converting a Panorama Form into a Web Form” on page 231) then the procedure can find out what form
was submitted using the webformname() function.

if webformname() = "New"
...

endif
if webformname() = "Renewal"

...
endif

If you did not use Panorama to create your forms you’ll need to come up with some other method to identify
which form is being submitted, perhaps with a hidden field (see below).

Chapter 8:Web Programming 101 Page 339
Hidden Form Items

In addition to normal visible data values (text editing cells, checkboxes, radio buttons, etc.) web browsers
also support hidden values. These values are generated when the web form is displayed, then stored invisi-
bly within the web form and submitted with the other data values when the Submit button is pressed. Essen-
tially these hidden values allow the server to pass values to itself, allowing it to remember a value or
calculation from a previous interaction with the server. For example a hidden value could contain the time
the form was displayed, allowing the server to calculate how long it took you to fill in the form.

If you are building your web form in Panorama you can use the Hidden Fields command in the Web sub-
menu of the Setup menu to create one or more hidden form items (see “Hidden Data” on page 271). If you
are building your web form using some other tool you’ll need to use an <INPUT> tag for each hidden item.
The type of the tag must be set to hidden, and it must include the name and value of the item. Here are a cou-
ple of examples.

<INPUT TYPE=hidden NAME=recipient VALUE="mjd@help.com">
<INPUT TYPE=hidden NAME=subject VALUE="Feedback on your help system">

Processing Hidden Form Items in a Procedure. In a web procedure, hidden form items are handed exactly
like regular visible form items. In fact, there is no way for a web procedure to determine if a form item is vis-
ible or hidden. The procedure can use the webformitemvalue(function and webformitem statement to
get the value of any hidden items. The webformitemnames statement will return the names of all form
items, both visible and invisible.

Cookies

An HTTP cookie, or a Web cookie (also called simply a cookie), is a parcel of text sent by a server to a web
browser and then sent back unchanged by the browser each time it accesses that server. HTTP cookies are
used for authenticating, tracking, and maintaining specific information about users, such as site preferences
and the contents of their electronic shopping carts. Without cookies, each retrieval of a web page or compo-
nent of a web page is an isolated event, mostly unrelated to all other views of the pages of the same site. By
returning a cookie to a web server, the browser provides the server a means of connecting the current page
view with prior page views. (This paragraph was adapted from material found on Wikipedia. You can find a
lot more at http://en.wikipedia.org/wiki/HTTP_cookie).

The diagram above shows a typical usage of a cookie for a shopping cart. As items are added to the cart they
are stored in the cookie on the user’s computer. It’s important to keep in mind that cookie data is stored on
the users’s computer, not on the web server. Whenever a form is submitted to the server the web browser also
submits all of the cookie data that was stored by that user. The web procedure can access or ignore this data
as needed. For more information about accessing cookie data see “Working with Cookies” on page 453.

Page 340 Panorama Handbook
Generating a Web Page

The primary job of any web procedure is to produce an HTML web page that will be displayed on the users
web browser.

A procedure may do other things as well (for example modify the content of a database) but all web proce-
dures are required to produce a page, or else (see Chapter 10 “Generating HTML” on page 369)!

The cgiHTML Global Variable

When a request comes in from the web Panorama sets up a global variable named cgiHTML. This variable is
initially empty (""). Whatever text you put into this variable will be passed back to the client web browser.
The most basic web procedure can simply consist of one line that assigns some text to this variable.

Here’s the result.

Of course most web procedures are more complex than this. In fact, a web procedure can take advantage of
all of the features Panorama makes available for writing complex programs, including subroutines, formulas,
custom statements, etc. (In fact, Panorama Enterprise includes a number of custom statements and functions
to assist in creating complex pages, including statements for automatically generating HTML tables from
database fields and arrays. See Chapter 10 “Generating HTML” on page 369 for more information on these
special capabilities.)

Chapter 8:Web Programming 101 Page 341
HTML (HyperText Markup Language)

Whatever text your procedure puts in the cgiHTML variable will be passed back to the users web browser for
display. Unless you’ve specified otherwise, the web browser will interpret and display the text based on the
HTML markup language (it is possible to tell the browser to display the text as-is with no markup, see “Non
HTML Content Types (text/plain)” on page 461). HTML uses embedded tags to control the appearance of the
text, for example to start bold text and to end bold text.

Depending on the browser on the user’s computer there are dozens of different tags available that can be
included in web pages generated by Panorama web procedures. Knowledge of at least basic HTML is a pre-
requisite for effectively writing web procedures. There is a wealth of learning and reference material about
HTML available both on-line and in books, so this material is not covered here. On the web, a good place to
start is:

http://www.w3schools.com/html/default.asp

Another site we’ve found useful is:

http://www.htmlhelp.com/

You can find much more simply by using Google to search for html. Or, if you’d rather read a book, search
Amazon for html and you’ll find well over 100 titles.

JavaScript and CSS. You can put any kind of text that a browser will understand into the cgiHTML variable.
This means that web procedures aren’t limited generating HTML, but can also include “web 2.0” technolo-
gies like JavaScript and CSS. In general these technologies aren’t covered in this manual, but there is lots of
material available in books and on the web.

Page 342 Panorama Handbook
Web Procedure Errors

There are three possible types of errors that can occur when running a Panorama web procedure. 1) An error
will occur if the database specified by the URL doesn’t exist on the server, 2) An error will occur if the proce-
dure specified by the URL doesn’t exist on the server, or 3) The procedure itself contains a programming error
(for example it tries to access a variable that doesn’t exist). If any of these situations occurs the server will
respond with a web page describing the error. Here is an example:

The information displayed on this page can be used to help track down the problem. The table at the bottom
of the page shows the procedures that were running at the time the error occurred. The bottom two lines of
this table will always be WEBCGI and ENTERPRISECALL, which are part of Panorama Enterprise itself. The
lines above this are your code. In this case the error occurred in the hello procedure in the Guestbook data-
base, so open this procedure to see what is inside.

Chapter 8:Web Programming 101 Page 343
The table in the error page indicates that the problem is at position 8 in this procedure. To find this spot use
the Goto command in the Search menu.

Enter the position you are looking for, in this case 8.

Press OK to see where the problem occurred.

The problem location is often only approximate. In this case it is identifying the beginning of the formula that
contains the error. The actual error is a couple of lines down in this formula. The error message itself provides
and important clue — it says that a field or variable named now does not exist. Looking through the formula
shows where the problem is.

Aha! This isn’t supposed to be a variable, it is supposed to be the now() function. Adding the parentheses
fixes the problem.

Page 344 Panorama Handbook
With this fix the web procedure gives the desired result:

The standard error display page is helpful for tracking down problems, but you may not want to display that
much information on a production web site. You can customize the way Panorama Server responds when an
error occurs to display as much or as little information as you want. To learn more about this see “Custom
Handling of Programming Errors” on page 462.

Cookie Output

Cookies, a mechanism for storing and retrieving data on the client machine, were introduced earlier in this
chapter (see “Cookies” on page 339). If a web procedure needs to save one or more items of data for later use
(for example the contents of a shopping cart) it needs to write that data into a cookie.

The diagram above kinds of makes it look like the cookie data is displayed on the web page, but that is not
correct. Cookies are stored invisibly on the client user’s computer, then sent back to the server when a later
request is made. To learn more about how to use cookies with Panorama Enterprise server see “Working with
Cookies” on page 453.

Chapter 8:Web Programming 101 Page 345
Getting Procedures onto the Server

There are two methods that can be used to get one or more procedures onto the server computer: 1) Prepare
the procedures in advance, then upload them with the Database Sharing Options wizard when the database
itself is uploaded to the server (or re-uploaded via a new sharing generation), or 2) Prepare (or modify) the
procedure(s) after the database has been uploaded, then upload the procedures individually with the Setup
or Debug menu, or as a group with the Database Sharing Options wizard.

Uploading All Procedures when the Database is Uploaded

All of the procedures in a database will automatically be uploaded when the database itself is uploaded to
the server. You can test the procedures in advance with the simulator (see “Testing Web Procedures with the
CGI Simulator Wizard” on page 348) before uploading the database. When everything is ready, use the Data-
base Sharing Options wizard to upload the database (see “Uploading the Database to the Server” on
page 194).

Uploading All Procedures via a New Sharing Generation

Once a database has been uploaded to the server you can re-upload it by asking the Database Sharing
Options wizard to create a new sharing generation (see “Sharing “Generations”” on page 119). This will
update all of the procedures on the server with the revised procedures on your local machine (it will also
update the forms). This can be handy if you have made revisions to a lot of procedures and/or forms and
want to upload them all at once.

Updating a Single Procedure/Adding a new Procedure

If you just need to upload a single web procedure you can do so right from the Setup menu (the Database
Sharing Options wizard is not involved). Here’s how to do it.

• Open the procedure on your local client (or create the new procedure).

• Make any changes that are necessary.

• Choose Upload Web Procedure from the Setup menu.

That’s all there is to it! The changes are effective immediately.

Page 346 Panorama Handbook
Uploading and Testing a Web Procedure

You can upload and test a web procedure all in one step. Just follow the same instructions as in the last sec-
tion, but choose Upload & Run Web Procedure from the Debug menu instead of Upload Web Procedure
from the Setup menu.

The procedure will be uploaded and then immediately run in your web browser.

Chapter 8:Web Programming 101 Page 347
Uploading Multiple Procedures with the Database Sharing Options Wizard

If you make changes to more than one procedure you can either upload each one separately (as described in
the previous section) or you can use the Update menu in the Database Sharing Options wizard to upload a
bunch of procedures at once.

To update all of the procedures that are currently open (visible on the screen) use the Update Open Proce-
dures command. To update all of the procedures in the database, whether they are open or not, use the
Update ALL Procedures command or the Update ALL Procedures & Templates command. (Note: When
uploading is complete, these commands will list all of the procedures that have been updated. Only proce-
dures that actually changed will be listed! If no procedures have changed, you’ll see that zero procedures
have been updated.)

Page 348 Panorama Handbook
Testing Web Procedures with the CGI Simulator Wizard

Since every copy of Mac OS X has a built-in web server you can try out your Panorama web interfaces on
your development computer without disturbing your public web server. Debugging a Panorama procedure
on a working web server isn’t easy, however. Because Panorama must run in the background you can’t use
the normal debugging tools you’ve grown accustomed to — breakpoints, single stepping, even displaying an
alert. This can make procedure debugging a frustrating guessing game.

To help making it easier to debug web procedures we’ve developed a CGI Simulator that simulates the oper-
ation of your web browser and server. The simulator allows you to try out your procedures in Panorama’s
normal environment. All of Panorama’s normal debugging tools are available, so you can get your proce-
dures up and running quickly. (Of course we do recommend that you perform a final test with the actual web
server.)

As far as your web procedures are concerned the CGI Simulator does a 100% perfect job of simulating the
operation of the web server. From your point of view, however, the simulator is not able to accurately simu-
late the user interface. At each step of the simulation you’ll see the web pages in your browser, but the but-
tons and links in these simulated pages are not functional (the browser only knows how to work with a real
server). The simulator provides an alternate user interface that allows you to simulate entering data and
clicking on links, buttons and pop-up menus. To be honest this alternate user interface is a bit clunky, but it’s
often well worth the inconvenience if you’re having a hard time debugging a web procedure.

To open the CGI Simulator simply select it from the Developer Tools submenu of the Wizard menu.

Query Mode (get vs. post)

The CGI Simulator has two distinct modes of operation: Get and Post. These correspond to the two different
types of HTTP web requests.

Get requests consist of just a URL. In Get mode the simulator simply allows you to create and submit a URL.

Chapter 8:Web Programming 101 Page 349
Put requests contain both a URL and form data. In Put mode the simulator allows you to fill in form data and
click on any links in the form.

You can use the Query Mode pop-up menu to switch between Get and Put mode. The simulator will also
sometimes switch modes automatically, for example switching from Get to Put mode if you drop a form on
the simulator or if the result of a Get request is a form.

Page 350 Panorama Handbook
Testing Get Queries

To test a get query you simply set up the URL and then submit. Start by selecting the database. The pop-up
menu will show all of open databases that contain a web form or contain a procedure that uses the cgiHTML
variable.

Next, select the action you want to test. You can choose a web form, a table, or any procedure in the database.

web forms

web tables

procedures

Chapter 8:Web Programming 101 Page 351
If the procedure requires any extra parameters type them into the box at the bottom of the window.

When everything is set up press the Submit Get button. The simulator will set up Panorama’s variables and
environment just like Apache would, then calls the procedure. If the procedure works correctly it will render
an HTML page. The simulator takes this page and displays it in your default web browser.

If the procedure encounters an error it will stop and display an error message. If you can figure out the prob-
lem from the error message then fix it and try again. If needed you can set a breakpoint and submit the query
again (if nothing has changed just press Submit Get again). The procedure will stop when it reaches the
breakpoint and you can single step from that point to isolate the error.

Repeating a Previous Query

The simulator keeps a record of each URL you submit. These previous URL’s are visible in the Queries sub-
menu of the History menu. To re-submit any previous query simply select it from the submenu, make any
changes if necessary and then press the Submit Get button.

Page 352 Panorama Handbook
Testing Get Queries from the Debug Menu

The previous section described how to simulate a web procedure by opening the CGI Simulator wizard and
selecting the database and procedure from pop-up menus. If the procedure is already open there is a much
simpler method — just choose the Simulate Web Procedure command from the Debug menu. Choosing this
item will automatically open the CGI Simulator wizard, fill in the pop-up menus and press the Submit Get
button.

The CGI Simulator wizard allows you to enter any extra parameters needed at the end of the URL. When
you use the Simulate Web Procedure command you bypass this window, so you don’t get a chance to enter
any extra parameters needed. Instead, you can embed the extra parameter portion of the URL directly into a
comment on the first line of the procedure itself. This comment must contain a <WebURLParameter></
WebURLParameter> tag, with a formula in between the tags. The illustration below shows how this is done
using the CGI Simulator wizard vs. using an embedded tag.

Chapter 8:Web Programming 101 Page 353
When you use the Simulate Web Procedure command Panorama will check for the presence of this special
comment and tag. If it finds such a comment it evaluates the formula in the tag and uses that as the extra URL
parameter for the purposes of the test. (You don’t have to worry about spaces in the parameter, Panorama
automatically converts them to %20 for you.)

You can use any valid formula inside the <WebURLParameter></WebURLParameter> tag, including data-
base fields and variables (if you use a variable, make sure it is a global or fileglobal variable that is already
defined before the procedure runs). For example, this illustration shows how a database field can be used to
generate the extra parameter.

In this example the formula is simply the City field. Since the current city is Grand Junction, simulating the
web procedure will list all hotels in Grand Junction.

hotels in Grand Junction

Page 354 Panorama Handbook
Testing Post Queries (Forms)

Many web procedures are designed to process data submitted from forms. The simulator can be used to test
and debug these procedures as well. The first step is to set up the data to be submitted. You can’t use the web
browser for this, since the web browser only knows how to submit data to a real server. So the simulator
includes a simple data entry ability. If you are using a web form based on a Panorama form you can simply
select the form from the submenu in the Action pop-up menu.

When you press the Submit Get button the simulator displays the form in your default web browser.

As mentioned earlier, you can’t simply fill in this form in the web browser. However, when you bring Pan-
orama back to the front you’ll see that the simulator has expanded and shows all of the fields in the form:

Chapter 8:Web Programming 101 Page 355
Fill in the fields as required for your testing. In this case we’ll search for items from the Santa Fe railroad. (As
you can see, the simulator requires that all fields be filled in by typing. There are no pop-up menus, check-
boxes or radio buttons. It’s up to you to know what each field is and what it should contain. If the form con-
tains any “hidden” fields these are also shown, and can be modified.)

Once you’ve entered the necessary data press the Submit Post button. The simulator will trigger the actual
server code used to process data submitted from this form. The database will be searched, selected and/or
modified as specified by the code you have written. When the code is complete the simulator will display the
result in the browser. In this example, a list of items matching Santa Fe are listed.

If the procedure encounters an error it will stop and display an error message. If you can figure out the prob-
lem from the error message then fix it and try again. If needed you can set a breakpoint and submit the query
again (if nothing has changed just press Submit Post again). The procedure will stop when it reaches the
breakpoint and you can single step from that point to isolate the error.

Page 356 Panorama Handbook
Testing Post Queries Directly from a Panorama Form

The previous section described how to simulate a web procedure by opening the CGI Simulator wizard and
selecting the database and form from pop-up menus. If the form is already open there is a much simpler
method — just choose the Simulate Form command from the Web submenu of the Setup menu.

From this point on the simulator works just as described in the previous section.

Testing Post Queries Directly from a Panorama Procedures

If the form you want to test is already open then the Simulate Form command is very handy. But often you’ll
have the procedure assigned to the form open, but not the form itself. No worries, simply choose the Simu-
late Web Procedure command from the Debug menu.

Panorama will check to see if the procedure is attached to a web form in the current database, and if so, it will
simulate the form rather than trying to immediately simulate the procedure (which won’t work because the
procedure needs form input. From this point on the simulator works just as described in “Testing Post Que-
ries Directly from a Panorama Form” on page 356.

Chapter 8:Web Programming 101 Page 357
Testing Post Queries from a Subroutine

For complex applications you may break up web procedures into multiple subroutines. If you’re working on
the subroutine using Simulate Web Procedure won’t work, because you really want to simulate the main
web procedure, which then calls the subroutine. One solution is to leave the main procedure open and
always use Simulate Web Procedure with that window on top. However, by embedding a special comment
in the subroutine you can tell Panorama that it should simulate the main web procedure instead of the sub-
routine when Simulate Web Procedure is used. Simply embed a comment at the top of the subroutine that
contains the tag <WebTestURL></WebTestURL>. The contents of this tag must contain the name of the
main web procedure, the procedure that calls this subroutine.

The illustration below shows how this is done. The main web procedure is called incident. This is a long pro-
cedure, only the last few lines are shown. Towards the end it calls a subroutine named makeiarray, another
long procedure. If you are working on debugging makeiarray you really need to simulate incident.

 The first line contains the comment needed to make this happen:

/* <WebTestURL>TechDB~incident~13962908</WebTestURL> */

The <WebTestURL> tag contains the Panorama portion of the URL you want to simulate: the database, pro-
cedure name, and any extra parameters. With this tag you can simulate even if the incident procedure isn’t
currently open.

database
main web procedure

extra parameters (if any)

Page 358 Panorama Handbook
Because of the <WebTestURL> tag the Simulate Web Procedure command will actually simulate the inci-
dent procedure, which then calls makeiarray. Here’s the final result.

The <WebTestURL> tag also works with the Run Web Procedure and Upload & Run Web Procedure com-
mands.

Testing Forms in Separate HTML Files

In addition to creating web forms within Panorama you can also use forms created in separate files (forms
with BBEdit, Dreamweaver, etc.). To work with Panorama Enterprise these forms must contain an action tag
that invokes a Panorama procedure (see “Linking to a Web Procedure from a Form” on page 331).

To test an external HTML file, simply drag the file from the Finder onto the simulator.

this portion of the page was
generated by the makeiarray
subroutine

Chapter 8:Web Programming 101 Page 359
If the simulator is in Get mode (as shown above) it will automatically switch to Post mode. It will also analyze
the form and display the action URL for the form and the form items.

From this point on the simulator works exactly the same as when using a Panorama based form. Simply fill in
the fields and press the Submit Post button.

If dragging the HTML file onto the form is inconvenient you can also select the file using the Load Form com-
mand in the Simulator menu. You can also select any external form you’ve used previously from the Forms
submenu of the History menu.

Page 360 Panorama Handbook
Simulating Multiple Request Sequences

So far we’ve assumed that all interaction with a database is handled with a single request. The user makes a
request, the server responds, we’re done. However, many real world applications are more complicated.
After the user makes his or her initial request, the server may respond with a form that allows a further
request to be submitted, or with a list of links to further requests. These requests can ping pong back and
forth between user and server until the overall process is complete.

Each time the simulator processes a request it checks the resulting HTML to see if it contains a form or any
links that would allow the user to continue interacting with the server. If so, it updates the Post window to
allow you to continue the session by filling in the new form or selecting a link.

The best way to understand a multiple request session is to see one in action. We’ll start the session with the
Catalog Search form. Open the form with the form submenu of the Action pop-up menu (or, for external
forms, by dragging the form onto the simulator).

Start by filling in the criteria you want to search for. We’ll search for diesel engines.

Chapter 8:Web Programming 101 Page 361
When the Submit Post button is pressed the simulator does it’s thing, producing a list of diesel engines in the
catalog.

Notice that each hotel name is underlined to indicate that this is a link. If this page had been generated by a
real web server instead of the simulator you could click on the link to see and edit the detailed information
for that hotel. However this page is really a static web page (text file) generated by the simulator so the links
don’t work.

It is possible to continue the session, however. To do that, click back to the CGI Simulator, which now looks
like this:

Second page of this session

Links to additional pages

Page 362 Panorama Handbook
Near the top of this window the Action pop-up menu starts with 2. This indicates that this is the second page
of this session. This page doesn’t have a form, so the Form Fields & Data section is blank. The page does con-
tain links, however, which are listed in the bottom section of the window. All of the links that will trigger
another CGI request are listed. (Links to other web pages or web sites are not included).

When you click on a link a pop-up menu shows the exact URL for the link.

To simulate this URL select this URL in the pop-up menu.

When you release the mouse the simulator will run. In this case the result is a page that shows the detail
information for this diesel engine.

This form has a couple of links to additional pages — Add to Shopping Cart and Edit Item. Again, since this
is just a simulation these links don’t work in the browser.

Chapter 8:Web Programming 101 Page 363
But when you switch back to Panorama you’ll see that these links appear in the simulator. You can click on
the Edit Item link to open the form for editing this data.

When you release the mouse Panorama simulates the operation of the link, in this case generating a form for
editing the corresponding record in the database.

Page 364 Panorama Handbook
If this form had been served from a web server you could edit the data in the browser and press Submit to
update the database. However this page is really a static web page (text file) generated by the simulator so
the Submit button doesn’t work.

To continue the session click back to the CGI Simulator window in Panorama.

Now the Action pop-up menu shows that we are on the fourth page of this session. All of the fields are dis-
played an you can edit them. We’ll change the price to $50.00 and submit.

The session can continue until it reaches a dead end (no more forms or links) or you simply get tired of it.

Chapter 8:Web Programming 101 Page 365
Navigating Within a Session

Using the Action pop-up menu you can navigate to any page within the current session.

If you want to review what a page looked like use the View in Browser command in the Simulator menu.

The simulator keeps a copy of each page that is generated during a session, so it doesn’t need to re-simulate
the query to show you the page. You can also use the View Source command to see the pages actual HTML.

Page 366 Panorama Handbook
Re-Simulating a Previous Query

You can go back to any previous page in the session and re-run the simulation, perhaps with different data.
For example, suppose you need to test the HobbyShop update procedure again. Simply use the Action pop-
up menu to go back to page 4, make any changes necessary for the new test, then press Submit Post again.

When you re-simulate a previous page in a session any pages after that will be lost. For example, suppose
you have gotten up to page 7 of a session, then go back and re-simulate page 3. The simulator will drop pages
4 through 7 of the session before running the simulation. The simulation will then create a new page 4, so the
session will wind up with four pages.

Starting a New Session

To start a new session simply change the Query Mode back to Get (URL Query). The new session doesn’t
actually start until you press the Submit Get button, until then you can switch back to Post (Forms) and jump
to any spot in the session.

You can also start a new session by dragging an external form onto the simulator (see “Testing Forms in Sep-
arate HTML Files” on page 358), selecting it from the History menu or using the Load Form command. Any
method of loading a new form erases the previous session.

Disabling Automatic Browser Preview

The simulator usually opens your browser to display the web page that is generated by any query. Some-
times when you are debugging a session this web page preview just slows things down. To turn off the auto-
matic preview choose Manual from the Open Browser submenu.

If you have disabled the automatic preview you can always preview the page manually by choosing the
View in Browser command.

Chapter 8:Web Programming 101 Page 367
Simulating Cookies

The CGI Simulator wizard will simulate the action of a web browser for storing cookies (see “Working with
Cookies” on page 453). At any time you can examine what is in your cookies by choosing Cookies from the
Simulator menu.

This command opens a dialog that displays a list of all of the simulated cookies on the left hand side. To see
the contents of a particular cookie, click on the cookie name in the list.

You can also click on the right hand side and edit the cookie value. When your are done, press the Ok button.

Page 368 Panorama Handbook

Chapter 9: Generating HTML

The primary job of a web procedure is to take a request from a web browser and produce an HTML page that
is sent back to the web browser (the web procedure may perform other jobs as well, such as modifying a
database).

This chapter covers the programming techniques available for generating an HTML page.

What is HTML?

An HTML file is a text file containing small markup tags. The markup tags tell the web browser how to dis-
play the page. If you aren’t already familiar with HTML tags then stop immediately, do not pass GO, and go
find your self a book or web resource for learning HTML. Your local bookstore should have a shelf full, or
you can find over a hundred by searching Amazon for html. Don’t come back until you understand basic
HTML tags like , <i>, ,
, <p>. It would also be good to be familiar with more advanced tags like
<a>, , <form>, <input> and <table>. The concepts are really quite simple, so it shouldn’t take you very
long to get the hang of it. We’ll wait for you until you get back.

From Panorama’s point of view the most important aspect of HTML is that it is made up of regular text. Pan-
orama is really good at manipulating regular text, so it is also very good at manipulating HTML. To make it
even better, Panorama Enterprise includes special functions that automatically create big chunks of HTML
for you, for example automatically outputting database information as an HTML table. These special func-
tions are described later in this chapter.

Page 370 Panorama Handbook
Other Web Languages (JavaScript, CSS)

HTML is the basic language of the web, but many modern web pages use additional languages including
JavaScript (a programming language that runs inside web browsers) and CSS (a language for describing the
appearance of a web page). From Panorama’s point of view these languages all have one common attribute
— they all are composed from regular text. So just like HTML, Panorama is very good at manipulating source
code in these languages. Most of the techniques described in this chapter will work equally well with JavaS-
cript, CSS, and any other web language you come across as they do with HTML. For the most part, however,
we’ll leave this up to you. With a few exceptions, we won’t mention these additional languages again, but
keep in mind that Panorama Enterprise allows them to be used anywhere HTML is used.

Directly Generating an HTML Page

When a request comes in to the server from a web browser, Panorama sets up a global variable named
cgiHTML. This variable is initially empty (""). Whatever text you put into this variable will be passed back to
the client web browser. The most basic web procedure can simply consist of one line that assigns some text to
this variable.

Here’s the result.

Of course most web procedures are more complex than this. In fact, a web procedure can take advantage of
all of the features Panorama makes available for writing complex programs, including subroutines, formulas,
custom statements, etc.

Chapter 9:Generating HTML Page 371
The previous example created a static, unchanging page. This isn’t a very good use of Panorama Enterprise
— after all you could simply create a .html text file to display a fixed message. Here’s a more complicated
procedure that displays different data depending on changing conditions.

This procedure builds lists of fields, forms, and procedure and then uses a formula to merge them together to
display all of this information on the web page:

Page 372 Panorama Handbook
The HTML for this page is really pretty simple. The procedure is shown on the left, with the HTML source for
the page on the right. The arrows show which sections of code render which sections of the HTML. Basically
each section of the page is generated as an array, which is then concatenated to the end of the page (in the
cgiHTML variable)

If you are not already familiar with Panorama’s array statements and functions you should review the sec-
tions of the Panorama Handbook that describe these features. Arrays are often very useful when rendering
HTML code.

Chapter 9:Generating HTML Page 373
Customizing the HTML Page Header

HTML pages normally have a header and footer that specifies things like the page title, background color,
meta tags, etc. Here’s a typical example of what an HTML page header looks like:

<html>
<head>
<title>Colorado Hotels Database Information</title>
</head>
<body bgcolor="FFFFFF" text="000000" link="0000FF" vlink="336666">

Here’s what a footer looks like:

</body>
</html>

If you’ve been following closely you may have noticed that the HTML pages created by the web procedures
in the previous section DID NOT generate this header and footer — they only generated the contents of the
body of the page (the stuff between the <body> and </body> tags). This is ok because if the header and
footer are missing, Panorama Enterprise will automatically create them for you and attach them to the HTML
body that you place in the cgiHTML variable. One less thing for you to worry about!

Of course, sometimes you want to worry about the header and footer sections because you want to customize
them. Perhaps you want to set up a custom page title, or include some JavaScript in the header. There are two
ways to do this. One is to simply go ahead and include the header and footer sections in the cgiHTML vari-
able. If you do this, Panorama Enterprise won’t create its own header and footer sections, it will just pass
your page as is back to the web browser.

In most cases, however, it’s easier to let Panorama Enterprise create the header and footer sections for you
and customize by modifying up to seven special variables that control how the header is created. These spe-
cial variables are listed in the table below.

Variable Description

cgiPageTitle This variable contains the page title. This title will appear in the drag bar
of the browser window.

cgiBackColor
This variable controls the background color. The color may be set to a
named color ("white", "blue", etc.) or to an HTML format hexadecimal for-
mat ("CCFFFF", "996633", etc.)

cgiTextColor
This variable controls the text color. The color may be set to a named color
("white", "blue", etc.) or to an HTML format hexadecimal format
("CCFFFF", "996633", etc.)

cgiLinkColor
This variable controls the color of any links on the page. The color may be
set to a named color ("white", "blue", etc.) or to an HTML format hexadeci-
mal format ("CCFFFF", "996633", etc.)

cgiVisitedColor
This variable controls the color of any links on the page that have already
been visited. The color may be set to a named color ("white", "blue", etc.) or
to an HTML format hexadecimal format ("CCFFFF", "996633", etc.)

cgiExtraHeader
The contents of this variable will be inserted inside the header after the
<title> tag. This allows you to add additional tags in the header, for exam-
ple for meta tags or for loading a javascript file.

cgiExtraBodyOption
The contents of this variable will be inserted inside the <body> tag. this
allows you to add additional options into the body tag, for example
onload=<javascript> etc.

Page 374 Panorama Handbook
Here is a revised version of the dbinfo procedure that customizes the page title, background color and text
color (the assignments to these variables can occur anywhere in the procedure):

This revised web procedure displays the same information but with white text on a dark gray background.

The “extra” variables, cgiExtraHeader and cgiExtraBodyOption allow you to insert just about anything you
want into the header without having to actually code your own header and footer. This is especially handy if
you want to use JavaScript functions in your page — the definitions for the functions should be put in the
cgiExtraHeader variable.

Placing Fields and Variables into the HTML Page

To place fields or variables into the page simply create a formula that combines the HTML tags you need with
variables and fields from the database. If a variable or field contains numeric data you must convert it to text
with the str(or pattern(function, as shown below for the Rate field. Here is a simple procedure that dis-
plays the current record. (Of course this example is really a bit too simple, in any real application you would
want to specify what record to display rather than simply displaying whatever happened to be the current
record – see “What Record Are We Talking About?” on page 395.)

Chapter 9:Generating HTML Page 375
Here’s what this page will look like in the browser.

Of course this example is really a bit too simple — it doesn’t actually specify what record to display. It
blithely goes ahead and displays whatever record the server happens to be sitting on at the moment. In a real
application the procedure would first locate the record to display using the find, findbackwards,
weburlfind, select, webselect or weburlselect statements. For more on specifying the record to dis-
play see “What Record Are We Talking About?” on page 395.

Fields or Variables with Special Characters

If a field or variable might contain “special” characters you must convert the text to html with the webtext(
function. You’ll need to use this function if the data might contain accented characters or special characters
like <, >, ©, ®, ¶. § etc. When in doubt it’s best to use the webtext(function. For example, suppose the
Description field of a database contains accented and special characters, like this:

Without the webtext(function, these characters will not look right on a web browser

Page 376 Panorama Handbook
To fix this, use the webtext(function to convert the Description field to proper HTML format.

Now the accented and special characters to display correctly, as shown below.

The webtext(function will disable any HTML tags in the text being converted. For example, suppose the
Description field in the previous example contained tags to make the word exceptional bold.

Chapter 9:Generating HTML Page 377
The webtext(function will convert the < and > characters to < and >, so these characters will be
displayed rather than being interpreted as tags.

If you want to be able to embed HTML tags in the text use the htmlencode(function instead of the
webtext(function. As shown below, the htmlencode(function will allow most special characters to dis-
play correctly but leaves the < and > characters alone so they can be used for HTML tags. The only problem
with this function is that < and > characters that are not part of tags will not display correctly, for example if
the text says 2006 sales > 2005 sales the > character will not display (the text would have to be edited to 2006
sales > 2005 sales to make it display correctly in the browser.

Another approach is to use the webtagortext(function instead of the webtext(. The webtagortext(
function works just like the webtext(function unless the data contains tags. If the data does contain tags,
no conversion at all is done, and it’s up to the person doing the data entry to make sure that the text will dis-
play correctly (for example converting special characters to HTML entities). The advantage of the
webtagortext(function is that for regular data entry (no tags) everything is done automatically, and no
knowledge of HTML is required. If someone wants to enter tags into their data then it is assumed that they
know what they are doing and that they will do all necessary HTML conversion themselves. So both novices
and power users get what they want.

Page 378 Panorama Handbook
Links to Other Web Pages

In HTML hypertext links to other web pages are made with the <a> tag. This tag can be included in the ren-
dered web page like any other text.

cgiHTML = ... + “Some Caption” + ...

The weblink(function provides an alternative method to generate an hypertext link (<a> tag). This func-
tion has two parameters, url and caption. The url is simply the URL of the page this tag will link to. The cap-
tion is the text that appears on the browser for this link. (If the caption is blank "", the URL will be used as
the caption.) Here is revised code that uses the weblink(function to create the same hypertext link as the
example above.

cgiHTML = ... + weblink("http://www.somesite.com/somepage.html","Some Caption") + ...

The cgilink(function generates a hypertext link to a Panorama Server action on this server. In addition to
being more compact than writing the link by hand, this function also automatically adjusts the generated
URL to reference the current server. That way if the database is later moved to a different server any links
generated by this function will continue to work. The cgilink(function has three parameters:

cgilink(database,action,caption)

The database parameter is the name of the database to be accessed.

The action parameter is action portion of the url (see “Web Database URL Format” on page 220). This could
be a standard action (form, addrecord, etc.) or a procedure name, optionally followed by ~ and any extra
parameters.

The caption parameter is simply the text that will be displayed on the browser for this link.

This example shows how the cgilink(function can be used. This code generates a hypertext link to the
AddItemToCart procedure in the ShoppingCart database.

cgiHTML = ... + cgilink("ShoppingCart","AddItemToCart","Add To Cart")

If your web site is www.somesite.com then the formula above is equivalent to the formula below. Much sim-
pler, don’t you think!

cgiHTML = ... +
 “Add
 To Cart” + ...

The webformlink(function generates a hypertext link to a Panorama form on this server. Like the
cgilink(function, this function also automatically adjusts the generated URL to reference the current
server. The webformlink(function has four parameters:

webformlink(database,form,record,caption)

The database parameter is the name of the database to be accessed.

The form parameter is the name of the web form to link to. This must be a Panorama form that has been con-
verted to an HTML form (see “Web Forms” on page 231).

The record parameter specifies what record (if any) to display in the linked form. If this parameter is left
empty ("") the form will be blank (for example for adding a new record or searching). Otherwise this param-
eter is passed internally to the renderwebform(function or weburlselect statement which locates the
requested record. See “What Record Are We Talking About?” on page 395 for more information about how to
use this parameter.

The caption parameter is simply the text that will be displayed on the browser for this link.

Chapter 9:Generating HTML Page 379
This example shows how the webformlink(function can be used. This code generates a hypertext link to
the Full Search procedure in the Catalog database.

cgiHTML = ... + webformlink("Catalog","Full Search","","Advanced Search")

The weblink(, cgilink(, and webformlink(functions generate links that normally open in the same
browser window. In other words, the new page appears in the same window as the current page. If you want
the new page to appear in a new, separate window you can use the alternate weblinknewwindow(,
cgilinknewwindow(, and webformlinknewwindow(functions instead.

Images

In HTML images are displayed with the tag. This tag can be included in the rendered web page like
any other text.

cgiHTML = ... + “” + ...

If the image is on the same server as the database you can use the dbserverdomain() function instead of
hard coding the domain name. This function returns the domain name of the current server.

cgiHTML = ... + “” + ...

Using the dbserverdomain() function allows the image to be displayed correctly if both it and the data-
base are moved to a different server.

Generating a Page Using a Panorama Form Template

If you want to, you can create web pages of unlimited complexity simply by string together complicated for-
mulas. Doing it this way gives you full control over every character in the final HTML page, but it’s a lot of
work. It also requires a lot of imagination, since you can’t see the page as you are building it. The only way to
see the result is to run (or simulate) your procedure.

There is another way. Instead of generating the HTML page entirely on your own from scratch, start with a
Panorama web form (see “Web Forms” on page 231). This allows you to layout your page with Panorama’s
graphic tools. Your web procedure can use the web form as a template, which it can then customize further
depending on the particular application. This technique can often reduce page of code to just a few lines, and
it makes it much easier to modify the layout of your data as needed.

The first step is to create and render the web form for use with the procedure. Creating web forms is covered
in detail in Chapter 6. When you are creating a standalone web form it will usually only include database
fields, but a form web form designed for use with a procedure will often include variables in Text Editor
SuperObjects, Text Display SuperObjects, and Flash Art SuperObjects. More on this in a moment (see “Using
Variables to Customize a Web Form on the Fly” on page 383).

The RenderWebForm(Function

To display a Panorama web form use the renderwebform(function in the formula that creates the HTML
page. This function has two parameters.

renderwebform(formname,recordid)

The first parameter is the name of the form, which must be in the same database as the procedure, and must
already have been converted to HTML (see “Converting a Panorama Form into a Web Form” on page 231).

The second parameter is the record identifier. If this is empty ("") then a blank form will be produced. If any
data is displayed on the form it will come from the current record. If the second parameter is not empty it
must be a record identification string compatible with the weburlselect statement. We’ll talk more about
this parameter in a moment (see “What Record Are We Talking About?” on page 395).

Page 380 Panorama Handbook
Using a Web Form to Display Data

The simplest application for the renderwebform(function is to display a form that simply displays data
and does not contain any editable items. In other words, the form only uses Text Display SuperObjects and
Flash Art SuperObjects, and does not contain any Data Cells, Text Editor SuperObjects, checkboxes, radio
buttons, pop-up menus, etc. Here’s an example.

Here is a simple procedure that will display a record using this form.

The first non-comment line in this procedure:

weburlfind "="+cgiExtraParameters

determines what record will be displayed. We’ll talk more about that later (see the next section), in fact, we’ll
show how this line can be eliminated. The second line:

cgiHTML=renderwebform("Display Listing","")

Chapter 9:Generating HTML Page 381
actually combines the data from the database with the web form template to create the final HTML page.
Here’s the result displayed in a web browser (either by using Simulate Web Procedure or actually running
this procedure on your web server):

I think you’ll agree that creating this web page this way is much easier than generating all of the HTML by
hand!

Specifying the Record to Display

In the previous example the second parameter to the renderwebform(function was left blank.

cgiHTML=renderwebform("Display Listing","")

This tells the function to display the contents of the current record, whatever that is. It’s up to you to make
sure that the correct record is already “spotted” (either by finding or selecting it) before the
renderwebform(function is used. In the previous example this was done by using the weburlfind state-
ment first, before the renderwebform(function.

weburlfind "="+cgiExtraParameters
cgiHTML=renderwebform("Display Listing","")

We’ll talk more about the weburlfind statement a bit later (see “Using WebURLFind For Navigation in
Shared Databases” on page 398), but for now all you need to know is that this statement takes the extra
parameter from the URL and uses it to find a specific record in the database. There’s one other thing you
should know — the weburlfind statement is built into the renderform(function! This means that you
can take the parameter from the weburlfind statement and move it to the second parameter of the
renderwebform(function, then get rid of the weburlfind statement! Now the entire procedure is only
one line long.

cgiHTML=renderwebform("Display Listing","@")

Note: The specific use of the "@" format for this parameter will only work if the database is shared as well as
web published. If the database is web published only you’ll need to use a different format, see “Using
WebURLFind for Navigation in Non-Shared Databases” on page 401.

Page 382 Panorama Handbook
Customizing the Web Form’s HTML Header (Page Title, etc.)

When a Panorama web form is rendered it sets up the HTML header (page title, background color, etc.) up
for you. A procedure can, however, override some of these options by this using the variables described in
“Customizing the HTML Page Header” on page 373. This must be done before the renderwebform(func-
tion is used, not after. For example, here is a modified version of the showlisting procedure that displays the
property address in the browser title bar.

Here is the result in the browser.

In addition to the page title you can also set the cgiExtraHeader and cgiExtraBodyOption variables. However
you cannot modify the text and background colors, as those are preset by the form template.

Chapter 9:Generating HTML Page 383
Using Variables to Customize a Web Form on the Fly

One easy way to customize a form with a procedure is to set up the form with Text Display SuperObjects and
Flash Art SuperObjects that display one or more variables. The procedure sets up the variable values before
rendering the form. Here is a form that contains three Text Display SuperObjects. As you can see, the proce-
dure that displays this form will need to calculate five variables before rendering the form: minPrice, max-
Price, listingCount, avgPrice and theListings.

Page 384 Panorama Handbook
Here is the web procedure that calculates these variables.

Here’s the final result that combines the calculations with the web form.

Chapter 9:Generating HTML Page 385
Web Forms display Text Display SuperObjects with the webtagortext(function, so variables displayed in
your form can contain HTML tags (see “Fields or Variables with Special Characters” on page 375). For exam-
ple the procedure could build an array then convert it to an HTML table using the htmlarraytable state-
ment (see “Generating an HTML Table from a Panorama Array” on page 403). This table (for example line
items in a shopping cart) can then be displayed in a Text Display SuperObject.

Note: If your variable does contain HTML tags, it’s up to you to make sure that any special characters in the
text be converted to HTML format. This can be done with the webtext(or htmlencode(functions.

Which Came First, the Chicken (Web Template) or the Egg (Variables)?

When creating a web form that displays variables you may run into a problem — you can’t preview the form
until the variables are created! For example, suppose I add a Text Display SuperObject to my form that dis-
plays a variable named myVariable. So far, however, I haven’t defined this variable in a procedure.

When I try to preview the form, an error message appears, and I can’t see what the form will look like in a
browser.

The only solution is to define the variable in a procedure and run the procedure. You may want to create a
special procedure just for initializing variables, perhaps called .InitializeVariables.

makefileglobals myVariable="",myOtherVariable=""

Whenever you add a new variable for display in a web form you can add it to the list and run the procedure.
You will also probably want to call your .InitializeVariables procedure as a subroutine from the .Initialize and
.InitializeServer procedures. This makes sure that the variables are automatically defined when the database
is opened.

Page 386 Panorama Handbook
Using a Web Form to Submit Data

So far, we’ve only covered web forms for displaying data. Web forms can also be used to submit data to the
server. There are three general applications where data is submitted from a form to the server: 1) Adding new
data to a database, 2) Specifying information to be located (search), and 3) Modifying existing data in a data-
base. For the first two of these applications the form will usually start out blank. When you are modifying the
database the form will usually be pre-filled in with data from a record in the database (or possibly from vari-
ables).

Designing Web Forms for Submitting Data

A web form for submitting data is just like any other web form, except that it contains one or more objects for
editing data: Text Editor SuperObjects, Data Cells, pop-up menus, checkboxes, radio buttons, or scrolling
lists. The form should also contain a Submit button. Here’s a typical example.

For more information see “Web Forms” on page 231,

Chapter 9:Generating HTML Page 387
Displaying a Blank Web Form

Displaying a blank web form is easy — just use "" as the second parameter to the webformitem(function.

The form will display with all of the editing elements blank (multiple choice items, like pop-up menus, will
display with the first choice selected).

For a blank form, that’s all there is to it. The next chapter will explain how to process the data submitted from
this form.

Page 388 Panorama Handbook
Pre-Filling Database Fields

If you want the form to display with the database fields filled in you must specify what record to use to fill in
the fields. This is done by specifying a second parameter for the renderwebform(function. If the database
is a shared database usually the best way to do this is with the unique record ID the server keeps for each
record. This ID starts with 1 for the first record and increments by one for each record added to the database.
This procedure allows you to specify the server record id in the url when running this procedure.

Alternately the renderwebform(function accepts the abbreviation "@" instead of cgiExtraParameters:

Either version of this procedure will work with URLs like these:

http://11.22.33.44/cgi-bin/panoarma.cgi?Real%20Estate%Listings~editlisting~=1
http://11.22.33.44/cgi-bin/panoarma.cgi?Real%20Estate%Listings~editlisting~=2
http://11.22.33.44/cgi-bin/panoarma.cgi?Real%20Estate%Listings~editlisting~=3

The first url will edit the top record in the database, the second url will edit the second record, etc. (Note that
these may not (and probably will not) correspond to the current order of the records in the data sheet, rather,
the numbers correspond to the order in which the records were added to the database.) Here’s what the result
looks like:

Chapter 9:Generating HTML Page 389
Of course you probably won’t want to type in URLs like this manually, and who knows what the server
record ID of a particular record is anyway? (You can find out, by the way, with the
info("serverrecordid") function.) Instead, you’ll usually want to create another procedure that lists
multiple records, and includes links to edit each record. Earlier in this chapter we examined a procedure that
lists selected records from this Real Estate database (see “Using Variables to Customize a Web Form on the
Fly” on page 383), now we can modify this procedure to generate links to the new editlisting procedure. The
necessary modifications are shown below.

Page 390 Panorama Handbook
Now this web page contains links to separate editing pages for each property.

Each link contains a URL in the proper format for the editlisting procedure. If I click on a particular link, say
13591 Olympus Drive, the corresponding record appears.

Chapter 9:Generating HTML Page 391
In this example the code to list the records with links was hand coded, but more commonly you’ll use a Pan-
orama web table template to do the heavy lifting for you. A web table allows you to create a nicely formatted
list, with links, without doing any programming at all. When designing the table template (see “Web Tables”
on page 277) be sure to link your editing procedure to the table and specify the link table column (see “Link-
ing Individual Table Rows to a Detail Form” on page 307).

With this one dialog your table will automatically generate the correct format links for the editlisting proce-
dure. No further programming is required! Here’s an example of a table with links.

Clicking on any of these links opens the editing form for that record.

Page 392 Panorama Handbook
During this discussion we’ve mentioned several times that the techniques used work only with shared data-
bases. This is because the links are made using the unique record id’s the server maintains for each record in
a shared database. Because of this, we highly recommend using shared databases even if you don’t need to
share the database. (Keep in mind that you can create and use shared databases even if you haven’t licensed
the server for sharing, only web publishing. In that case you can only access the database one user at a time,
but the database will still have unique record id’s for each record.)

If for some reason you really don’t want to use shared databases it is still possible to pre-fill database fields in
a form. See “Using WebURLFind for Navigation in Non-Shared Databases” on page 401.

Pre-Filling Variables

A web form can contain objects for editing variables as well as database fields. For example, this form edits
two fileglobal variables, minPrice and maxPrice.

When this form is turned into a web page with webrenderform(, however, the form is always blank, even if
the variables have values in them.

variables are
blank!

Chapter 9:Generating HTML Page 393
If you want to pre-fill editable items that are linked to variables you need to use the
renderwebformwithvariables(function. This function has one additional parameter, a comma sepa-
rated list of variables. (Note: This list is based on a formula, which usually means that it must be quoted, as
shown below).

This example sets up two variables, fills them with values (which must be text), then generates an HTML
page with the values for these variables already filled in.

Note: If your form uses Buffered Data Entry (see “Buffered Data Entry” on page 438) with a prefix for each
web item then you don’t need to the renderwebformwithvariables(function, you can simply use the
renderwebform(function. Panorama server will sense that your web form is set up for buffered data entry
and fill in the web items with data from the database.

Setting Hidden Form Values

In addition to normal visible data values (text editing cells, checkboxes, radio buttons, etc.) web browsers
also support hidden values within a web form. There are two ways that a procedure can set the value of a
hidden field. The first method is to set up the hidden field in advance as part of the form setup (see “Hidden
Data” on page 271). When the hidden field definitions are set up simply define one or more hidden fields
using a variable, like this.

variable

Page 394 Panorama Handbook
Then simply make sure you define this variable and assign it a value before rendering the web form.

fileglobal Discount
Discount = 7.75
cgiHTML = renderwebform("Invoice","")

If the hidden field hasn’t been set up in advance a web procedure can still add it at the last minute when the
page is generated. This is done with the sethiddenwebformitem statement, which has three parameters.

sethiddenwebformitem page,field,value

The page parameter is the name of the variable that contains the HTML page (often this will be cgiHTML).
The text in this variable will be modified to add the hidden field information.

The field parameter is the name of the hidden field, while the value parameter is the value of that field.

Here is a revised version of the previous example that adds a hidden value “after the fact”, even though the
original form template didn’t set up this hidden field.

fileglobal Discount
Discount = 7.75
cgiHTML = renderwebform("Invoice","")
sethiddenwebformitem cgiHTML,"Discount","7.75"

Note: You can add as many hidden fields as you like, but you should only add a particular hidden field once.
In other words, don’t add Discount twice. You should also avoid using the sethiddenwebformitem state-
ment for a hidden field that has already been set up using the Hidden Fields dialog for that form.

Chapter 9:Generating HTML Page 395
What Record Are We Talking About?

So far this chapter has glossed over an important point — when accessing (or modifying) information in
database fields, what record is the current record? When using Panorama directly the answer is obvious —
whatever record was last clicked on. You can simply look at the data sheet to see (or change) the active
record. If you are using a web browser, however, you can’t simply use the data sheet — it’s not available.
Some other method will have to be used to specify what record is going to be displayed or modified.

“Roll Your Own” Web Navigation

As a Panorama programmer you’ve probably already thought of the obvious idea, simply use an extra URL
parameter (see “URL Extra Parameters” on page 332) to specify a the record to display or modify. For exam-
ple, consider this price list database.

The Item field in this database contains a unique name for each product, so that can be used to identify each
record. Here is a procedure that finds and displays an item based on the name at the end of the URL. (In this
case the spaces and other special characters in the Item are not needed, so the procedure strips them out to
make the url simpler.)

Page 396 Panorama Handbook
To use this procedure, set up your URL like this, with the item name (minus spaces and special characters) at
the end.

http://1.2.3.4/cgi-bin/panoarma.cgi?hobbyshopcatalog~displayanitem~atsftankcar

Using this URL will display the specified record in your web browser.

Of course you usually won’t want to type in a URL like this — instead, you’ll create another procedure that
generates a list of links. Then the user can simply click on the item he or she wants. Here is a very simple pro-
cedure that does just that.

The key code in this procedure is the second parameter of the cgilink(function. This constructs the link in
the same format used by our custom displayanitem procedure.

cgilink("","displayanitem~"+stripchar(Item,"AZaz09"),Item)

Chapter 9:Generating HTML Page 397
When you run this procedure it produces a web page that looks like this:

Clicking on any of the links triggers the displayanitem procedure which the brings up the corresponding
detail page.

As you can see, the “roll-your-own” approach can work, but it has some disadvantages. First of all, this tech-
nique has to be rewritten from scratch for each web database you create. If your database doesn’t have a sin-
gle field with unique values you may have to combine two or more fields into a single “key”. This is possible,
but it can make the URLs very unwieldy. If the data contains unusual characters that can also make the URLs
clumsy to work with.

Fortunately, if you are using shared databases Panorama has a built in solution that solves all of these prob-
lems. Read on to learn more.

Searching the Database in Reverse

Though we don’t recommend roll your own web navigation, here is a variation you may want to use if you
do decide to go that route. Instead of using the find statement, you may want to use findbackwards. In
many situations this is faster, sometimes dramatically so, for two reasons. First, findbackwards does not
have any undo capability, so it saves the time needed to maintain the previous database state. Secondly, new
records are always added at the end of the database, and in many applications recently added records are
searched for much more frequently than older records. In large databases the findbackwards statement
will find records near the end of the database much faster than find will. Your mileage may vary, but this is
definitely a variation worth trying.

Page 398 Panorama Handbook
Using WebURLFind For Navigation in Shared Databases

When working with a shared database, Panorama Enterprise keeps a unique numeric record id for every
record in the database. You can’t see the record id, but it is there and for a particular record it is always guar-
anteed to be unique and unchanging (unless you upload a New Sharing Generation, then all record ID’s may
and probably will change). If a record is deleted the unique record ID for that will not be re-used (again,
unless you upload a New Sharing Generation).

Though you can’t see the unique record ID, it can be accessed in a formula with the
info("serverrecordid") function. Using this function you could “roll your own” web navigation much
like the system described in the previous section. However, you don’t need to “roll your own” because Pan-
orama Enterprise’s form and table rendering function already have this navigation feature built in. As a
bonus, this navigation method is faster than “roll your own” because it uses a special stripped down search
that is optimized for searching for server record IDs.

URLs that use this built in navigation feature look like this:

http://domain/cgi-bin/panorama.cgi?database~procedure~=recordid

In other words, the extra parameter is an = followed by the record ID. The record ID is a number from 1 to
2147483648, so typical URLs look like these:

http://1.2.3.4/cgi-bin/panoarma.cgi?invoices~display~=3891
http://1.2.3.4/cgi-bin/panoarma.cgi?customers~edit~=82397
http://1.2.3.4/cgi-bin/panoarma.cgi?properties~show~=359

If you are generating your HTML by hand you can navigate to the specified record with a single line:

weburlfind cgiExtraParameters

In fact, you can go even a bit simpler than that...

weburlfind "@"

Just put this line at the top of your web procedure and this statement will find the specified record for you.
You are then ready to generate the HTML for your web page from that record.

If you are using a Panorama web form you don’t need a separate weburlfind statement — the navigation
feature is built into the renderwebform(function. This single line of code finds the record specified by the
URL and displays it using the Edit Listing form.

cgiHTML=renderwebform("Edit Listing","@")

(Note: You can also use cgiExtraParameters instead of "@".)

Panorama Enterprise also has tools to help you generate navigation links based on the server record id. The
cginavlink(function will automatically build a link to the current record for you.

cginavlink(procedure,caption)

This function has two parameters: the name of the procedure that will navigate and display or modify the
record, and a caption that will appear on the web page.

Chapter 9:Generating HTML Page 399
Here is a simple procedure that builds a list of links by using this function inside the arrayselectedbuild
statement.

When you run this procedure it produces a web page of links:

When you click on a link on this page it will trigger this very simple showproduct procedure, which finds
and displays the corresponding product record.

Page 400 Panorama Handbook
The productlist procedure in this example that generates the list of links is pretty simple (see above), but you
can usually eliminate even that code by creating a web table template, which allows you to create a nicely for-
matted list, with links, without doing any programming at all (see “Web Tables” on page 277). Here is a table
template for this price list:

When designing the table template be sure to link your procedure (in this case showproduct) to the table and
specify the link table column (see “Linking Individual Table Rows to a Detail Form” on page 307).

The final table will look something like this. The links to the showproduct procedure are automatically gener-
ated.

Chapter 9:Generating HTML Page 401
Using WebURLFind for Navigation in Non-Shared Databases

Even if you are not using a shared database you can still use WebURLFind for web navigation. However it’s
quite a bit more complicated and you lose many of the advantages of the method described in the previous
section.

In non-shared databases URLs that use this built in navigation feature have one or more field=value pairs at
the end of the URL:

http://domain/cgi-bin/panorama.cgi?database~procedure~field=value~field=value

In other words, the extra parameter is a series of field=value pairs separated by ~ symbols. Typical URLs look
like these:

http://1.2.3.4/cgi-bin/panoarma.cgi?invoices~display~Order=78341
http://1.2.3.4/cgi-bin/panoarma.cgi?customers~edit~Last=Smith~First=John~Zip=92848
http://1.2.3.4/cgi-bin/panoarma.cgi?properties~show~Address=731%20Peach%20Ave~Zip=49881

If you are generating your HTML by hand you can navigate to the specified record with a single line (this is
the same as a shared database):

weburlfind cgiExtraParameters

In fact, you can go even a bit simpler than that...

weburlfind "@"

Just put this line at the top of your web procedure and this statement will find the specified record for you.
You are then ready to generate the HTML for your web page from that record.

If you are using a Panorama web form you don’t need a separate weburlfind statement — the navigation
feature is built into the renderwebform(function. This single line of code finds the record specified by the
URL and displays it using the Edit Listing form.

cgiHTML=renderwebform("Edit Listing","@")

(Note: You can also use cgiExtraParameters instead of "@".)

When using a non-shared database the cginavlink(function for building links won’t work. Instead you’ll
have to build the links manually with the cgilink(function. Here is an example that builds a link with one
Field=Value pair. If your application requires additional Field=Value pairs to generate a unique link you’ll
need to code these additional pairs into the formula.

When you run this procedure it produces a web page of links, just like the similar example in the previous
section. However instead of using server record id numbers the link contain field/value pairs from the data-
base.

Page 402 Panorama Handbook
When you click on a link on this page it will trigger the same very simple showproduct procedure demon-
strated in the previous section.

This linking method can also be used with table templates see “Web Tables” on page 277). When designing
the table template you must set up one or more Database Link Fields in addition to the Link Action and Link
Table Column options (see “Linking Individual Table Rows to a Detail Form” on page 307).

The links to the showproduct procedure are automatically generated.

Chapter 9:Generating HTML Page 403
Generating an HTML Table from a Panorama Array

Using arrays Panorama can store multiple values in a single field or variable. The htmlarraytable state-
ment makes it relatively easy to display the contents of an array in a web page. To illustrate this statement
this section will use an invoice database uses arrays to store the line items for each order (see below). The
Items field contains a two dimensional array, with carriage returns as the primary separator character
(between rows) and the ~ symbol as the secondary separator (between columns).

Normally a Matrix SuperObject is used to display the items, like this:

The Matrix SuperObject can’t be used in a web based form, so instead the htmldatatable statement must
be used. This statement has five parameters.

htmldatatable array,rowsepchar,colsepchar,result,options

The array parameter is the field or variable that contains the array you want to display (in this case Items).

The rowsepchar is the character used to separate each row in the array (in this case ¶, carriage return).

The colsepchar is the character used to separate each column in the array (in this case ~).

The result parameter is the name of a field or variable that will be filled with the HTML for displaying the
table. If the line items are the only thing to be displayed you can use the cgiHTML variable, otherwise you’ll
probably want to set up a fileglobal variable to contain the HTML text. If you are using a form you can dis-
play this text in a Text Display SuperObject (see “Displaying an Array in a Web Form” on page 411) to include
the line items as part of a larger form.

Page 404 Panorama Handbook
The options parameter is a list of options that specify what columns should be included in the table and how
the table should be formatted. If there are no options supplied the statement will automatically include all
columns in the array in a default format. We’ll go into much greater detail about all the available options in a
moment (see “Array Rendering Options” on page 404).

Here is a simple procedure that renders the Items array into HTML.

htmlarraytable Items,¶,"~",cgiHTML,“”

In the browser the rendered page will look like this:

This table isn’t very attractive but you can easily customize the appearance (see below).

Array Rendering Options

To customize the appearance of the table you’ll need to specify some options in the second parameter of the
htmldatatable statement. The options are specified as assignments, similar to the options in many HTML
tags. These options are discussed in the following sections.

Table Column Layout

There are four options that allow you to specify what array columns will be included in the table and how
they are titled and arranged.

Option Description

column=formula If you specify any columns at all you must include one column= option for each column
in the table. The formula specifies what data will be displayed in the column. To include
a cell from the array being rendered use «1», «2», «3», where the number between the «
and » represents the column number within the array.

title=text If you specify any titles at all you must include one title= option for each column in the
table.

width=number If you specify any widths at all you must include one width= option for each column in
the table. The width is specified in pixels, for example width=72 for a column that is 1
inch wide.

align=left/center/right If you specify any alignment at all you must include one align= option for each column
in the table. The alignment for each field may be left, center or right (for example
align=right).

Chapter 9:Generating HTML Page 405
Here’s a very simple example that displays only the first two columns from the array. The last two are
ignored.

Here’s the table rendered by this procedure.

The next example displays all four columns: Qty, Item, Price and Total. (Note: In this example the options are
shown formatted on separate lines for clarity, but this formatting is not necessary.)

This table includes titles, alignment and specific widths.

Page 406 Panorama Handbook
The columns don’t have to be displayed in the same order that they occur in the array.

In this example the Price has been moved to the second column of the rendered table, even though it is in the
third column of the array.

You can modify the array data with a formula before it is rendered.

This formula displays the second column in all upper case (we’ve also moved the Price column back to the
traditional location.

Chapter 9:Generating HTML Page 407
You can add text constants to the formula, for example HTML tags. Be careful about quoting, though. In this
example you would not want to use “ ” or { } as quote characters within the formula.

This formula makes the Total column bold.

Remember that numeric values within the array are really text. So if you want to do a calculation with a num-
ber (or display it using an output pattern) you must convert it to a number first with the val(function.

This example uses the pattern(function to format the totals.

You can use any operator or function you want in a formula, and you can also include other fields or vari-
ables.

Page 408 Panorama Handbook
Table Font, Font Size and Color

There are four “template” options that allow you to specify how text will be displayed within the table.

See “Table Font” on page 289, “Text Size” on page 290 and “Text and Background Colors” on page 291 for
examples of different font, size and color settings.

Table Borders and Spacing

There are four “template” options that allow you to specify how text will be displayed within the table.

Option Description

font=font name

This option specifies the font to use to display the table. (If left
blank the browsers default font will be used.) On your own com-
puter you can use any font you want because you have complete
control over what fonts are installed and available for use. A web
page, however, is the opposite situation since you have zero control
over what fonts may be available when the page is viewed. Because
of this it is usually best to pick from a restricted subset of fonts that
are almost universally available. The fonts that are most commonly
available are: Arial, Comic Sans MS, Courier, Georgia, Helvetica, Times
and Verdana. If the font name contains spaces or punctuation it must
be surrounded with quotes, for example font="Comic Sans"

fontsize=1..7/+1..+7/-1..-7

This option specifies the size of the text to be used for the table. But
take note — the size is not specified in pixels. Instead it is specified
using a special HTML text size specification. Absolute values (1-7)
specify a fixed font size from extremely small (1) to huge (7). Nega-
tive values specify sizes smaller than the text size in the rest of the
page, for example -2 is two sizes smaller than normal font. Positive
values specify sizes larger than the text size in the rest of the page,
for example +2 is two sizes larger than normal font.

fontcolor=color

By default Panorama web tables use black text, but you can use any
color you want. HTML colors are defined using a hexadecimal
notation for the combination of Red, Green, and Blue color values
(RGB). The lowest value that can be given to one of the light sources
is 0 (hex #00). The highest value is 255 (hex #FF). For example

fontcolor="0000FF"

represents pure blue,

fontcolor="00FF00"

represents pure green, and

fontcolor="FF0000"

represents pure red. Using this notation you can specify millions of
different colors.

titlecolor=color
The text in the title row is normally the same color as the rest of the
text in the table (see fontcolor above) but you can specify a different
color, for example titlecolor="660000" for dark red.

Option Description

border=pixels
This option specifies the thickness (in pixels) of the border around
each cell in the table. If the value is set to 0 then there is no border at
all.

cellspacing=pixels This option specifies the space between each cell in the table (in pix-
els).

cellpadding=pixels This option specifies the space between the contents of each cell
(text or image) and the edge of each cell (in pixels).

Chapter 9:Generating HTML Page 409
See “Table Border” on page 287, “Cell Spacing” on page 288 and “Cell Padding” on page 288 for examples of
different border and spacing settings.

Table Background Colors.

The color option allows you to specify a background color for the table.

In this example the background color has been set to pale yellow.

If you include two, three or more colors these colors will alternate as each row is rendered.

In this example the rows alternate between yellow and pink.

Page 410 Panorama Handbook
The colorpattern option customizes the pattern used to alternate between colors. For example the option
colorpattern="1112" will render two rows in the second color (pink), then one row in the first color (yel-
low).

This pattern produces two rows with a pink background then one with a yellow background.

The titlecolor option allows you to specify a separate background color for the title row, while the
titlefontcolor option specifies the color of the text in the title row.

This example displays the title with white text on a blue background.

Chapter 9:Generating HTML Page 411
Displaying an Array in a Web Form

To include an array in a web form you’ll need to write a special procedure that converts the array into HTML
format and stores it the HTML text in a variable. The procedure then displays the form (you’ll need to make
sure that the variable is included in the form template, see below).

This procedure starts by selecting the record to display using the weburlselect statement (see “What
Record Are We Talking About?” on page 395). Depending on your application you might want to use the
webformtodatabase statement instead (see “WebFormToDatabase — Modifying an Existing Record” on
page 476).

The next step is to generate the line item HTML. The generated text is stored in a fileglobal variable named
LineItemsHTML (you can of course use any name you want).

The final step is to render the form (see “Generating a Page Using a Panorama Form Template” on page 379),
which in this case is called WebOrderForm. Here’s what this form looks like in graphics mode:

Page 412 Panorama Handbook
The line items are displayed by the Text Display SuperObject that is highlighted. This object has been config-
ured to display the LineItemsHTML variable, as you can see by double clicking on it:

The name of the variable must match the variable generated by the procedure. When this procedure is run on
the web server the form will include the line items:

Since you can’t really see what the line items look like in Panorama you’ll probably need to use a bit of trial
and error to get the line items to look good on the form.

Chapter 9:Generating HTML Page 413
Generating an HTML Table or List from Multiple Records

So far in this chapter we’ve been primarily been talking about displaying records one at a time — one invoice,
one property, one customer, etc. For many applications you’ll need to display a set of records as a table or a
list. There are several approaches to doing this — you can used a can use a web table template, you can create
a table or list “from scratch”, or you can use a combination approach.

What Records are we Talking About? (The WebSelect Statement)

The first step in displaying a list of records is deciding which group of records will be included in the list.
Normally in Panorama procedures you use the select statement to determine what records are visible.
When writing a web procedure, however, you should use the webselect statement instead. These state-
ments are very similar, but the webselect statement has additional logic that works together with the
htmldatatable statement and webdatatable(function for handling empty selections and to allow
selection results to be displayed over multiple pages.

The webselect statement is almost identical in use to the select statement. It has one parameter, a for-
mula used to specify what records to select. Here’s an example:

webselect Price >= 250.00 and Price < 1000.00
cgiHTML = renderwebtable("Product Catalog")

A side effect of the webselect statement is that a special global variable named cgiSelectedRecordCount is
created. The value of this variable will be set to the number of selected records, or zero if no records match the
selection. If your procedure is manually generating HTML you should check this variable to make sure that
any records were selected. (If you use the htmldatatable statement or the webdatatable(function this
is taken care of for you.)

Using Variables in a WebSelect Statement

One important restriction of the webselect statement is that you cannot directly use variables in the selec-
tion formula. If you want to use variables they must be enclosed in special tags. Variables that contain text
must be enclosed within "« and »" tags, for example "«Color»" or "«rCity»". Variables that contain numbers
(including dates) must be enclosed within #« and »# tags, for example #«maxPrice»# or #«startDate»#.

Here’s an example of a selection procedure that uses two numeric local variables in the selection formula.

local priceOption,lowPrice,highPrice
priceOption=cgiExtraParameters
case priceOption match "low"

lowPrice=0 highPrice=250
case priceOption match "mid"

lowPrice=250 highPrice=1000
case priceOption match "high"

lowPrice=1000 highPrice=999999
defaultcase

lowPrice=0 highPrice=999999
endcase
webselect Price >= #«lowPrice»# and Price < #«highPrice»#
cgiHTML = renderwebtable("Product Catalog")

Here is another example that uses two text variables. (The variables are text because they have been extracted
from form input, which is always text. The selection formula converts the values to numbers, which also
could have been done in advance.)

fileglobal minPrice,maxPrice,priceSearchError

webformitem "minPrice",minPrice
webformitem "maxPrice",maxPrice

webselect Asking >= val("«minPrice»") and Asking <= val("«maxPrice»")
cgiHTML=renderwebtable("ListingTable")

Page 414 Panorama Handbook
Other Web Selection Statements

In addition to webselect, you can also use two specialized statements to perform selections,
webformselection (see “Web Form Based Data Selection” on page 479), which selects data based on input
from a web form, or weburlselect (see “What Record Are We Talking About?” on page 395), which selects
data based on the contents of a URL.

Why Not Use the Select Statement?

In case you are wondering, if you use the select statement instead of webselect, webformselection,
or weburlselect the first page of the table may display properly, however, any additional pages will not
display the proper selection (see “Splitting a Long Table into Multiple Pages” on page 424). Also if the
select statement is used the server will not display an empty table if no records are displayed (instead it
will display whatever records were previously selected). The bottom line is that you should avoid the stan-
dard select statement and use one of the web selection statements instead.

Generating HTML Tables Using a Web Table Template

Usually the easiest way to generate an HTML table from multiple database records is to use a pre-defined
web table template that you have set up in advance with the Text Export wizard. This wizard uses dialogs to
define various attributes of the table (“Web Tables” on page 277). Web tables are normally displayed auto-
matically using the query action (see “Linking a Table with a Query Form” on page 299) but they can also be
used in a web procedure.

To use a Panorama web form use the renderwebtable(function in the formula that creates the HTML
page. This function has two parameters.

renderwebtable(tablename)

The function’s one parameter is the name of the table, which must be in the current database, and must
already have been created and uploaded to the server with the Text Export wizard (see “Web Tables” on
page 277).

Here is an example of how this function can be used to generate a web page with a table:

cgiHTML = renderwebtable("Product Catalog")

If you want to use a pre-built table template but customize it slightly see “Modifying a Web Table Template
On the Fly” on page 427.

Generating HTML Tables Without a Template (“from scratch”)

If you don’t want to set up a web table template in advance you can use the htmldatatable statement to
generate an HTML table for you. This statement has all of the same options as a web table template but
allows these options to be set up on the fly as the procedure runs. The htmldatatable statement will ren-
der the currently selected records as an HTML table. This statement has two parameters. The first parameter
is the name of the variable that will receive the HTML table. The second parameter is a list of options that
specify what fields should be included in the table and how the table should be formatted. If there are no
options supplied the statement will automatically include all fields in the database.

Chapter 9:Generating HTML Page 415
The resulting table isn’t all that pretty, but it sure didn’t take much programming to create!

To customize the appearance of the table you’ll need to specify some options in the second parameter of the
htmldatatable statement. The options are specified as assignments, similar to the options in many HTML
tags. These options are discussed in the following sections.

Table Field Layout

There are four options that allow you to specify what fields will be included in the table and how they are
titled and arranged.

Option Description

column=formula You should include one column= option for each column in the table. The formula spec-
ifies what data will be displayed in the column. For text fields you can simply include
the name of the field. For date fields you must use the datepattern(function, while for
numeric fields you must use either the str(or pattern(function.

title=text If you specify any titles at all you must include one title= option for each column in the
table.

width=number If you specify any widths at all you must include one width= option for each column in
the table. The width is specified in pixels, for example width=72 for a column that is 1
inch wide.

align=left/center/right If you specify any alignment at all you must include one align= option for each column
in the table. The alignment for each field may be left, center or right (for example
align=right).

Page 416 Panorama Handbook
This example shows these option in use to create a table with four columns: Hotel, Phone, Rate and Rating.
(Note: In this example the options are shown formatted on separate lines for clarity, but this formatting is not
necessary.)

Here’s the table rendered by this procedure.

Chapter 9:Generating HTML Page 417
Table Font, Font Size and Color

There are four “template” options that allow you to specify how text will be displayed within the table.

See “Table Font” on page 289, “Text Size” on page 290 and “Text and Background Colors” on page 291 for
examples of different font, size and color settings.

Table Borders and Spacing

There are four “template” options that allow you to specify how text will be displayed within the table.

Option Description

font=font name

This option specifies the font to use to display the table. (If left
blank the browsers default font will be used.) On your own com-
puter you can use any font you want because you have complete
control over what fonts are installed and available for use. A web
page, however, is the opposite situation since you have zero control
over what fonts may be available when the page is viewed. Because
of this it is usually best to pick from a restricted subset of fonts that
are almost universally available. The fonts that are most commonly
available are: Arial, Comic Sans MS, Courier, Georgia, Helvetica, Times
and Verdana. If the font name contains spaces or punctuation it must
be surrounded with quotes, for example font="Comic Sans"

fontsize=1..7/+1..+7/-1..-7

This option specifies the size of the text to be used for the table. But
take note — the size is not specified in pixels. Instead it is specified
using a special HTML text size specification. Absolute values (1-7)
specify a fixed font size from extremely small (1) to huge (7). Nega-
tive values specify sizes smaller than the text size in the rest of the
page, for example -2 is two sizes smaller than normal font. Positive
values specify sizes larger than the text size in the rest of the page,
for example +2 is two sizes larger than normal font.

fontcolor=color

By default Panorama web tables use black text, but you can use any
color you want. HTML colors are defined using a hexadecimal
notation for the combination of Red, Green, and Blue color values
(RGB). The lowest value that can be given to one of the light sources
is 0 (hex #00). The highest value is 255 (hex #FF). For example

fontcolor="0000FF"

represents pure blue,

fontcolor="00FF00"

represents pure green, and

fontcolor="FF0000"

represents pure red. Using this notation you can specify millions of
different colors.

titlecolor=color
The text in the title row is normally the same color as the rest of the
text in the table (see fontcolor above) but you can specify a different
color, for example titlecolor="660000" for dark red.

Option Description

border=pixels
This option specifies the thickness (in pixels) of the border around
each cell in the table. If the value is set to 0 then there is no border at
all.

cellspacing=pixels This option specifies the space between each cell in the table (in pix-
els).

cellpadding=pixels This option specifies the space between the contents of each cell
(text or image) and the edge of each cell (in pixels).

Page 418 Panorama Handbook
See “Table Border” on page 287, “Cell Spacing” on page 288 and “Cell Padding” on page 288 for examples of
different border and spacing settings.

Table Background Colors.

The color option allows you to specify a background color for the table.

In this example the background color has been set to pale yellow.

If you include two, three or more colors these colors will alternate as each row is rendered.

In this example the rows alternate between yellow and pink.

Chapter 9:Generating HTML Page 419
The colorpattern option customizes the pattern used to alternate between colors. For example the option
colorpattern="1112" will render three rows in the first color, then one row in the second color.

This pattern produces three rows with a yellow background then three with a pink background.

The titlecolor option allows you to specify a separate background color for the title row.

This example displays the title with white text on a blue background.

Page 420 Panorama Handbook
Table Sort Order

If you want the table to appear in sorted order you can use one or more sort options. There are four “tem-
plate” options that allow you to specify HTML templates for each component of the table.

This modified version of the DisplayTable procedure sorts twice.

First the database is sorted by the Stars field (rating), from highest rating to lowest. Then within each rating
the hotels are sorted by price, again from highest to lowest.

You might think that instead of including the sort options in the table specification you could simply sort the
database in the procedure, like this.

field Stars sortdown
field Rate sortdownwithin
htmldatatable cgiHTML,“ ... ”

In fact this will work if the table is displayed all on one page. However if the table may split into multiple
pages (see “Splitting a Long Table into Multiple Pages” on page 424) then the sort options must be included
in the table specification. If they aren’t the additional pages may not be sorted properly.

Option Description

sort=field

This option tells the server to sort the database before generating
the table. If there is more than one sort option, the database will be
sorted by each field in turn (for example State, then City, or Last,
then First). You can include as many sort options as you like.

sortdirection=up/down

This option tell the server whether to sort in ascending (up) or
descending (down) order. If more than one sort field is specified
then you should also have a sortdirection option for each field. If
there is no sortdirection option at all then all sorts are assumed to be
ascending (up).

Chapter 9:Generating HTML Page 421
Linking Individual Table Rows to Detail Pages

In many applications a table is a jumping off point for additional pages. For example a phone list might link
to individual address pages, while a product catalog table would probably have links to detail pages for each
product listed. This section explains how to set up links from a table to individual pages.

There are four table specification options for setting up the link between the table and the detail pages.

Option Description

domain=ip address This option should be set to the ip address of your web server, for example http://
www.provue.com or http://192.168.1.3. You can omit this option if you have set up
the domain name in the Server Configuration, which we highly recommend (see
“Setting the IP Address/Domain Name” on page 56).

linkProcedure= proc This option tells the server what detail page to link to. If the table is linking to a Pan-
orama web form (see “Web Forms” on page 231) then this option should be set to
form~ followed by the name of the form, for example:

linkprocedure="form~Invoice"

If the table is linking to a procedure that generates the detail page then simply use
the name of the procedure.

linkprocedure="DisplayRecord"

This procedure must be able use the extra parameters in the URL to locate the spe-
cific record to be updated (an example of such a URL is shown below - the procedure
can call the urlSelect to process this URL format automatically, see “What Record
Are We Talking About?” on page 395).

linkOptions= html This option can be used to insert additional text into the link tags that are generated.
For example, if you want the detail form to open in a new window, you can set
linkOptions={target=new}. You could also use the link options to open the detail
form in another frame.

Page 422 Panorama Handbook
In addition to setting up these four options, you also need to add at least one pair of <link> and </link>
tags to either a column definition (htmldatatable) or a template (htmldatamerge). Here’s an example of
how these tags could be added to an htmldatatable specification.

column="<link>+Hotel+</link>"

Here’s an example of how these tags can be added to the template for htmldatamerge. The <link> and </
link> tags must be placed inside curly braces { and }.

“<h2>{<link>+Hotel+</link>}</h2>
{pattern(Rate,"$#,.##")}
{Phone}<hr>”

Let’s go back to the procedure we created in earlier section for rendering a table. By making the highlighted
changes shown below, we can add links to detail pages to each line of the table.

htmldatatable cgiHTML,“
 color="FFFF66"
 color="FF99FF"
 colorpattern="111222"
 linkProcedure="DisplayRecord"
 linkOptions="target=new"
 linkField="City"
 linkField="Hotel"
 column="<link>+Hotel+</link>"
 title="Hotel"
 width=200
 align=left
 column="Phone"
 title="Phone"
 width=70
 align=center
 column={pattern(Rate,"$ #,.##")}
 title="Rate"
 width=70
 align=right
 column={rep("*",Stars)}
 title=Rating
 width=50
 align=right”

linkField= field This option specifies a field (or multiple fields) to be used to identify the link. This
option is only needed for databases that are not shared — if the database is shared
then the server will automatically use the shared record ID to identify the link. You
may use more than one link field, but the combination of all the link fields you spec-
ify should uniquely identify a single record in the database. If our ColoradoHotels
database is not shared we can uniquely identify a single record with two fields, City
and Hotel, so the options should be set up this way:

linkField="City" linkField="Hotel"

Option Description

Chapter 9:Generating HTML Page 423
With this modification each hotel name in the table now becomes a link to a detail page.

Clicking on a link opens a new window displaying the detailed information for that window. See “What
Record Are We Talking About?” on page 395 to learn how the DisplayRecord procedure selects and displays
the specified record.

When a form is linked to from a table the server automatically embeds a record ID into the form so that when
the Submit button is pressed Panorama will know what record to update For more information on this record
ID and the update process see “WebFormToDatabase — Modifying an Existing Record with Embedded
Record ID” on page 477.

move mouse over link to see URL

Page 424 Panorama Handbook
Splitting a Long Table into Multiple Pages

By default a web table displays all of the selected records in the database. If there are hundreds or thousands
of records selected this can make the table very unwieldy (and slow to load). Fortunately the Panorama
Enterprise Edition Server can automatically split a large table into manageable pages, with links so you can
navigate to different sections of the table. Here’s an example of a long table that has been split into multiple
pages. A search for cities containing boulder in the name has turned up 38 matching records. This table has
been configured to display a maximum of 15 records so the table is split into three separate pages.

The Panorama server has automatically generated a “navigation bar” at the top and bottom of the table that
allows you skip from page to page.

Chapter 9:Generating HTML Page 425
The options below control the maximum table size and the generation of a navigation bar. In most cases you
can simply set the recordsperpage option and omit the rest of the options, simply using the default values.

Option Default Description

recordsperpage=num

This option specifies the maximum number of records that will
be displayed in a single page. You can either type in a value or
select from the pop-up menu.

If this option is left blank then the Panorama Server will not
automatically split the table into multiple pages and the rest of
the options below will be ignored (because no page navigation
bar will be generated).

Note: If you specify a maximum number of records we highly
recommend that you also set up a specific sort order for this
table (see “Table Sort Order” on page 420). This will make sure
that the same order is used for each page when navigating from
page to page to page.

pagenumber=num 1
This option specifies the page of the table to be displayed. Usu-
ally you should simply omit this option so that the first page is
displayed.

previouspagecaption=text PREVIOUS

The first and last links in the page navigation bar are usually
PREVIOUS and NEXT, displayed in bold. Use this option to
change the text of the link to the previous page. For example, if
your web site is in Italian you might change this caption to
PRECEDENTE . You can put any HTML tags you want
into the caption. If you want to display an image for this link (for
example a back arrow) simply use an tag for the caption.

nextpagecaption=text NEXT

The first and last links in the page navigation bar are usually
PREVIOUS and NEXT, displayed in bold. Use this option to
change the text of the link to the next page. For example, if your
web site is in Italian you might change this caption to
SUCCESSIVO . You can put any HTML tags you want
into the caption. If you want to display an image for this link (for
example a back arrow) simply use an tag for the caption.

pagenavfont=fontname

This option specifies the font to be used for the page navigation
bar. (If left blank the browsers default font will be used.) On
your own computer you can use any font you want because you
have complete control over what fonts are installed and avail-
able for use. A web page, however, is the opposite situation since
you have zero control over what fonts may be available when
the page is viewed. Because of this it is usually best to pick from
a restricted subset of fonts that are almost universally available.
The fonts that are most commonly available are: Arial, Comic
Sans MS, Courier, Georgia, Helvetica, Times and Verdana.

pagenavfontsize=1..7

This option specifies the size of the text to be used for the page
navigation bar. But take note — the size is not specified in pixels.
Instead it is specified using a special HTML text size specifica-
tion. Absolute values (1-7) specify a fixed font size from
extremely small (1) to huge (7). Negative values specify sizes
smaller than the text size in the rest of the page, for example -2 is
two sizes smaller than normal font. Positive values specify sizes
larger than the text size in the rest of the page, for example +2 is
two sizes larger than normal font.

Page 426 Panorama Handbook
See “The Multiple Page Table Dialog” on page 304 for examples of different multiple page table settings.

Displaying an Empty Table

If the database selection is empty (no records match the selected criteria) the server will display an empty
table, like this:

The message displayed in the empty table can be customized with the emptytablemessage option. You
can include any text you like in this option, including HTML tags.

pagenavfooter=template
<p><center>

<pagenavlinks>
</center><p>

The page navigation bar is usually centered below the bottom of
the table. However you can move the navigation bar to the top
of the table, or include the navigation bar at both the top and
bottom of the table. You can also customize the HTML tags that
are used to separate the page navigation bar from the table and
the rest of the page.
The header and/or footer can include any HTML tags you want.
Whatever you type in must, however, include the special tag
<pagenavlinks> (this must be all in lower case). When the
page is displayed the <pagenavlinks> tag will be replaced
with the actual tags and text for page navigation bar. (If the
<pagenavlinks> tag is missing then the navigation bar will be
missing also!)

If both the header and footer are left blank then a default footer
will be used. This default centers the page navigation bar below
the table. If either the header or footer is filled in then the default
won’t be used. So if you want the navigation bar to appear
above the table but not below, simply fill in the Page Navigation
Header but leave the Page Navigation Footer blank.

pagenavheader=template See pagenavfooter (above).

Option Default Description

Chapter 9:Generating HTML Page 427
This example includes a GIF image as part of the empty table message.

You could even include a link to a new search form as part of the message.

Table HTML Layout

The font, border, spacing and background color options give you almost complete control over the appear-
ance of the table. If you need even more control there are four “template” options that allow you to specify
HTML templates for each component of the table.

Consult an HTML book or web site for more information about the <table>, <tr>, <td> and <th> tags.

Modifying a Web Table Template On the Fly

So far this section has discussed building a table specification from scratch. It’s also possible to grab a pre-
built table template (made by the Text Export wizard, see “Web Tables” on page 277) and modify it before
passing it on to the htmldatatable statement.

To retrieve a table template use the getwebtabletemplate(function, which has two parameters.

getwebtabletemplate(database,tablename)

The first parameter is the name of the database that contains the database, or "" for the current database. The
second parameter is the name of the template. This example displays the List table but using large Comic
Sans MS font instead of whatever font was defined as part of the table itself.

local tbspec
tbspec=getwebtabletemplate("","List")
htmldatatable cgiHTML,{font="Comic Sans ms" size=+1 }+tbspec

Option Default Template Description

cell=template <td><data></td>

This template controls the HTML rendered for each cell. <data> is
replaced by the actual data generated by the formula for each col-
umn. For example to render each cell in italic the option would be
cell={<td><i><data></i></td>}.

row=template <tr><data></tr>

This template controls the HTML rendered for each row. <data> is
replaced by the actual data cells for each row. For example to render
each row so that the data is vertically centered the option would be
row={<tr valign=center><data></tr>}.

table=template <table><data></table>

This template controls the HTML rendered for the overall table.
<data> is replaced by the actual data rows of the table. For example
to render the table so that the total table width is 600 pixels the
option would be table={<table width=600><data></table>}.

titlecell=template <td><data></td>

This template controls the HTML rendered for each cell in the title
row. <data> is replaced by the actual column names. For example to
render each title cell using bold italic the option would be
cell={<td><i><data></i></td>}.

Page 428 Panorama Handbook
A procedure can get a list of the available table templates with the listwebtemplates(function. This
function has one parameter, the name of the database (or "" for the current database).

Rendering a List (and lists, Formatted Tables, JavaScript)

While the htmldatatable statement makes tables, the htmldatamerge statement allows you to use a tem-
plate to generate any kind of HTML you want. Typical applications include lists, formatted tables, and even
JavaScript (usually to initialize a JavaScript array).

The htmldatamerge statement has three parameters.

htmldatamerge result,options,template

The first is parameter, result, is the name of the variable that will receive the HTML text created by this state-
ment.

The second parameter, options, customizes the output in a manner similar to the options parameter of the
htmldatatable statement. We’ll discuss the options parameter in greater detail below, but for many appli-
cations this parameter can simply be left blank ("").

The final parameter is the template. This template controls how the data is placed into the HTML output by
this statement. The template consists of a section of text with HTML tags and Panorama formulas embedded
in it. The formulas are embedded in between curly braces { and }. You may embed as many formulas as you
want - either one big formula or lots of little ones. However, each formula must produce text as an output, so
any numbers must be converted to text with the str(or pattern(functions.

The htmldatamerge statement is best understood with examples. Our first example renders a simple list
using tags.

The layout has four formulas embedded in it:

{str(seq()) } Merges an automatic sequence number: 1, 2, 3 etc.

{Hotel} Merges the contents of the Hotel field

{pattern(Rate,"$#,.##") } Merges the Rate field, converted to text

{Phone} Merges the Phone field

Chapter 9:Generating HTML Page 429
The final result looks like this:

Using the browsers View Source command we can examine the actual HTML generated by the procedure.
Notice that the htmldatamerge statement was smart enough to add and tags at the beginning
and end of the list. If your layout begins with it will automatically add these tags. If your layout begins
with <tr> it will automatically add <table> and </table> tags. (You can override these defaults and
specify your own header and footer, see the next section.)

each line generated
by the template

 and
tags added
automatically.

Page 430 Panorama Handbook
Here is a modified version of the previous procedure.

This procedure uses the ?(function to merge in the description (if any). We’ve also changed the HTML tags
to render the list using extra small Verdana font.

You can customize the HTML produced by the htmldatamerge statement with the options parameter. The
basic options are header= and footer=. These options allow you to define additional HTML that will auto-
matically be placed at the beginning and end of the generated HTML. (Of course you could also do this with
a formula in your procedure.) For example, if you wanted to center the entire page, you could use

header="<center>"
footer="</center>"

Chapter 9:Generating HTML Page 431
Here is a modified version of our sample procedure that uses the header= and footer= options.

And here’s the output of this procedure.

Page 432 Panorama Handbook
You can also specify color= and colorpattern= options. For a complete description of these options see
“Table Background Colors.” on page 418. To use the color options you must embed the tag <color> some-
where in your template. This tag will be replaced by the actual rendered color specified by the options. How-
ever, the <color> tag must not be in one of the embedded formulas—it should only be in the HTML portion
of the template. For example, the <color> tag can be embedded in a <td> tag to specify the background
color of table cells.

The result is a nice, formatted table listing each hotel, with a different background color for each hotel.

Linking a Table or List with a Detail Form

A list can include links to detail pages, just like a table. For more information on setting up this type of link
see “Linking Individual Table Rows to Detail Pages” on page 421. Be sure to include <link> and </link>
tags in the template for displaying the list.

Chapter 10: Processing Web Forms

The previous chapter dealt with outputting information from Panorama to a web browser. This chapter cov-
ers the flip side — processing data that has been input into a form on a web browser.

An HTML web form contains one or more items that the user can fill in. Once the items are filled in the user
presses the Submit button to send the items to the server.

Each form item consists of two components: the item’s name and the value. The name is set up in advance by
the designer of the form. The name is invisible and can’t be seen by the person filling in the form (the form
designer can add a caption to identify each item for the person filling in the form, but the caption doesn’t
have to match the actual item name. For example the form designer can call an item intended for inputting a
phone number ZrGGuXX if they wish.)

The item’s value is filled in by the user, either by typing it in, choosing from a pop-up menu or list, or check-
ing a box or radio button.

When working with Panorama Enterprise Server the easiest way to set up web forms is to create them with
Panorama’s graphics editor (see “Web Forms” on page 231). Panorama will take care of setting up all of the
HTML tags for the form, freeing you to concentrate on the design itself. However it is possible to hand code
the form in HTML yourself. If you want to do that, see “Rendering Using an External Text File as a Template”
on page 483 for some special tips on the formatting needed for Panorama.

Page 434 Panorama Handbook
Accessing Web Form Information

The first step in processing the information from a web form is gathering the information into Panorama
fields and/or variables. Web form items can be processed individually or in batches.

What Form was Submitted? (The WebFormName() Function)

It’s possible to write a single web procedure that is assigned to more than one web form. In that case the pro-
cedure will need to know what web form is being submitted. If the web form was created in Panorama (see
“Converting a Panorama Form into a Web Form” on page 231) then the procedure can find out what form
was submitted using the webformname() function.

if webformname() = "New"
...

endif
if webformname() = "Renewal"

...
endif

If you did not use Panorama to create your forms you’ll need to come up with some other method to identify
which form is being submitted, perhaps with a hidden field (see below).

What Items were Submitted? (The WebFormItems() Function)

The webformitems(function returns a list of the names of all of the form items submitted to the server. The
list returned is a carriage return separated array. Here is a code fragment that calculates how many form
items were submitted.

local itemCount,itemNames
itemNames=webformitems()
itemCount=arraysize(itemNames,cr())

You probably won’t use the webformitems(function much because you usually design the forms yourself
and already know the names of the form items. However, it can be very useful if you write subroutines that
are used to process more than one web form.

Hidden Items

In addition to normal visible data values (text editing cells, checkboxes, radio buttons, etc.) web browsers
also support hidden values. These values are generated when the web form is displayed, then stored invisi-
bly within the web form and submitted with the other data values when the Submit button is pressed. Essen-
tially these hidden values allow the server to pass values to itself, allowing it to remember a value or
calculation from a previous interaction with the server. For example a hidden value could contain the time
the form was displayed, allowing the server to calculate how long it took you to fill in the form.

If you are building your web form in Panorama you can use the Hidden Fields command in the Web sub-
menu of the Setup menu to create one or more hidden form items (see “Hidden Data” on page 271). If you
are building your web form using some other tool you’ll need to use an <INPUT> tag for each hidden item.
The type of the tag must be set to hidden, and it must include the name and value of the item. Here are a cou-
ple of examples.

<INPUT TYPE=hidden NAME=recipient VALUE="mjd@help.com">
<INPUT TYPE=hidden NAME=subject VALUE="Feedback on your help system">

Chapter 10:Processing Web Forms Page 435
There are three special functions for finding out what visible and hidden items were submitted in the form.

Note: Except for webformallitems(), these functions only work when using web forms that have been
created with Panorama. They will not work with forms you have hand-coded yourself in HTML.

Accessing Form Item Values in a Formula

The webformitemvalue(function gets the value of any form item. It has one parameter, the name of the
form item.

webformitemvalue(item)

This function can be used in any Panorama formula in your web procedure.

cgiHTML=webformitemvalue("Name")+" lives in "+
webformitemvalue("City")+", "+webformitemvalue("State")

The output of this function is always text. If you need to use the value as a number you must convert it to a
number with the val(function.

Assigning a Web Form Item Value into a Panorama Field or Variable

The webformitem statement gets the value of any form item, then assigns that value to a variable or a data-
base field.

webformitem item,fieldorvariable

The name parameter is the name of the form item you want. The fieldorvariable parameter is the name of a field
or variable where the value of this item should be stored. For example here is a simple procedure for adding
a new record to a web based guestbook.

addrecord
webformitem "Name",Name
webformitem "City",City
webformitem "State",State
webformitem "Country",Country
webformitem "Email",Email
webformitem "Name",Name

Note: The webformitem statement will automatically convert data into the proper format for storage into a
text, numeric or date field. If the data submitted in the form is not the proper format (for example if the user
types tree for a number or date field) webformitem will simply leave the field or variable empty.

Assigning Multiple Items into Multiple Fields and/or Variables

The previous example used seven lines to add a new record to a database from the data in a web form. With
the grabwebformitems statement this can be reduced to only two lines:

addrecord
grabwebformitems “assign=FIELDS”

webformvisibleitems() This function returns a carriage return delimited list of the visible items in
the form submitted to the server.

webformhiddenitems()

This function returns a carriage return delimited list of the hidden items in
the form submitted to the server. (However, it does not include several spe-
cial hidden items that Panorama itself generates, only hidden items that you
have created.)

webformallitems()
This function returns a carriage return delimited list of the all items in the
form submitted to the server. This includes visible items, hidden items you
have created, and special hidden items that Panorama itself generates.

Page 436 Panorama Handbook
This statement will automatically take all of the visible form item fields and assign them to the corresponding
database fields, just as if the webformitem statement had been used over and over again. (For this to work,
the web form item names have to be the same as the database field names.)

The grabwebformitems statement has one parameter, a list of options in option=value format. There are
three possible options: items, assign and variables.

grabwebformitems “items=type/list assign=type variables=type”

The items option specifies what web form items to “grab” and assign to fields and/or variables. If this option
not specified then all visible items will be processed. You can specify a list of items (comma separated), or you
can specify "visible", "hidden" or "all". Here are some examples:

grabwebformitems “items="Name,City,State,Country,Email,Name"“
grabwebformitems “items=Visible“
grabwebformitems “items=all“

The assign option specifies whether to grab the values into fields, into variables, or both. There are four pos-
sible choices: fields, variables, noconflictvariables, or any.

The variables option specifies what type of variable should be created: local (the default), fileglobal, global
(not usually recommended) or permanent.

To illustrate the grabwebformitems statement we’ll start with this web form. The form has two items, min-
Price and maxPrice.

Option Description

fields
If this option is used the web form items will be assigned into corresponding
database fields. If there is no corresponding database field an error will occur
(which can be trapped with if error).

variables

If this option is used the statement will automatically create variables for each
of the specified web form items and then assign the item values to the vari-
ables. If a web form item has the same name as a database field a variable will
still be created, which may make it impossible to access the database field.

noconflictvariables

If this option is used the statement will automatically create variables for each
of the specified web form items and then assign the item values to the vari-
ables. If a web form item has the same name as a database field a variable an
error will occur (which can be trapped with if error). This is the default option
if no assign option is specified.

any
If this option is used any web form items that correspond to database fields
will be assigned to the those fields. Any remaining web form items will be
assigned to variables, which will be automatically created if necessary.

Chapter 10:Processing Web Forms Page 437
Here is a three line procedure to select the requested property listings. The grabformwebitems statement
will automatically create fileglobal variables for minPrice and maxPrice.

grabformwebitems “items=visible assign=variables variables=fileglobal“
webselect Asking >= val("«minPrice»") and Asking <= val("«maxPrice»")
cgiHTML=renderwebtable("ListingTable")

Validating Data Entry (Error Checking)

In a perfect world users will always submit accurate data the first time. In the real world that often doesn’t
happen. In many applications you’ll want to check to make sure the submitted data is valid before you use it.
Panorama Enterprise has some special tools to help you do that.

To check the validity of a particular form item use the webformitemcheck statement. This statement has
three parameters.

webformitemcheck item,message,true-false formula

The first parameter, item, is the name of the web form item you want to check.

The second parameter, message, is text that you write to explain to the user what the problem is. Usually this
would be a short phrase or sentence, for example "The card number is invalid" or "Please enter both first and
last names". Later you’ll learn how this message can be displayed on the web page displayed to the user.

The final parameter is a true-false formula that decides whether the item is valid or not. The formula should
be true if there is a problem, false if everything is ok. Within the formula you can use the import() function
when you need the value of the item. (Of course you can also use the webformitem(function.)

Here’s a simple example that checks to make sure that a name has been entered:

webformitemcheck "Name","Please enter a name.",import()=""

Here’s a more complicated example that checks to make sure that the name contains at least two words and
doesn’t contain any non alphabetic characters (except for space):

webformitemcheck "Name",
"Please enter a valid name.",
wordcount(import())<2 or rangenotmatch(import(),"AZaz ")

How carefully the data is validated is up to you. The procedure can use multiple webformitemcheck state-
ment to check multiple web form items. (You should not, however, use more than one webformitemcheck
statement for a single web form item. If you do the webformerrors(function (see the next section) may not
list all of the errors.)

Generating a List of Data Entry Errors

A particular form can have multiple data entry problems. To generate a list of all the problems, use the
webformerrors(function. Here’s an example.

webformitemcheck "Name",
"Please enter a valid name.",
wordcount(import())<2 or rangenotmatch(import(),"AZaz ")

webformitemcheck "Card",
"Please enter a valid credit card number.",
cardvalidate(import())=false()

webformitemcheck "CardYear",
"Your credit card is expired or has an invalid expiration date.",
cardexpirevalidate(webformitemvalue("CardMonth"),import())=false()

cgiHTML=webformerrors("")
if cgiHTML<>"" rtn endif
...
... continue with data entry procedure
...

Page 438 Panorama Handbook
If there are problems with the credit card this procedure will display a list of errors that looks something like
this:

The webformerrors(function has one parameter, a pattern that specifies how the list of errors should be
formatted.

webformerrors(pattern)

If the pattern is empty, the list will be formatted as a carriage return separated array (one line per error).

If the pattern is "", the list will be formatted as an HTML unnumbered list (each item preceded with a
 tag). If you want a numbered list use "".

If the pattern is "<table>", the list will be formatted as an HTML table. You can include options inside the
table tag, for example "<table border=0 cellpadding=4>".

For even more control you can specify separate header=, footer=, prefix= and suffix= tags. The prefix and suf-
fix will be added to each individual error message. The header and footer tags will be added at the top and
bottom of the entire list. Here's an example for creating a custom html table:

webformerrors(|||header="<table border=0>" footer="</table>" prefix="<tr><td><font
face="Verdana" size=-1>" suffix="</td></tr>"|||)

You’ll probably want to give the user a bit more information about what to do next. Here’s one way to do
that.

cgiHTML=sandwich("Your form entries are incomplete or invalid:",
webformerrors(""),"Press the browser's BACK button to correct these problems.")

A better method is to re-display the original form with the error(s) displayed directly on the form. A tech-
nique for doing this is covered in a few pages (see “Identifying Items with Data Validation Problems” on
page 442).

Buffered Data Entry

So far in this chapter the techniques demonstrated have transferred data from the input form directly into
database fields. Another technique is to transfer the data first to a set of variables, then to the fields.

Chapter 10:Processing Web Forms Page 439
This buffered technique makes it easier to validate and pre-process the data before permanently storing it in
the database, and also enables a superior method for handling data entry errors and problems.

You can implement the buffered technique manually by defining the variables yourself (using fileglobal,
local, etc.) and then using individual assignments with the webformitemvalue(function to copy the form
data into the variables. I don’t know about you, but that sounds like way too much work! Fortunately Pan-
orama has some special statements that do most of the work for you. The first of these is the
grabwebformitems statement. This statement automatically grabs a bunch of form items, creates variables
for them, and copies the item values into the variables. To automatically copy all visible form items into a
buffer of variables all that is needed is this one simple line of code:

grabwebformitems ""

The variables created by this statement will have the same names as the input form items. For example, if
your input form has five items: Name, Address, City, State and Zip, the statement grabwebformitems ""
will essentially be the same as this short program:

fileglobal Name,Address,City,State,Zip
Name=webformitem("Name")
Address=webformitem("Address")
City=webformitem("City")
State=webformitem("State")
Zip=webformitem("Zip")

If your database already has fields named Name, Address, City, State and Zip, then these variables will con-
flict with the database fields. To eliminate this conflict you’ll need to add a prefix to each of the item names in
your form. Fortunately you don’t have to add this prefix this manually to each item — Panorama can do this
automatically when the form is rendered. To do this choose Customize Page from the Web submenu of the
Setup menu.

Page 440 Panorama Handbook
The second item in this dialog is the prefix that will be added to each visible item in the HTML version of the
form. If the prefix is set to web as shown below then Name will become webName in the HTML version, City
will become webCity, etc.

Be sure to re-render the form after changing the prefix.

The grabwebformitems statement has an optional parameter that allows you to customize the action of
this statement. For most applications you can simply leave this blank, as shown in the examples in this sec-
tion. See the Programming Reference wizard to learn more about these options and how they can be used.

Copying from the Variable Buffer into the Database

The next step is to validate the data and do any pre-processing required. For now we’ll skip over that step
and proceed directly to the last step, copying the data from the variables into the database itself. Again, this
could be done manually with a series of assignment statements, but Panorama has a special statement that
will do this for you: stashwebformitems. Here is a complete program that copies the form input into vari-
ables, then into a new record in the database.

grabwebformitems ""
addrecord
stashwebformitems

Of course we’ve already seen an even simpler program that does the same thing without the variable buffer
(see “Assigning Multiple Items into Multiple Fields and/or Variables” on page 435):

addrecord
grabwebformitems “assign=FIELDS”

So why use a variable buffer if it’s more complicated? Using a buffer makes data pre-processing and error
checking much simpler, as you’ll see in the following sections.

Chapter 10:Processing Web Forms Page 441
Data Pre-Processing in the Variable Buffer

Once the form input data is in the variable buffer you can easily work with it. Any changes you make in the
variables will ultimately be reflected in the final data placed in the database itself. Consider the following
form:

This form has a dozen items. The item prefix has been set to web, so these items are webAddress, webCity,
webAsking, webBedrooms, webBathrooms, webAge, webGarage, webStories, webAir, webFireplace, web-
Pool and webAgent. The procedure below grabs the web input into variables, then makes sure that the
address, city and agent name are properly capitalized. It also removes any non-numeric characters the user
entered into the # of bathrooms and age items. The pre-processed data is then entered into the database.

grabwebformitems ""
webAddress=upperword(webAddress)
webCity=upperword(webCity)
webBathrooms=striptonum(webBathrooms)
webAge=striptonum(webAge)
webAgent=upperword(webAgent)
addrecord
stashwebformitems

You can put any kind of pre-processing you want in between the grabwebformitems and
stashwebformitems statements.

Validating Data in the Variable Buffer

Data in the variable buffer can be validated with the webformitemcheck statement (see “Validating Data
Entry (Error Checking)” on page 437). You can use the import() function in the formula, or just use the vari-
able name. (Be sure to include the prefix in the item name.) Here’s an example.

webformitemcheck "webName",
"Please enter a valid name.",
wordcount(import())<2 or rangenotmatch(import(),"AZaz ")

webformitemcheck "webCard",
"Please enter a valid credit card number.",
cardvalidate(import())=false()

webformitemcheck "webCardYear",
"Your credit card is expired or has an invalid expiration date.",
cardexpirevalidate(webCardMonth),import())=false()

Page 442 Panorama Handbook
If there is an error the procedure can re-display the original form with the data the user entered. The user can
then modify the data so that it will be acceptable and re-submit it. Here is the code that re-displays the form
— this goes after the webformitemcheck statements and before the stashwebformitems statement.

if webformerrors("")<>""
 retrywebform
 rtn
endif

Identifying Items with Data Validation Problems. Of course if you simply re-display the original form the
user won’t have any idea what the problem is or why he or she is being asked to re-enter the same data again.
By slightly modifying the form we can alert the user to exactly what the problem is. Here’s an example of
what this will look like:

Chapter 10:Processing Web Forms Page 443
Here is the original Panorama form. As you can see, five objects were added to the form to display the error
information. All five of these objects are Text Display SuperObjects.

The small objects to the right of the fields display a ! symbol if there is a problem with that field (in a moment
we’ll show you how to display a graphic instead of the ! symbol if you wish). To do this, each object contains
a special function, webformitembang(, with the name of the corresponding item. (As you can see, the item
name must contain the prefix, in this case web.)

Page 444 Panorama Handbook
The webformitembang(normally doesn’t generate anything, leaving the object invisible. But if the
webformitemcheck statement has identified a problem with the corresponding item, the function will gen-
erate a ! symbol (also called an exclamation point or bang symbol). You can use Panorama’s font and color
tools to customize the appearance of the ! symbol. In this example we have set the color to red and the font to
Helvetica 18.

Displaying an Image Instead of an Exclamation Point. Instead of an exclamation point you may want to
display an image like this:

The first step is to obtain the image file in either .jpg or .gif format and copy it onto your web server. It needs
to go somewhere within the WebServer Documents folder (which you’ll find inside the Library folder on
your systems primary hard drive). In this case an image called red_circle_bang.jpeg has been placed inside a
subfolder (Images) of the Documents folder.

To use this image you need to add one line of code to your database.

webformitembang "/Images/red_circle_bang.jpeg"

Chapter 10:Processing Web Forms Page 445
This line can be placed just before the retrywebform statement, or it can be placed in the .ServerInitialize
statement. Once used, it will apply to all of the forms in this database unless you use another
webformitembang statement. You don’t have to change the forms at all (unless you need to adjust the lay-
out of the form objects to handle the size of the image). Here’s the finished result.

In this case the image was on the same web server as the Panorama Enterprise server. If the image is on a dif-
ferent server you can use the complete URL.

webformitembang "http://www.somedomain.com/Images/red_circle_bang.jpeg"

If you want this image displayed for errors in every web form in every database on your server, add the word
global before the URL.

webformitembang "global /Images/red_circle_bang.jpeg"

If you include this in the .ServerInitialize procedure of a database that gets loaded automatically when the
server starts up you’ll only need to include this line once to have it take effect globally across your entire
server.

Displaying Error Explanations. The webformitembang(function tells the user which form items have
problems, but doesn’t explain what the problems are. To display explanations you’ll need to use a separate
text display object with the webformerrors(function. This function will has one parameter, a pattern that
specifies how the list of errors should be formatted.

webformerrors(pattern)

If the pattern is empty, the list will be formatted as a carriage return separated array (one line per error).

If the pattern is "", the list will be formatted as an HTML unnumbered list (each item preceded with a
 tag). If you want a numbered list use "". For other pattern options see “Generating a List of Data
Entry Errors” on page 437.

Page 446 Panorama Handbook
To use this function simply include it in a Text Display SuperObject on the form.

If there are no errors this function will return an empty string, and this object will be invisible. But if there are
one ore more errors they will be displayed according to the pattern you have specified, like this.

Chapter 10:Processing Web Forms Page 447
If you want to add additional text you can do so with the sandwich(function.

The additional text will appear if there is an error, but will not appear if there is no error.

Like any other Text Display SuperObject you can specify the font, size and color with the Graphic Control
Strip or the Text and Graphics menus. In this example the object has been set to Verdana 12 red.

Pre-Filling Database Fields when Displaying a Form that uses Buffered Data Entry

In the previous chapter you learned how to pre-fill database fields when displaying a normal web form (see
“Pre-Filling Database Fields” on page 388). The exact same technique, using the renderwebform(function,
works when using a web form that uses buffered data entry.

Note: Behind the scenes, the renderwebform(function is actually creating fileglobal variables with the item
prefix for the form, filling these variables with data from the database fields, then using those variables to
pre-fill the form. This is all handled automatically for you, however, so you don’t need to worry about it at
all.

Page 448 Panorama Handbook
Non Data Entry Forms (Searching, Navigation, etc.)

The techniques described for buffered data entry can be adapted for use with forms that are not linked to
data entry into database fields. The illustration below shows a form designed to allow a user to view a range
of properties by price. There are four objects of interest on this form: two Text Editor SuperObjects for editing
the minPrice and maxPrice variables, and two Text Display SuperObjects for displaying any error that occurs
(see “Displaying an Image Instead of an Exclamation Point” on page 444 and “Displaying Error Explana-
tions” on page 445).

Here’s the procedure that handles this form when the Search button is clicked.

The procedure starts by getting the values the user types into Panorama variables:

grabwebformitems ""

Chapter 10:Processing Web Forms Page 449
This line will create two fileglobal variables, minPrice and maxPrice, and fill them with the input data from
the form. By the way, theses variables now contain text, not numbers. The val(function must be used to
convert these into numbers, as you’ll see later in this procedure.

The next line uses checks to make sure that the maximum price is larger than the minimum price.

webformitemcheck "maxPrice",
"Maximum price must be greater than the minimum price!",
val(maxPrice)<val(minPrice)

The next four lines re-display the form (see “Validating Data in the Variable Buffer” on page 441) if the maxi-
mum price is not larger than the minimum price. The second line (highlighted in orange) tries to help the
user by pre-filling the new maximum value with whatever the user entered for the minimum plus 10000.

if webformerrors("")<>""
 maxPrice=str(val(minPrice)+10000)
 retrywebform
 rtn
endif

If the minimum is greater than the maximum the form will be re-displayed like this:

Otherwise the final two lines of the procedure will come into play.

webselect Asking >= val("«minPrice»") and Asking <= val("«maxPrice»")
cgiHTML=renderwebtable("ListingTable")

These lines select the matching properties and display them in a table.

See “What Records are we Talking About? (The WebSelect Statement)” on page 413 and “Generating HTML
Tables Using a Web Table Template” on page 414.

Page 450 Panorama Handbook
Pre-Filling Non Data Entry Forms

A web form that uses variables instead of fields normally comes up blank. You can, however, write a proce-
dure that pre-fills these variables. Here’s what such a procedure would look like for the search form intro-
duced in the previous section. The procedure uses renderwebformwithvariables(function instead of
the renderwebform(function that is normally used. This function has one additional parameter, a comma
separated list of variables. (Note: This list is based on a formula, which usually means that it must be quoted,
as shown below).

When this procedure is run the form appears on the user’s browser with the minimum and maximum values
already filled in.

The user can then modify the values as necessary and press the Search button to perform the search.

Chapter 10:Processing Web Forms Page 451
Using Cookies to Remember Form Values

With a small amount of extra effort you can use cookies to remember the values of one or more variables from
the last time a form was used. No changes to the form are required. In this example, one line of code is added
to the end of the search procedure to save the minimum and maximum values for the next time the form is
used. The minimum and maximum could be stored in separate cookies, but this procedure combines them
into one cookie with a comma between the values.

The procedure that originally displays the form requires six new lines. This code tries to load the cookie value
into a local variable, and if successful, initializes the minimum and maximum variables.

Once these changes are made the form will “remember” the minimum and maximum values if the form is
used from the same browser on the same computer. Each time a new search is started the default min and
max will be the same values used the last time you searched. To learn more details about cookies see “Work-
ing with Cookies” on page 453.

Page 452 Panorama Handbook

Chapter 11: Advanced Topics

This chapter covers advanced web programming topics that don’t fit in any of the previous chapters, includ-
ing cookies, custom HTML headers, non-HTML content, and simultaneously sharing and web publishing.

Working with Cookies

An HTTP cookie, or a Web cookie (also called simply a cookie), is a parcel of text sent by a server to a web
browser and then sent back unchanged by the browser each time it accesses that server. HTTP cookies are
used for authenticating, tracking, and maintaining specific information about users, such as site preferences
and the contents of their electronic shopping carts. Without cookies, each retrieval of a web page or compo-
nent of a web page is an isolated event, mostly unrelated to all other views of the pages of the same site. By
returning a cookie to a web server, the browser provides the server a means of connecting the current page
view with prior page views. (This paragraph was adapted from material found on Wikipedia. You can find a
lot more at http://en.wikipedia.org/wiki/HTTP_cookie).

Cookie Name and Value

A cookie has a name and a value. The name is used to identify the cookie, the value is the actual contents.
This is similar to a field or variable, which also have a name and a value.

Creating a Cookie

To create a cookie use the setcookie statement, which has four parameters:

setcookie name,value,expiration,options

The last two parameters are optional, but the first two are required. The first parameter is the name of the
cookie. This must contain only letters and numbers. The second parameter is the value of the cookie. Here are
some examples of how to create cookies:

setcookie "SalesTax","8.25"
setcookie "TableFontPref","Verdana"
setcookie "MyAreaCode","858"

Cookie Expiration Date

Cookies don’t last forever. In fact, if you don’t specify an expiration date for a cookie then it will disappear
when the user quits the browser. If you want to keep a cookie around for a while set an expiration date for it,
like this:

setcookie "SalesTax","8.25","12 hours"
setcookie "TableFontPref","Verdana","12 weeks"
setcookie "MyAreaCode","858","12 years"

Page 454 Panorama Handbook
In addition to the units listed above you can also specify the expiration time in seconds, minutes, and days
(but not months).

Cookie Options

This optional parameter allows you to add more options to the cookie. The best source of information we’ve
found for additional cookie options is at http://www.ietf.org/rfc/rfc2965.txt, however, please note that the
Panorama Server uses the original cookie format, not version 2 (it appears that the version of Apache shipped
with MacOS does not support version 2 cookies). In general you probably don’t need to worry about these
extra options.

Retrieving a Cookie Value

To get the value of a previously stored cookie use the getcookie(function. This function has one parame-
ter, the name of the cookie. Here are some examples.

local salestax,tablefont,phoneareacode
salestax=val(getcookie("SalesTax"))
tablefont=getcookie("TableFontPref")
phoneareacode=getcookie("MyAreaCode")

Listing Cookies

The getcookielist(function gets a list of all cookies that have been stored by this server. It has no param-
eters.

local myCookies
myCookies=getcookielist()

Building a Very Simple Shopping Cart

One of the most common uses for cookies is to build a shopping cart for ordering items from a catalog. In the
following sections we’ll examine the basic principles of creating a shopping cart using cookies.

The contents of this example shopping cart will be stored in a cookie named HobbyShopCart. Within this
cookie each line item is stored as a separate line. Within each line there are three columns separated by tabs:
Quantity, Item and Price. A typical HobbyShopCart cookie would look something like this:

1 Southern Pacific 50' Box Car 11.19
1 Amtrak Genesis 47.99
1 Southern Pacific 30' Gondola 13.69
1 ATSF 50' Box (Grand Canyon) 4.49

The following sections will describe three procedures for displaying and manipulating the shopping cart
cookie.

Chapter 11:Advanced Topics Page 455
Displaying the Shopping Cart

The routine CartDisplay displays the current contents of the shopping cart. The top section of the procedure
handles the cookie.

The procedure starts by using the getcookie(function to get the current contents of the shopping cart and
store it in the variable theShoppingCart. The cookie contains an array, so the procedure uses the
htmlarraytable statement to format the data as a table (see “Displaying an Array in a Web Form” on
page 411). The rest of the procedure uses ordinary techniques to calculate the total and render the page using
a form.

Page 456 Panorama Handbook
The form contains a Text Display SuperObject that displays the line items:

When this procedure is used the shopping cart is displayed on the browser.

Text Display Super-
Object displays the
ShoppingCartItems
variable.

Chapter 11:Advanced Topics Page 457
Adding a New Item to the Cart

To add a new item to the shopping cart the first step is to select the item from the database. Usually this is
done by some sort of search, which is covered elsewhere in this handbook. Once the item is located the web
page displaying the item will have a link or button for adding the item to the shopping cart.

In this example the link has been created with a Text Display SuperObject (see “Linking to Panorama Proce-
dures (from a Panorama Form)” on page 261). Here’s the formula used in this object.

Page 458 Panorama Handbook
This link triggers the CartAddItem procedure, which contains the code which actually adds the item to the
shopping cart.

The procedure starts by selecting the database record (see “What Record Are We Talking About?” on
page 395).

weburlselect cgiExtraParameters

Next it builds the new line that it will add to the cookie, using the format described in “Building a Very Sim-
ple Shopping Cart” on page 454.

item=Item
price=Price
newCartLine="1"+¬+item+¬+pattern(price,"$#.##")

The next step actually updates the cookie. First it reads the cookie into a variable (see “Retrieving a Cookie
Value” on page 454), then it adds the new line, and finally it writes out the new cookie (see “Creating a
Cookie” on page 453).

theShoppingCart=getcookie("HobbyShopCart")
theShoppingCart=sandwich("",theShoppingCart,¶)+newCartLine
setcookie "HobbyShopCart",theShoppingCart,""

Chapter 11:Advanced Topics Page 459
The rest of procedure displays the updated shopping cart, and is almost identical to the CartDisplay proce-
dure described in the previous section.

Clearing the Shopping Cart

This procedure is very simple — it simply sets the cookie to "" and displays the empty cart. Make sure
there’s a link or button that triggers this procedure!

Page 460 Panorama Handbook
Accessing Additional Web Server Information

The webserverinfo statement allows you to access additional information about the web server and the
current browser request. This statement has two parameters

webserverinfo option,result

The second parameter, result, is simply the name of the variable to receive the information. The first parame-
ter, option, specifies what additional information you want to access. Choose from the options in the table
below. (Note: Some of these options may not be available on all servers, or when running the server simulator
described in the next chapter.)

Option Description Typical Value

"QUERY_STRING" The information (if any) following the "?" in the
URL for this request. ColradoHotels~byCity~Aspen

"SERVER_SOFTWARE" The name and version of the information server
answering the query. Apache/1.3.29 (Darwin)

"SERVER_ADDR" The IP address of the server for this URL. 207.35.76.24

"SERVER_ADMIN" The administrators e-mail address for this server (if
it has been set up. webmaster@myserver.com

"SERVER_NAME"

The servers host name, DNS alias or IP address.
(For Apache the name appearing on the relevant
ServerName directive (may be in the general sec-
tion or a <virtualhost> section).

www.myserver.com

"SERVER_PORT" The port number on this server to which this
request was directed. 80

"SERVER_SIGNATURE" The HTML string that may be embedded in the
page to identify this host.

Apache/1.3.29 Server at jim-reas-
computer.local Port 80

"REMOTE_ADDR" The IP address of the host making this request. 207.35.76.27

"REMOTE_PORT" The port number used by the remote host when
making this request. 4325

"REQUEST_METHOD" The method used for this request for HTTP "GET",
HEAD" or "POST" GET

"HTTP_ACCEPT" The MIME types the requestor will accept as
defined in the HTTP header. */*

"HTTP_ACCEPT_ENCODING" The compression types the requestor will accept as
defined in the HTTP header.

gzip, deflate;q=1.0, identity;q=0.5,
*;q=0

"HTTP_ACCEPT_LANGUAGE"
The LANGUAGE types the server is requested to
accept as defined in the HTTP header and typically
used for content negotiation.

en-us

"HTTP_CONNECTION" The type of connection as defined in the HTTP
header. Keep-alive

"HTTP_HOST" The base URL of the host. www.myserver.com

"HTTP_REFERER"

The URL of the page that made this request. If
linked from e-mail or manually entered this value
is NULL. (Depending on your server settings this
may be disabled, in which case the value will
always be NULL.)

http://www.samplesite.com/
stuff.html

"HTTP_USER_AGENT"

The browser id or user-agent string identifying the
browser (nominally defined by RFC 1945 and RFC
2068). For a list of current browsers see: http://
www.zytrax.com/tech/web/browser_ids.htm

Mozilla/5.0 (Macintosh; U; PPC
Mac OS X; en-us) AppleWebKit/
125.2 (KHTML, like Gecko) Safari/
125.8

Chapter 11:Advanced Topics Page 461
Non HTML Content Types (text/plain)

The response generated by a Panorama procedure is normally an HTML page. However, it is also possible to
render a plain text page. To do this change the cgiContentType variable to "text/plain".

When the browser receives this page it will display the text “as-is” using a monospaced font (the exact
appearance depends on your browser). Any HTML tags in the text will simply be displayed rather than be
interpreted to control the appearance of the page.

Advanced note: Theoretically it would also be possible to return other mime types, for example image/jpeg
or image/gif. However, we have not tested and don’t support any other mime types other than text/html or
text/plain. Unless you come up with some way to generate custom images on the fly you’ll be better off
using standard image files displayed via the HTML tag.

Page 462 Panorama Handbook
Custom Handling of Programming Errors

There are three possible types of errors that can occur when running a Panorama web procedure. 1) An error
will occur if the database specified by the URL doesn’t exist on the server, 2) An error will occur if the proce-
dure specified by the URL doesn’t exist on the server, or 3) The procedure itself contains a programming error
(for example it tries to access a variable that doesn’t exist). Panorama Enterprise’s standard method for han-
dling these situations is to display a web page describing the error (see “Web Procedure Errors” on page 342).

This standard error display page is helpful for tracking down problems, but you may not want to display that
much information on a production web site. You can customize the way Panorama Server responds when an
error occurs to display as much or as little information as you want. When a programming error occurs Pan-
orama looks in three places for code that will handle the error.

If the current database contains a procedure named cgiErrorHandler, that procedure will be exe-
cuted. (This will work for programming errors, but will not work if a URL specifies a database that
does not exist. In that case the standard error handling will be used.)

If a global variable exists named cgiGlobalErrorHandler, the text in that variable will be treated as a
procedure and executed.

If there is no cgiErrorHandler procedure and no cgiGlobalErrorHandler variable the server will dis-
play the standard error page shown above. You can customize the HTML and CSS templates used in
this situation by modifying the WebError.html and WebError.css files in the Templates folder inside
the Panorama:Extensions:Enterprise folder. (If you modify these files, be sure to keep a copy of your
modifications outside of this folder so that you can restore your changes the next time you update
Panorama.

Chapter 11:Advanced Topics Page 463
Writing a Procedure to Handle Programming Errors

If you write a cgiErrorHandler procedure or use the cgiGlobalErrorHandler variable, the code should gener-
ate a page in the global variable cgiHTML that will display the error in some form. Before starting the proce-
dure, Panorama sets up five global variables with information about the error that occurred.

Here is an example of a very simple error handling procedure.

Now suppose a procedure is run that has an error, like this procedure which tries to use two undefined vari-
ables (abc and xyz).

Instead of displaying the standard error page, the server will display this simplified error page.

Of course you’ll probably want to create a page a bit fancier than this! The point, however, is that you have
full control over the page that is displayed.

If you want to completely override the error page for every database on the server, include code like this in
the .InitializeServer procedure of a database that gets automatically opened when the server starts up.

global cgiGlobalErrorHandler
cgiGlobalErrorHandler=|||cgiHTML="A database error has occured."|||

The error handling procedure allows you to control the page that is displayed when an error occurs, but it
does not disable the servers normal error logging routine. The error will still be logged and can be viewed in
the Server Administration wizard, and if the option has been enabled an e-mail will be sent to the system
administrator.

Variable Description

cgiResponseError This variable contains the error message.

cgiErrorStatement This variable contains the statement that caused the error.

cgiErrorParameter This variable contains the parameter that caused the error.

cgiErrorStack

This variable contains and array that contains a line for each procedure
that is currently active (the current procedure and any procedures that
called it). Each line contains four entries separated by tabs: the procedure
name, the database name, the trigger for the procedure, and the location
of the error within the procedure (character count).

cgiErrorExecuteSource If the error was in an execute statement, this variable contains the source
of the executed code.

Page 464 Panorama Handbook
Opening and Closing Databases on the Server

Panorama normally takes care of opening and closing files on the server for you — you don’t have to worry
about it. When a web URL references a database that database is automatically opened (if it isn’t opened
already).

However, occasionally you’ll need to explicitly open a database. The most common reason to do this is to use
the lookup(function. Panorama does not automatically open databases that are referenced by a lookup(
function, you’ll need to do that yourself with the openserverfile statement. When your done you can
close the database with the closeserverfile statement.

The openserverfile statement has one parameter, the name of the database to open.

openserverfile filename

Unlike the openfile statement, the filename must be only a filename — you cannot specify an alternate
folder. The openserverfile statement will make sure that the database is opened in a manner consistent
with the Panorama Server's normal practices for opening databases. It’s ok if the database is already open,
the server will handle that properly. (For debugging, the openserverfile statement can also be used on a
normal copy of Panorama. In that case the target database must be in the same folder as the current data-
base.) The database will not open with it's normal windows, but only with the data sheet in the upper left
hand corner of the display. When a database is opened with openserverfile the .Initialize procedure is
not called. However, if the database has a .InitializeServer procedure, it will be called.

When your done with a database you can use the closeserverfile statement to close it. If a web proce-
dure needs to closes a shared or web published database (any database that has been uploaded to the server
with the Database Sharing Options wizard) it should use this statement instead of the closefile statement.
The closeserverfile statement makes sure that the database is closed in a manner consistent with the
Panorama Server's normal practices for closing databases (in fact, if the database is shared and other users are
currently accessing the database, it will not close). For debugging, the closeserverfile statement can also
be used on a normal copy of Panorama. In that case it will simply close the database.

Chapter 11:Advanced Topics Page 465
Combining Web Publishing with Database Sharing

If a database has both the sharing and web publishing options enabled that database can be simultaneously
accessed by Panorama users and over the web. Any changes made with the web interface will automatically
appear in Panorama clients the next time they are synchronized, while changes made using the Panorama
interface will immediately appear when the database is accessed from a web browser (no synchronization is
needed in this case since the web interface accesses the server directly). In most cases you don’t have to
worry about any of this, simply write your web procedures as described in this chapter and everything will
work fine.

Web Publishing vs. Record Locking

Panorama Enterprise’s web publishing interface does not automatically do record locking. A web user can
modify a record even if it is currently locked by a Panorama user, and a Panorama user can lock a record that
is currently being edited by a web user. (In addition, two web users can both edit the same record simulta-
neously). In each of these cases the “winner” will be whoever changes the record last.

Manually Locking and Unlocking Records

A web procedure can use the webshare statement to manually lock or unlock a record. For example, if a pro-
cedure displays a form that allows a user to edit a record it can also lock the record.

weburlselect cgiExtraParameters
webshare "lock"
if error
 /* record was already locked, so we can’t edit it now */

cgiHTML = renderwebform("Record Lock","")
 rtn
endif
cgiHTML = renderwebform("Edit Record","")

The procedure that processes the data when the Submit button is pressed must unlock the record.

webformtodatabase “whatrecord=record_id”
webshare "unlock"

However, there’s potentially a serious problem with this technique — what if the user never presses the
Submit button? If they walk away from the computer (or simply click away to another web page) the record
will never be unlocked, and no one else can ever edit it (though this can be cleared using the Server Adminis-
tration wizard, see “Forcing a Session to Close” on page 79). This is the reason why the web publishing inter-
face does not automatically lock records.

Checking Record Lock Status

The webshare statement can also be used to find out the status of locked records. Use the "locked" option to
find out if the current record is locked.

local rlock
webshare "locked",rlock
if rlock=true()
 /* uh-oh, this record is locked */
 cgiHTML = renderwebform("Record Lock","")
 rtn
endif
/* continue with program */

Use the "locklist" option to get a list of all currently locked records. This procedure selects all locked
records.

local busyrecords
webshare "locked",busyrecords
select arraycontains(busyrecords,str("serverrecordid"),¶)

Page 466 Panorama Handbook
This list will contain the record ID numbers of all currently locked records, one per line. (You can use the
info("serverrecordid") function to determine the record ID of the current record, as shown above.)

Running a Program Every Minute on the Server

Do you need to run code every minute on the Panorama Server, for example to run a daily report or perform
some similar task? We recommend that you avoid this if possible, but if you do need to do this you must pre-
fix your code with serverbackupcheck statement, like this:

ExecuteEveryMinute = {serverbackupcheck your ... code}

This insures that periodic events get logged, that you have error trapping for your periodic code, and that
server backups work. (To enable logging of periodic events you must put “periodic” or “all” in the < SHARE-
LOGACTIVITIES > list.) If your periodic code contains an error or displays an alert this will be trapped and
logged and an .xlg file will be created. All periodic activity is also logged in the debug point logs of recent
activity (.dbg files).

Chapter 11:Advanced Topics Page 467
Web Based Data Entry with the WebFormToDatabase Statement

The most basic application for web based forms is data entry - adding new entries to a database. Chapter 10
covered several techniques for getting data from a web form into Panorama, including our preferred tech-
nique, data entry buffered through variables (see “Buffered Data Entry” on page 438). The following sections
describe another technique for performing web based data entry using the webformtodatabase statement.
This statement was originally developed for a predecessor to Panorama Enterprise (called PanSTAR). The
advantage of this statement is that it is quite easy to user — if the item names in the submitted form match
the database names then webformtodatabase will do most of the work for you with a single line of code
(the item names will automatically match if you use a Panorama web form see “Web Forms” on page 231).
The disadvantage is that this statement is not as flexible as the techniques described in Chapter 10, especially
when it comes to reporting data entry errors (input validation). For new applications we recommend that
you use the techniques described in Chapter 10. However, the webformtodatabase statement is still
included in Panorama Enterprise Server for compatibility with older databases.

The operation of the WebFormToDatabase statement is very simple. The statement scans the items submit-
ted to it from the browser, checking items that match a database field. For each match it copies the submitted
data into the database. That’s why it’s so important that the field names in your form match the field names
in the database. If they don’t match, the WebFormToDatabase statement won’t update the database with
those values.

Page 468 Panorama Handbook
The WebFormToDatabase statement has one parameter, a list of options that customize the operation of the
statement. For example the options can be used to specify whether the submitted data should be entered into
a new record or into an existing record. Add one or more of the options listed below to customize data entry.

Option Description

whatRecord=option This option controls what record in the database is modified. There are five options:

add - Add a new record (this is the default if no option is specified, see “WebFormTo-
Database — Adding a New Record” on page 472).

record_id - Update the current record based on an embedded record id (see “Web-
FormToDatabase — Modifying an Existing Record with Embedded Record ID” on
page 477).

active - Update the current record, whatever that happens to be (be careful!!). (See
“WebFormToDatabase — Modifying an Existing Record” on page 476.)

find - Find the record to update based on the key field(s). (See “WebFormToDatabase
— Modifying an Existing Record” on page 476.)

select - Select the record to update based on the key field(s). (See “WebFormToData-
base — Modifying an Existing Record” on page 476.)

findadd - Find record based on the key field(s). If it is not found, add a new record
(See “WebFormToDatabase — Modifying an Existing Record” on page 476.)

selectadd - Select record based on the key field(s). If not found, add a new record (See
“WebFormToDatabase — Modifying an Existing Record” on page 476.)

formdump - This option doesn’t actually modify the database, just displays the sub-
mitted items. This is useful for debugging. (See “WebFormToDatabase — Displaying
Form Items” on page 471.)

keyfield=field This option defines a key field to be used with the find, select or findadd options. You
may define more than one key field. The keyfield is discussed in more detail later in
this section (see “WebFormToDatabase — Modifying an Existing Record” on
page 476).

upper=field This option specifies that one or more fields must be automatically capitalized to all
upper case (see “Forcing Input to Upper or Lower Case” on page 473). For example,
the word computer would be converted to COMPUTER. You should have one upper=
option for each field you want capitalized, for example:

upper="State"
upper="Country"

upperword=field This option specifies that one or more fields must be automatically capitalized to Ini-
tial Caps (see “Forcing Input to Upper or Lower Case” on page 473). For example, the
word computer would be converted to Computer. You should have one upperword=
option for each field you want capitalized this way, for example:

upperword="Name"
upperword="Company"
upperword="Address"

lower=field This option specifies that one or more fields must be automatically converted to all
lower case (see “Forcing Input to Upper or Lower Case” on page 473). For example,
the word COMPUTER would be converted to computer. You should have one
lower= option for each field you want capitalized this way.

Chapter 11:Advanced Topics Page 469
required=field This option specifies that a field is required. If a required field is not entered (left
blank) the procedure will not update the database. Instead, it will display an error
message in the browser. The default message is shown below, but you can create your
own custom message using the missingFieldError tag (see below).

You may specify as many required fields as you like. For more information on this
option, see “Checking for Missing Fields” on page 473

missingFieldError=
msg

This option controls the error message to display if a required field was not entered.
You can insert a list (formatted) of the missing fields with the special
<missing> tag. For example:

missingFieldError=
 {Please go back and enter these fields!<p><missing>}

autosave=yes/no This option controls whether the webformtodatabase statement saves the database to
disk after it has been updated. If the database is a shared database this option should
be left off (and will default to no). If the database is not shared the default is yes. See
“Saving the Modified Database” on page 476 for more information.

responsePage=html The WebFormToDatabase statement automatically generates a response page to dis-
play the result of the update to the user. This response is placed in the cgiHTML vari-
able. The responsePage option allows you to control the content and appearance of
this response page. If you don’t want an automatic response page generated, set
responsePage={-}. For a simple canned text message, just type in the message:

responsePage=
 {<center>Thank you for your submission.</center>}

The responsePage can include information about the update that was just performed -
how many fields were updated, what fields were updated with what values, etc. Use
these special tags to insert this information:

<fieldcount> - number of fields modified (example 6 fields)
<fields> - list of fields/values, in … list format
<database> - name of the database that was updated
<extras> - information about any extra form fields that were ignored (see the
extraPages option below)

Here is a simple example of how these special tags are used.

responsePage=
 {Thanks for your contribution to the <database> database!
 <p>Here’s the data you entered:<fields>}

Option Description

Page 470 Panorama Handbook
extraPage=html The WebFormToDatabase statement automatically scans the fields passed to it from
the form and updates the corresponding database fields. There may, however, be
additional fields in the web form that do not correspond to any database field. If this
occurs, the response page can include this information to warn the user that some of
the input was ignored. This extra response is placed in the <extras> tag of the respon-
sePage (see above). If you don't want any error message to be displayed at all, set the
extraPage option to a single dash

extraPage="-"

The extraPage option allows you to control the content and appearance of this portion
of the response page. For a simple canned text message, just type in the message:

extraPage=
 {<p>Warning: One or more form fields ignored!}

The extraPage can include information about the extra fields that were ignored. Use
these special tags to insert this information:

<fieldcount> - number of fields that were ignored (example 6 fields)
<fields> - list of ignored fields/values, in … list format

Here is a simple example of how these special tags are used.

extraPage={<p>Warning: <fieldcount> ignored!}

Of course if your form and database are designed correctly you should never need to
use this option. However, it can be useful for debugging your procedures.

notFoundError=msg This option controls the error message to display if the find or select options don’t find
the requested record. For example:

notFoundError=
 {The record you tried to update for doesn’t exist!}

toManyError=msg This option controls the error message to display if the select options finds more than
one record that matches the key field. For example:

notFoundError={Can’t decide which record to update!}

Option Description

Chapter 11:Advanced Topics Page 471
WebFormToDatabase — Displaying Form Items

For debugging you may want to simply display the names and values of the form items that are submitted.
This can be easily done with a one line procedure.

webformtodatabase “whatrecord=formdump”

For example, suppose you have created a Panorama form like this:

Make sure that this form triggers the procedure (“Custom Form Actions” on page 254) and is uploaded to the
web server. When the Submit button is pressed the server will respond with a list of the fields on this form
along with their values.

When the formdump option is used the database isn’t actually modified — this option is strictly for debug-
ging.

Page 472 Panorama Handbook
WebFormToDatabase — Adding a New Record

It’s very easy to write a procedure to use a form to add a new record to the web database:

webformtodatabase “whatrecord=add”

In fact, this procedure can be even shorter!

webformtodatabase “”

When the Submit button is pressed the server will add a new record, then display a list of the fields that have
been updated.

If the database is shared you can see the new record by synchronizing the database (see “Synchronization” on
page 144).

Chapter 11:Advanced Topics Page 473
Setting up a Custom Response Page

As shown in the previous section the webformtodatabase statement will automatically generate a
response confirming that the new data has been entered. However, this response page isn’t very attractive.
There are several methods for generating a custom response page.

If the original data entry form was a Panorama generated web form you can specify that another web form be
used as the response page using the Form Action & Follow Up dialog (see “Setting Up a Custom Response
Page” on page 243).

If a follow-up form has been specified then the webformtodatabase statement will automatically use it
instead of the standard generic response.

If a followup form hasn’t been set up, or if you want to use a different form or generate custom HTML simply
program the response like any other web page (see “Generating HTML” on page 369). Here’s an example
that displays the web form Thanks! when data is submitted (see “Generating a Page Using a Panorama Form
Template” on page 379).

webformtodatabase “”
cgiHTML=renderwebform("Thanks!","")

Another way to generate a custom page is to use the responsepage option. Here’s a simple example.

webformtodatabase “responsepage={<center>Thanks!</center>}”

For more information about this option see the table above.

Forcing Input to Upper or Lower Case

Sometimes a particular field must be all upper case, or have the first letter of each word capitalized. For
example, US state abbreviations are always capitalized (AK, AZ, ... WA) while city names always have the
first letter capitalized (Anchorage, Bakersfield, Costa Mesa, etc.). The webformtodatabase statement can
automatically capitalize data before it gets entered into the database.

webformtodatabase “whatrecord=add upperword="Hotel" upperword="City" upper="State"”

If data must be forced to all lower case use the lower option.

Checking for Missing Fields

The webformtodatabase statement can check for missing fields — in other words if the user fails to enter
something important (like their name) it can refuse to update the database and display a page requesting that
they enter the missing information. To do this add one or more required tags with the field name, like this.

webformtodatabase “whatrecord=add required="Hotel" required="City"
 required="Phone" required="Rate" required="Units" ”

Page 474 Panorama Handbook
If you try to submit an empty form the server will complain:

The response shown above is the generic response from the server. You can also create a custom response
page. If you are using a Panorama web form for data entry then one method for doing this is to create another
Panorama web form for missing fields and then specify that form with the Form Action & Follow Up dialog
(see “Setting Up a Custom Response Page” on page 243).

Now if there are any missing fields the designated form will appear (as shown below). Hopefully you can
come up with a more graphically appealing form than this one!

Chapter 11:Advanced Topics Page 475
This form uses webformmissingfields(function to display a list of the fields that are missing. This func-
tion has one parameter, a template that the function uses to format the list. The template should contain the
tag <field>, and any other HTML tags you want to use to format the list. When the form is rendered the
template will be repeated once for each missing field, with the name of the missing field substituted for the
<field> tag. (Or you can use the template "", which produces a carriage return delimited array of the miss-
ing field names. If displayed as HTML this will appear as names separated by spaces.)

This table shows examples of different formulas using the webformmissingfields(function and the
resulting display on the missing item web page (the green background is from a rectangle object and has
nothing to do with these formulas).

If using the Missing Fields option in the Form Action & Follow Up dialog isn’t appropriate (for example if
you’re not using a Panorama web form you can include logic in your procedure using the
webformmissingfields(function to check for missing fields, and then take whatever action you like.

webformtodatabase “whatrecord=add required="Hotel" required="City"
 required="Phone" required="Rate" required="Units" ”
if webformmissingfields("")=""
 cgiHTML=renderwebform("Thanks!","")
else

cgiHTML=renderwebform("Error_MissingFields","")
endif

This example uses the renderwebform(function to display the response page, but you can use any of the
techniques described earlier in this chapter to render the page (see “Generating HTML” on page 369).

Formula Result

""+webformmissingfields("<field>")+""

replace(webformmissingfields("<field>, ")[1,-3],cr(),"")

"<table border=1>"+
webformmissingfields("<tr><td><field></td></tr>")+

"</table>"

webformmissingfields("")

Page 476 Panorama Handbook
Data Entry for Number and Dates

The webformtodatabase statement uses the val(function to convert numeric fields. There is no error
message if an invalid number is entered, however, any characters after the first non-numeric field will be
ignored.

The date(function is used to convert date fields. This means that you can use Smart Dates™ in your web
forms! Very cool.

Saving the Modified Database

The webformtodatabase statement modifies the RAM copy of the database. To make the change perma-
nent the database must be saved to the disk. There are several ways to do this. (Note: The following com-
ments apply to all changes made to a web published database, whether the changes are made using the
webformtodatabase statement or some other technique.

If the database is a shared database, you don’t need to do anything at all! The change is immediately recorded
on disk in the journal file, where it is safe even if server operation is interrupted for some reason (power fail-
ure, etc., see “Handling Interruptions in Server Operation (Crash Recovery)” on page 153). When the journal
file reaches a certain size the server will automatically save the database itself. This cuts way down on disk
activity since the entire database doesn’t have to be saved each time any change is made.

If the database is not a shared database then it should be saved every time a change is made. You can simply
include a save statement in the procedure itself, like this:

webformtodatabase “”
save

You can use an autosave option as part of the webformtodatabase statement, like this.

webformtodatabase “autosave=yes”

Finally, you can configure the database so that it is saved every time it is accessed from the web server (see
“Automatically save database after each access” on page 196).

WebFormToDatabase — Modifying an Existing Record

To write a procedure that modifies an existing record the procedure must somehow specify which record to
modify. One method to do that is to pre-locate the record with the find or select statements. This example
will locate the record containing Apple Computer and update it with the information submitted from the
form.

find Company="Apple Computer"
webformtodatabase “whatrecord=active”

Of course you probably don’t want to create a specific form and procedure just for updating the Apple Com-
puter record in your database! If the form contains a Company field the procedure could use the submitted
company name to determine what record to update, like this:

local whatCompany
whatCompany=webformitemvalue("Company")
 /* see “Accessing Form Item Values in a Formula” on page 435 */
find Company=whatCompany /* or you could use select here */
webformtodatabase “whatrecord=active”

There’s a simpler way to do this. Instead of the 4 lines above, you can let the webformtodatabase state-
ment locate the record for you. This example will do exactly the same operation as the example above.

webformtodatabase “whatrecord=find keyfield=Company”
 /* or you could use whatrecord=select */

Chapter 11:Advanced Topics Page 477
If necessary you can specify more than one key field. For example you might use the last name, company
name, and zip code as key fields in a contact or mailing list database.

Handling Missing or Ambiguous Records

Using the whatrecord=find and whatrecord=select options generally relies on the user accurately typing in
the key fields. For example, if someone types in Apple or Apple Inc instead of Apple Computer, the find will
fail. Later we’ll show a foolproof method to avoid this problem completely (see “WebFormToDatabase —
 Modifying an Existing Record with Embedded Record ID” on page 477), but for now lets look at methods to
handle this problem when using the key field technique for updating records.

One way to handle the situation is to simply decide that the user knows best and to automatically add a new
record if the submitted data doesn’t already exist in the database. To do this use either the whatrecord=find-
add or whatrecord=selectadd options. Here’s how one the findadd option would be used.

webformtodatabase “whatrecord=findadd keyfield=Company”

The problem with this idea is that you’ll quickly wind up with lots of extra records, so a more common
approach is to not modify the database at all and display a page with an error message. In fact, that’s what
the webformtodatabase statement will normally do when the whatrecord=find and whatrecord=select
options are used. You can customize the error page with the notfounderror option, like this:

webformtodatabase “whatrecord=findadd keyfield=Company
 notfounderror={<h1>Sorry, that company isn’t in the database!</h1>}”

If the whatrecord=select option is used then another possible error is that more than one record matches the
key fields (for example if the database contains two or more records for Apple Computer. In that case a differ-
ent error message is displayed, which can be customized with the toomanyerror option.

webformtodatabase “whatrecord=findadd keyfield=Company
 notfounderror={<h1>Sorry, that company isn’t in the database!</h1>}
 toomanyerror={<h1>Hey - there is more than one record for this company</h1>}”

For more control you can program a response to missing or ambiguous records. The cgiSelectedRecordCount
global variable will contain 1 if the update was successful, 0 if the record could not be found, or 2 (or greater)
if there were multiple records found. This example will display a Panorama web form if one of these errors
occurs.

webformtodatabase “whatrecord=select keyfield=Company”
if cgiSelectedRecordCount=0

cgiHTML=renderwebform("CompanyNotFound","")
endif
if cgiSelectedRecordCount>1

cgiHTML=renderwebform("CompanyDuplicates","")
endif

WebFormToDatabase — Modifying an Existing Record with Embedded Record ID

The technique for modifying an existing record in the previous section relies on the user typing in one or
more correct key fields to identify the record. A more reliable method is to embed record ID information in
the data entry form as it is being displayed. This is done automatically if the form is generated by the
htmldatatable statement (see “Linking Individual Table Rows to Detail Pages” on page 421). If the form is
generated some other way you’ll need to use the webformrecordid statement to embed the record ID into
the form being generated. If this database is shared, the only parameter needed by this statement is the name
of the field containing the HTML for the page. Here’s an example that displays a record in a form. The record
that will be displayed is determined by the extra parameters in the URL.

weburlselect cgiExtraParameters /* see “What Record Are We Talking About?” on page 395 */
cgiHTML = renderwebform("Invoice","")
webformrecordid cgiHTML /* add record id to form about to be displayed */

Page 478 Panorama Handbook
The user can now see the current information for the selected record in their web browser, then edit that
information and press the Submit button. Here’s the procedure that processes the submitted input and
updates the record:

webformtodatabase “whatrecord=record_id”

That’s it! The server will locate and update the record (unless it has been deleted, which can be handled by
checking the cgiSelectedRecordCount variable as described in the previous section).

If the database is not shared you’ll need to add additional parameters to the webformrecordid statement to
identify one or more “key” fields. (Do you get the idea that it’s really a good plan to used shared databases
for web publishing, avoiding lots of extra hassle?) The combination of all the key fields you specify should
uniquely identify a single record in the database. For example in an invoice database the InvoiceNumber
field probably uniquely identifies a record.

weburlselect cgiExtraParameters /* see “What Record Are We Talking About?” on page 395 */
cgiHTML = renderwebform("Invoice","")
webformrecordid cgiHTML,"InvoiceNumber" /* add record id to form about to be displayed */

If a single field won’t reliably identify a single record you can add more, as many as are necessary.

weburlselect cgiExtraParameters /* see “What Record Are We Talking About?” on page 395 */
cgiHTML = renderwebform("AddressUpdateForm","")
webformrecordid cgiHTML,"LastName","FirstName","LastName","City","State"

No matter how many key fields there are the procedure for processing the submitted form data doesn’t
change, in fact it is the same as the procedure for a shared database.

webformtodatabase “whatrecord=record_id”

Again, this procedure uses the embedded record ID to locate and update the correct record.

Manually Creating Web Forms for use with the WebFormToDatabase Statement

If you let Panorama create your web forms for you it will automatically set up all the fields in the correct for-
mat to be processed by the WebFormToDatabase statement. If you create your web forms externally (for
example using Dreamweaver or BBEdit) you’ll need to make sure that the form is created using the exact for-
mat required by the Panorama server. See “Rendering Using an External Text File containing a Form as a
Template” on page 484 for the exact details on how to do it. It’s important to get all the details exactly right or
the WebFormToDatabase statement may not be able to process the submitted data.

Chapter 11:Advanced Topics Page 479
Web Form Based Data Selection

Like the WebFormToDatabase statement, the WebFormSelection statement processes a form submitted
over the web from a browser. Instead of using the submitted information to update the database, the
WebFormSelection statement finds or selects a subset of the database. Often the WebFormSelection
statement is used prior to the htmldatatable statement to display a subset of the database in a table (see
“What Records are we Talking About? (The WebSelect Statement)” on page 413).

To use the WebFormSelection statement you must set up a form for searching. This form usually contains
several fields with the same names as database fields. Here’s a typical example.

An alternate technique is to set up a form with a single field named SearchAllFields.

Page 480 Panorama Handbook
Either way the form must be set up with a submit action that will trigger a procedure that contains a
webformselection statement (see “Custom Actions” on page 222). This statement processes the fields sub-
mitted from the form and scans the database to find records that match the submitted data. In it’s simplest
form the webformselection statement can be used with no options at all, like this:

webformselection {}
htmldatatable myTableOptions

This example displays the selected records in a list. For example, if the user had typed Boulder in the City
field a table something like this would be displayed.

By default the webformselection statement takes each entered item and checks for records that contain
that text (in the example above records where the City contains Boulder. If more than one item is entered then
only records that contain both will be selected, for example only records where the City contains Boulder and
the Railroad contains Santa Fe. If a field is numeric then = is used instead of contains, for example if the price
specified is 9 then only prices that are exactly 9.00 will match, not 99, 19 or 0.9. By adding options to the
webformselection statement you can change the way the statement looks for matching records. The table

Chapter 11:Advanced Topics Page 481
The WebFormSelection statement has one parameter, a list of options that customize the way the state-
ment looks for matching records. In the simple example above there were no options specified at all — the
example simply used the default behavior of the WebFormSelection statement. Add one or more of the
options listed below to customize the selection.

To illustrate these options, suppose a user submitted a search form with these values:

With no options specified the WebFormSelection statement will select all records where the last name con-
tains wilson and the state contains CA.

If a compare option is added like this:

webformselection {compare="="}

the statement will select all records where the last name equals wilson and the state equals CA. Since proba-
bly there are no wilson’s in the database, only Wilson’s, this search will probably turn up nothing. A better
search would be

webformselection {compare="match"}

The multiple option controls how multiple items interact. Here’s a modified procedure that uses or instead
of and.

webformselection {multiple="or"}

This statement will select all records where the last name contains wilson or the state contains CA., in other
words, everyone named Wilson and everyone in California.

Option Description

do=statement This option controls the statement used to find or select data. There are five choices.

select
selectwithin
selectadditional
find
findall

The default is select. Use selectwithin or selectadditional if you want to combine the
new selection with a previous selection in the same procedure. The findall option does
a selectall first, then does the find.

multiple=and/or This option controls how multiple fields will be combined in the selection formula.
The default is and.

compare=operator This option specifies the comparison operator that will be used in the selection for-
mula. Any Panorama comparison operator can be used, including =, <, >, ≤, <=, ≥, =>,
≠, <>, contains, match, beginswith, endswith, and soundslike. The default is contains.

For numeric or date fields, only the =, <, >, ≤, <=, ≥, =>, ≠ and <> operators are legal. If
you specify one of the other operators, = will be used for any numeric or date fields.
By the way, Panorama’s Smart Date™ feature will work with any date fields.

Page 482 Panorama Handbook
Searching All Fields

If the WebFormSelection statement detects a field named SearchAllFields in the submitted data it works
differently. In that case it ignores any other fields and only processes the SearchAllFields field. It searches the
database looking for any records that contain the contents of the SearchAllFields field in any database field.
Here’s an example of such a form.

If you’ve used the Live Clairvoyance wizard to set up custom search fields for the database (shown below)
the WebFormSelection statement will use this template to search the database instead of searching every
field.

See the documentation for the Live Clairvoyance wizard for more information.

Chapter 11:Advanced Topics Page 483
Rendering Using an External Text File as a Template

The rest of this manual assumes that you will create web forms with Panorama’s built-in form editor (“Con-
verting a Panorama Form into a Web Form” on page 231). When you take this approach Panorama will take
care of many of the details for you. However, it is possible to use a separate program for designing web forms
— Dreamweaver, GoLive, BBEdit, etc. The webmerge and webformmerge statements allow you to use your
favorite editor to build templates for pages generated by the Panorama server. To do this you’ll need to
upload the text files created by your editor onto the server. If the web page is only used for displaying data
you can use the webmerge statement. If the web page contains an HTML form with data that can be edited
and sent back to the server you’ll need to use the webformmerge statement.

The webmerge statement has three parameters: folder, template, and result.

Within the template file you can place Panorama formulas by enclosing them with ~{ and }~. The example
below, created with Dreamweaver, shows a web template with five formulas embedded in the page.

The template file can be stored anywhere on the server, but it is usually most convenient to upload it into a
subfolder of the web server’s home folder (along with all of the other HTML files that make up your web
site). This simple one line procedure will merge the fields into the template.

webmerge webhomesubfolder("Hotels"),"HotelTemplate.html"

Parameter Description

Folder This is the location of the template file, or "" if the template
is in the same folder as the database (the Public Database
folder). If the template file is in a subfolder of the Public
Database folder use the dbsubfolder(function, for exam-
ple dbsubfolder("Dreamweaver"). If the template file is
in a subfolder of Apache’s Document folder (the folder con-
taining the web site’s home page) use the
webhomesubfolder(function, for example
webhomesubfolder("Dreamweaver").

Template This is the name of the template file. (You can instead put the
actual template text itself in this parameter. If the folder is ""
and this parameter contains the text </ Panorama will
assume that this text is the actual template, rather than the
name of the template file.)

Result This is the name of the variable to receive the merged text. If
this parameter is omitted then the text will be placed in
cgiHTML.

Page 484 Panorama Handbook
Here’s the final result displayed in the browser.

When you use a template created in an external editor you cannot customize the HTML header using the
variables described in “Customizing the HTML Page Header” on page 373 (cgiPageTitle, etc.). These options
must be set up in the external editor (Dreamweaver, etc.)

Rendering Using an External Text File containing a Form as a Template

The previous sections described how to render a fixed, non-interactive web page. In this section we’ll show
how to render an externally created form which can not only display fields and variables, but can also allow
this data to be edited and sent back to the server. This is done with the webformmerge statement, which like
the webmerge statement merges fields and variables into a template. However, in addition to looking for
embedded formulas, the webformmerge statement works by locating all the form element tags (<input>,
<hidden>, <textarea>, <select>, etc.) in the template and adjusting them to display the fields and/or vari-
ables.

When you create the template you must make sure that each form element name is the same as the name of a
field or variable in the database (including upper or lower case). You also need to format your form element
tags according to the rules listed below. If these tags are not set up “just so” the webformmerge won’t work.
It’s not difficult, but you do have to follow the rules. (Keep in mind that all of the rules below are for forms
that you create by hand using an external editor. If you use Panorama to create your web forms all of this is
done automatically for you.)

Text input fields must be set up like this:

<input type="text" name="Field" value="" size=20>

In particular, the highlighted (red) portion of the tag must be exactly in this format. The name= parameter
must appear just before the value= parameter, with one space in between. Both name= and value= must be
in all lower case. You cannot omit value="" parameter. There must be quotes around the field name, and the
value must be "". The arrangement of the other options doesn’t matter.

Checkboxes and radio buttons must be set up like this:

<input type="checkbox/radio" name="Field" value="value"> value

Again, the highlighted (red) portion of the tag must be exactly in this format. The name= parameter must
appear just before the value= parameter, with one space in between. Both name= and value= must be in all
lower case. There must be quotes around the field name and the value . Do not include a checked option in
the tag - the webformmerge statement will do that for you. The arrangement of the other options doesn’t
matter.

Multiline input fields must be set up like this:

<textarea cols=40 rows=6 name="Field"></textarea>

Chapter 11:Advanced Topics Page 485
Once again the highlighted (red) portion of the tag must be exactly in this format. The name= parameter must
appear at the end of the tag, right before the >, and it must be quoted, and name= must be in lower case.
There must be no blanks between the > and </textarea>. The arrangement of the other options doesn’t
matter.

Pop-up menus and scrolling lists require a slightly non-standard format. The <select> tag is the same as
normal, but the <option> tags must be formatted like this:

<name="Field" option>value

The name= must appear just before option, with one space in between. Both name= and option must be in
all lower case. There must be quotes around the field name. There must be a carriage return after the value.
Here is an example of a pop-up menu that will work with the webformmerge statement.

<select size=1 name="Color">
<name="Color" option>Red
<name="Color" option>Blue
<name="Color" option>Green
<name="Color" option>Orange
<name="Color" option>Purple
<name="Color" option>Yellow
<name="Color" option>Gold
<name="Color" option>Silver

</select>

Page 486 Panorama Handbook
Here is an example of a complete form template. This template was created in BBEdit, and includes all seven
ColoradoHotels fields in the form. In the illustration below we’ve highlighted the form element tag for each
of these seven fields with a green box.

This simple procedure will fill in the form with the data for the current hotel. In this case the HTML template
file is in the Public Database folder, the same folder as the database itself.

Chapter 11:Advanced Topics Page 487
Here’s what this page looks like when it is rendered. The database values have been highlighted.

Page 488 Panorama Handbook
If you use the browsers View Source command you can see how the form element tags have been modified
to include the actual values from the database fields.

Remember, if you use Panorama’s graphic editor to create your web forms you won’t have to worry about
any of these details. Panorama will automatically build the tags for you in the proper format.

Chapter 12: Enterprise Sharing vs. But-
ler

This chapter is written for Panorama users transitioning from Butler to the new Panorama Enterprise Server
system. It describes the similarities and differences between the two systems, and explains how to convert
databases shared with Butler into the new system.

System Architecture

The basic architecture and operation of the Panorama Enterprise system the same as the original Panorama/
Butler system first introduced in 1996. Both systems use a distributed approach with multiple copies of the
database on the server and each client. Both systems perform data browsing, searching, sorting, calculating
and printing on the local RAM based copy of the database, while using the server for record locking and syn-
chronization. See “Database Sharing Concepts and Operation” on page 18 for a detailed description of this
system.

The difference between Panorama/Butler and Panorama Enterprise is in the implementation of this architec-
ture. The Butler system uses a disk based SQL database on the server, while Enterprise uses a RAM based
server on both the client and the server, with a journalling system to prevent data loss if there is any kind of
service interruption (power failure, crash, etc.). Switching to a RAM based server has three significant advan-
tages: speed, easier database setup, and more flexible data storage.

Speed

Because it is RAM based, the Panorama Enterprise Server is much faster than Butler, especially for mass oper-
ations like creating new shared databases, synchronizing, importing and appending records. For these opera-
tions the Enterprise Server gains speed not only because it is RAM based but because it can handle large
numbers of records as a single unit. For example, when creating a new shared database Butler would have to
handle each record separately, sometimes resulting in conversion times measured in hours. The Panorama
Enterprise Server processes the entire database as a single unit, eliminating the per record overhead.

In a single user Panorama database the Formula Fill operation is blazing fast, but in Butler this operation
slows to a crawl as each record is individually processed. The Panorama Enterprise Server still requires each
record to be individually processed, but is faster because it is RAM based. However, with a slight rewrite
most procedures that do formula fills can be dramatically accelerated using the serverformula fill state-
ment (see “ServerFormulaFill — A Much Faster Option for Select/Formula Fill Operation” on page 163).
While not quite as fast as a single user formula fill it is in the same ballpark.

Page 490 Panorama Handbook
Database Configuration

SQL disk based databases require more advance setup than Panorama’s RAM based databases. You need to
decide which fields should be indexed, and pre-define maximum field lengths. Panorama 3 and 4 have a
complicated dialog box for configuring these options, which you are undoubtedly familiar with:

Good news! This dialog is completely eliminated in the Panorama Enterprise system. Since the same RAM
based database structure is used on both the client and the server there is no advance configuration required
at all. Converting from a single user to shared database takes only seconds (plus the time needed to transfer
the data to the server, which, as described above, is much less than when using Butler).

Data Storage Flexibility

Panorama is very flexible in what it allows in database fields. Any text field can contain a virtually unlimited
amount of text (up to 4 megabytes) and can also contain binary (non ASCII) data, including nulls and other
non-printable data. Numeric fields can differentiate between zero and an empty cell.

Unfortunately, many SQL databases aren’t nearly as flexible. The Butler server required that you specify a
maximum field length in advance, and could not store binary data in a field. It also could not store an empty
numeric cell (only zero). These restrictions caused problems for many existing single user Panorama data-
bases.

Since the Enterprise Server uses a Panorama RAM based database on the server as well as the client, all of
these restrictions are lifted. The Panorama Enterprise system is just as flexible about what you put in data-
base fields as the single user version of Panorama. It allows unlimited length text, binary values in a text
field, and both zero and empty numeric values.

Client Subsets

The Panorama/Butler system allowed you to create “subsets” where some or all clients would only contain a
subset of the entire database, with only the server containing the entire database. The Panorama Enterprise
Edition Server does not support subsets -- all clients use the entire database.

Chapter 12:Enterprise Sharing vs. Butler Page 491
Converting from Butler to Enterprise Edition Server

To convert a database from Butler to Panorama Enterprise the first step is to convert the database into a single
user database. To do this, open the database with Panorama 3 or 4. Open the Design Sheet and then use the
Permanently Detach Server command (in the Server menu) to convert the database back into a single user
database. (You can do this even if you no longer have a Butler server available.) Once this is done save the
database and shut down (quit) Panorama 3 or 4. Then open Panorama 5.5 (or later) and convert the database
to shared using the Database Sharing Options wizard (see “Creating a Shared Database” on page 103).

Reprogramming your Application

Because the most common Butler programming statements also work in Enterprise, 99.99% of Butler shared
databases will work with Panorama Enterprise server with no changes. The LockRecord, LockOrStop,
UnlockRecord, ServerUpdate, ServerLookup, and ServerTimeout statements all work exactly the
same as they did under Butler, as do the info("servertimeout") and info("serverstatus") func-
tions.

The Panorama Enterprise server also includes a number of new programming capabilities, including the abil-
ity to set up server variables, the ability to find out what other users are currently using a database, the ability
to do fast formula fills, the ability to find out what records are currently locked and more. See “Saving the
Database” on page 152 for more information.

Page 492 Panorama Handbook

Chapter 13: Secrets of the
Enterprise Folder

Panorama Enterprise has a special folder it uses for storing configuration information, databases, logs, and
other data. This folder is inside the Extensions folder which is inside the Panorama application folder.

In general, you shouldn't need to mess with this folder or even look at it. However system administrators
may benefit from some knowledge of this folder, especially if there is some kind of problem.

Page 494 Panorama Handbook
cgi-bin

This folder is part of the Panorama distribution, don't modify or remove the contents of this folder. If the con-
tents of this folder are disturbed you won’t be able to enable web publishing or internet sharing without re-
installing the server.

Log Cache

On client machines this folder contains copies of logs downloaded from server (see “Monitoring Server
Logs” on page 82). It’s ok to delete old log files at any time.

Logs

This folder only appears on the server computer. It contains the original log files (see “Monitoring Server
Logs” on page 82). It’s ok to delete old log files at any time.

PanoramaCGI

This file is part of the Panorama distribution. It provides compatibility with databases created with the old
OS 9 WebSTAR/PanSTAR CGI system.

Public Databases

This folder only appears on the server computer. It contains all of the shared and web published databases,
along with configuration information. This folder contains three types of files.

Note: Shared databases can also be used for web publishing.

Databases are normally deleted from the server using the Server Administrator wizard (see “The Pop-up
Database Context Menu” on page 72). You can also delete a database from the server manually by simply
dragging it into the trash (or any other location). If you do this, be sure to remove both the database itself and
the corresponding .cfd file. If you do delete a database from the server this way we recommend that you do
so when the server is not running or when you are otherwise sure that the database is not currently in use.

ServerConfig.dat

This text file contains server configuration information. It is normally modified with Server Administrator
wizard. If you modify this file with a text editor we recommend that you keep a backup copy in case your
changes cause a problem. You will need to shut down and restart the server to cause your changes to take
effect.

ServerList.dat

This file contains information used to connect to internet based servers. The information in this file is man-
aged by the Available Servers wizard (see “Opening a Shared Database on the Internet” on page 116) and
should not be edited or modified.

Type Extension Description

Config .cfd Contains database configuration information. Every public
database (shared or web published) must have a a correspond-
ing .cfd file. You cannot edit these files.

Shared Database .ees Contains a Panorama database. In an emergency, this database
(or a copy) can be opened by a regular copy of Panorama by
change .ees to .pan. You should remove the database (or the
copy) from the Public Databases folder before you do this.

Web Database .pan or none Contains a normal Panorama database.

Chapter 13:Secrets of the Enterprise Folder Page 495
temp

This folder contains temp files used by server. You can erase the contents of this folder if neither client or
server is currently running on this machine (normally it should be empty anyway in that situation).

Page 496 Panorama Handbook

	System Requirements (Server)
	System Requirements (Client)
	System Configuration (Local Database Sharing)
	System Preparation (Database Web Publishing)
	System Preparation (Internet Database Sharing)
	Converting a Single User Database into a Shared Multi-User Database
	Shared vs. Single User Database Operation
	Converting a Shared Multi-User Database Back to Single User
	Removing a Database from the Server
	Chapter 1: Introduction
	Types of Networks
	Client/Server Modes
	Database Sharing Concepts and Operation
	High Performance
	Low Network/Server Load
	Offline Operation
	High Safety Margin
	Zero-Loss Interruption Recovery
	Automatic Live Backups
	Detailed Logging and E-mail Notification
	Rebuild from any client
	No delicate index to get corrupted
	How Distributed Data Sharing Works
	Opening a Database
	The Synchronization Process
	A Note about Time Stamps
	Editing and Record Locking
	Modifying Data Offline

	Database Web Publishing Concepts and Operation
	Panorama Forms on the Web
	Database Tables on the Web
	Custom Web Programming

	Chapter 2: Installation, Configuration & Management
	System Requirements
	System Preparation
	Setting up the Computer Name
	Enable Remote Apple Events
	Setting Up The User Account
	A Brief Introduction to Static IP Addresses
	Setting up a Server Directly Connected to the Internet
	Setting up a Server Connected to the Internet using a Router
	Enabling Internet Sharing
	Ensuring Nonstop Server Operation
	Enabling Remote Server Operation

	Installing the Panorama Server Software
	Launching the Server
	Shutting Down the Server
	Shutting Down the Server with Open Sharing Sessions
	Setting up Panorama Server to Launch Automatically
	Panorama Server Product Activation
	Panorama Server Licensing Options
	Panorama Client Licensing Options
	Panorama Server Demo Mode

	Basic Server Configuration
	Unlocking the Server Configuration
	Changing the Server Password
	Remembering the Password
	Changing the Auxiliary Passwords
	Changing the Server Name
	Local Network vs. Internet Settings
	Enabling Database Sharing
	Enabling Database Sharing over the Internet
	Enabling Database Web Publishing
	Setting the IP Address/Domain Name
	Locking the Server Configuration

	Client Configuration
	Configuring Local Database Sharing
	Configuring Local Database Sharing to use TCP/IP instead of Remote Apple Events
	Configuring Bonjour
	Bonjour Threshold
	Locking the Bonjour Configuration
	Debugging Local Database Sharing Connection Problems
	Configuring Remote (Internet) Database Sharing
	Further Testing the Sharing Connection
	Testing Web Database Publishing (Server Status)
	Restricting Access to the Server Status and Database Web Link Pages

	Server Management (The Server Administration Wizard)
	Choosing the Server to Manage
	Updating the Snapshot
	Server Snapshot Information
	Server Database List
	Listing Database Users
	Forcing a Database to Close
	Listing Locked Records
	The Pop-up Database Context Menu
	Database Online/Database Offline
	Display Users
	Delete From Server
	Browse Database Web Links
	Close Database
	Adjusting the Table Size
	Disabled Sharing/Web Publishing Warning
	Server Memory Usage
	Adjusting Panorama’s Memory Allocation
	Active Session List
	Listing Open Databases
	Forcing a Session to Close
	Adjusting the Table Size
	Memorizing Server Passwords
	Changing the Auxiliary Passwords
	Monitoring Server Logs
	Viewing a Log
	Searching the Log
	Viewing a Different Log
	Refreshing the Log
	Server Log Configuration

	Configuring the Notification Wizard
	When does the Notification Wizard appear?
	Using Growl for Notifications
	Using the Notification Wizard in your own database applications

	Advanced Server Configuration
	Notification Options
	Configuring an Email Channel
	Backup Options
	Advanced Options
	Automaticaly Unlock Records
	Rebound After Server Crash
	Ask to Confirm Before Quitting Server
	Automatically Hide Server When Launched
	Enable Server Activity Indicator
	Internal/Debug Options
	Editing the Server Configuration Text File (For Experts Only)
	Editing the ServerConfig.dat File Directly on the Server
	Server Configuration Tags

	Chapter 3: Online Database Sharing
	Creating a Shared Database
	Duplicate Database Conflicts on the Server
	Transferring the Database to Other Client Computers
	Using the Download Shared Databases Wizard
	Downloading Offline Databases
	Downloading with the Server Administration wizard.
	Transferring the Database Manually

	Opening a Shared Databases
	Debugging Local Database Sharing Connection Problems
	Opening a Shared Database on the Internet
	Connecting an Already Open Database to the Server
	Disconnecting from a Server

	Changing the Design of a Shared Database
	Sharing “Generations”
	Starting a New Sharing Generation
	Adding and/or Removing Fields
	Uploading the New Sharing Generation
	Distributing the New Database Generation to All Clients
	Design Changes to Forms (Graphics) and/or Procedures (Programming)
	New Sharing Generation Options and Advanced Topics
	Synchronization vs. Force Sync
	Removing Sharing History
	Making a New Sharing Generation Manually
	Take the Database Offline
	Synchronize/Force Sync
	Download Server Variables
	Convert Local Copy of Database to Single User
	Make Design Changes
	Remove Sharing History (Optional)
	Re-Share & Re-Upload Database
	Distributing the New Shared Generation of the Database

	“Unsharing” a Shared Database
	Forcing a Shared Database Back to Single User
	Permanently Deleting a Database from the Server

	Shared vs. Single User Database Operation
	Editing Data and Record Locking
	Record Lock Timeout (Client)
	Changing the Record Lock Timeout
	Record Lock Timeout (Server)
	Locked Records Wizard
	Finding a Locked Record
	Manually Unlocking a Record
	Manually Unlocking All Records in a Database

	Synchronization
	Synchronization and Record Order
	Regular Synchronization vs. Force Synchronization

	Adding New Records
	Deleting Records
	Working With Summary Records
	Toggling Summary Records (not!)

	Automatic Record Numbering
	Manually Changing the Record Number Counter
	Accessing the Next Record Number in a Procedure

	Saving the Database
	Revert to Saved
	When does the Server Save?
	Handling Interruptions in Server Operation (Crash Recovery)

	Programming Shared Databases
	Record Locking
	Implicit Record Locking
	Explicitly Locking/Unlocking Records in a Procedure
	What Records are Locked?
	Forcing the Server to Unlock All Records
	Forcing the Server to Unlock a Specific Record
	Forcing the Server to Lock a Specific Record
	Temporarily Disabling Record Locking (and Server Updates)
	The info("serverupdate") Function
	Synchronizing
	Force Synchronization
	Automatic Pre and Post Synchronization Procedures
	Server Variables (Shared Variables)
	Accessing Server Variables
	Adjusting a Server Variable (Atomic Calculation)
	Maintaining Server Variables when a database is Re-Shared
	Data Transformations
	Minimizing the amount of data changed by Fill commands
	ServerFormulaFill — A Much Faster Option for Select/Formula Fill Operation
	ServerFormulaFill Formula Restrictions
	Record Locking and the ServerFormulaFill Statement
	Minimizing the amount of data changed by ServerFormulaFill commands
	Looking Up Data From Another Database
	Temporarily Disabling Direct Lookups from the Server
	Controlling and Monitoring the Server Connection
	ConnectToServer Statement
	DropServer Statement
	The info(“serverconnection”) Function
	The sharedusers(Function
	The servername(Function
	The serverdatabasename(Function
	Shared Database Configuration
	The EESetDBConfig Statement
	The EEGetDBConfig Statement
	The Configuration Dictionary
	Deleting a Database from the Server

	Chapter 4: Offline Database Sharing
	Offline Sharing Options
	Is Offline Modification of Existing Records Appropriate for your Application?
	Is Adding New Records While Offline Appropriate for your Application?

	Deleting Records While Offline
	Two Way Synchronization
	Managing Synchronization Conflicts
	Reviewing Conflicts in Large Fields
	Overriding by Record (instead of Field)

	Making and Dropping Server Connections
	Designing a Database Primarily for Offline Operation
	Configuring a Client Database for Primarily Offline Operation
	Automatically Connect
	Automatically Synchronize
	Offline changes synchronized with server later
	Offline changes are local only
	Allow deleting records
	Mixing Offline and Online Clients

	Simulating Offline Operation (for testing)

	Chapter 5: Web Publishing
	Web Publishing a Database
	Preparing the Web Layout and Logic
	Uploading the Database to the Server
	Database Sharing and Web Publishing
	Web Publishing Options
	Open automatically when server starts up
	Automatically open as needed
	Close database after each access
	Automatically save database after each access
	Use secret windows
	Server Database Name
	Uploading the Database to the Server
	Testing a Web Database
	The Server Status Page
	The Database Web Links Page
	Testing a Web Form
	Testing a Web Procedure
	Debugging Web Link Page Problems
	Disabling the Web Link Page

	Modifying a Web Published Database
	Updating a Web Form/Adding a new Web Form
	Updating All Web Forms
	Updating a Table/Adding a new Web Table Template
	Updating a Procedure/Adding a new Procedure
	Uploading Multiple Procedures
	Synchronizing data between the original copy and the server
	Downloading Data from the Server
	Uploading Data to the Server
	Removing a Database from the Server
	Associating a Database with Multiple Servers (Clones)
	Creating a Clone
	Updating a Clone Database’s Procedures and Forms
	Changing the Primary Server
	Distributing Shared Clients for Clone Servers

	Designing Your Web Database Application
	Web Database URL Format
	Standard Actions
	Custom Actions
	Action Sequences
	Standard Data Entry Sequence
	Search —> List —> Detail Sequence

	Chapter 6: Web Forms
	Converting a Panorama Form into a Web Form
	Converting a Panorama Form into a Web Page Form
	The Web Form Converter Wizard
	Preparing a Form
	Conversion Limitations
	Fields and Variables in Web Forms
	Data Cells and Text Editor SuperObjects
	Data Buttons (Checkboxes and Radio Buttons)
	Pop-Up Menus
	Lists
	Push Buttons
	Form Actions and Sequence
	Standard Form Action — FORMDUMP
	Standard Form Action — NEWRECORD
	Setting Up a Custom Response Page
	Checking for Required Fields/Preventing Missing Fields
	Standard Form Action — QUERY
	Searching All Fields
	Searching Multiple Fields instead of All Fields
	Handling Failed Searches
	Standard Form Action — UPDATERECORD
	Custom Form Actions
	Advanced Form Techniques
	Font selection
	Embedding HTML in a Text Display SuperObject
	Linking to Other Web Pages
	Linking to Blank Panorama Forms (from a Panorama Form)
	Linking to Blank Panorama Forms (from a standard web page)
	Linking to Panorama Procedures (from a Panorama Form)
	Linking to Panorama Procedures (from a standard web page)
	Linking to a JavaScript Script
	Displaying Images in a Web Form
	Displaying Images Based on a Field or Variable
	Making an Image Link to Another Page
	Making an Image a Submit Button
	Making an Image a JavaScript Button
	Triggering JavaScript with a Button
	Hidden Data
	Customizing the form HTML (Advanced)
	Customize Page Dialog
	Web Page Title
	Form Tag Parameters
	Form Prefix
	Form Suffix
	Style Tag Parameters
	Style Prefix
	Style Suffix
	Page Template Dialog
	Changing the Page Background Color
	Adding JavaScript to a Page
	Building a form in an external program.

	Chapter 7: Web Tables
	Web Tables
	Text Export Wizard Refresher
	Creating a Template
	Using an Existing Template
	Configuring the Table Columns (Title, Formula, Width and Alignment)
	Customizing the Table Appearance
	Web Page Title
	Table Header Form
	Table Margins
	Table Border
	Cell Spacing
	Cell Padding
	Table Font
	Text Size
	Text and Background Colors
	Color Selection Techniques
	Main Text Color
	Page Background Color
	Title Color
	Title Background Color
	Table Data Color
	Row Background Color
	Multiple Background Colors
	Linking a Table with a Query Form
	Uploading a Table to the Server
	Testing the Query and Table
	Splitting a Long Table into Multiple Pages
	The Multiple Page Table Dialog
	Records per Page
	Page Navigation Font
	Text Size
	Previous and Next Page Caption
	Page Navigation Header and Footer
	Linking Individual Table Rows to a Detail Form
	The Individual Page Linking & Sorting dialog
	Link Action
	Link Table Column
	Database Link Fields
	Broken Links
	Sort by
	Editing/Updating a Record
	Preparing a Database Update Form
	Broken Record Identification
	Customizing the table HTML (advanced)

	Chapter 8: Web Programming 101
	Creating a Simple Guestbook Web Database
	Creating Web Procedures
	Testing a Procedure in Advance
	Create a Web Form
	Assigning a Procedure to the Form
	Testing the Form and Procedure using Simulation
	Uploading the Guestbook Database
	Testing Web Procedures on the Server
	Modifying a Web Procedure
	Testing a Procedure Assigned to a Web Form

	Web Procedure Inputs and Outputs
	Web Procedure URLs
	Upper and Lower Case Characters in Procedure Names and Extra Parameters
	Database and Procedure Names Containing Spaces
	Generating a Web Procedure URL Without Typing
	Run Web Procedure in the Debug menu
	Server Status Page
	Linking to a Web Procedure from Regular Web Pages
	Linking to a Web Procedure from another Web Procedure
	Linking to a Web Procedure from a Form
	URL Extra Parameters
	Testing Procedures with Extra URL Parameters
	HTTP Request Information
	Form Input Data
	Accessing Form Item Values in a Formula
	Assigning a Form Item Value into a Field or Variable
	Getting a List of Form Item Names
	What Form Is This?
	Hidden Form Items
	Processing Hidden Form Items in a Procedure
	Cookies
	Generating a Web Page
	The cgiHTML Global Variable
	HTML (HyperText Markup Language)
	JavaScript and CSS
	Web Procedure Errors
	Cookie Output

	Getting Procedures onto the Server
	Uploading All Procedures when the Database is Uploaded
	Uploading All Procedures via a New Sharing Generation
	Updating a Single Procedure/Adding a new Procedure
	Uploading and Testing a Web Procedure
	Uploading Multiple Procedures with the Database Sharing Options Wizard

	Testing Web Procedures with the CGI Simulator Wizard
	Query Mode (get vs. post)
	Testing Get Queries
	Repeating a Previous Query
	Testing Get Queries from the Debug Menu
	Testing Post Queries (Forms)
	Testing Post Queries Directly from a Panorama Form
	Testing Post Queries Directly from a Panorama Procedures
	Testing Post Queries from a Subroutine
	Testing Forms in Separate HTML Files
	Simulating Multiple Request Sequences
	Navigating Within a Session
	Re-Simulating a Previous Query
	Starting a New Session
	Disabling Automatic Browser Preview
	Simulating Cookies

	Chapter 9: Generating HTML
	What is HTML?
	Other Web Languages (JavaScript, CSS)

	Directly Generating an HTML Page
	Customizing the HTML Page Header
	Placing Fields and Variables into the HTML Page
	Fields or Variables with Special Characters
	Links to Other Web Pages
	Images

	Generating a Page Using a Panorama Form Template
	The RenderWebForm(Function
	Using a Web Form to Display Data
	Specifying the Record to Display
	Customizing the Web Form’s HTML Header (Page Title, etc.)
	Using Variables to Customize a Web Form on the Fly
	Which Came First, the Chicken (Web Template) or the Egg (Variables)?
	Using a Web Form to Submit Data
	Designing Web Forms for Submitting Data
	Displaying a Blank Web Form
	Pre-Filling Database Fields
	Pre-Filling Variables
	Setting Hidden Form Values

	What Record Are We Talking About?
	“Roll Your Own” Web Navigation
	Searching the Database in Reverse
	Using WebURLFind For Navigation in Shared Databases
	Using WebURLFind for Navigation in Non-Shared Databases

	Generating an HTML Table from a Panorama Array
	Array Rendering Options
	Table Column Layout
	Table Font, Font Size and Color
	Table Borders and Spacing
	Table Background Colors.
	Displaying an Array in a Web Form

	Generating an HTML Table or List from Multiple Records
	What Records are we Talking About? (The WebSelect Statement)
	Using Variables in a WebSelect Statement
	Other Web Selection Statements
	Why Not Use the Select Statement?
	Generating HTML Tables Using a Web Table Template
	Generating HTML Tables Without a Template (“from scratch”)
	Table Field Layout
	Table Font, Font Size and Color
	Table Borders and Spacing
	Table Background Colors.
	Table Sort Order
	Linking Individual Table Rows to Detail Pages
	Splitting a Long Table into Multiple Pages
	Displaying an Empty Table
	Table HTML Layout
	Modifying a Web Table Template On the Fly
	Rendering a List (and lists, Formatted Tables, JavaScript)
	Linking a Table or List with a Detail Form

	Chapter 10: Processing Web Forms
	Accessing Web Form Information
	What Form was Submitted? (The WebFormName() Function)
	What Items were Submitted? (The WebFormItems() Function)
	Hidden Items
	Accessing Form Item Values in a Formula
	Assigning a Web Form Item Value into a Panorama Field or Variable
	Assigning Multiple Items into Multiple Fields and/or Variables
	Validating Data Entry (Error Checking)
	Generating a List of Data Entry Errors
	Buffered Data Entry
	Copying from the Variable Buffer into the Database
	Data Pre-Processing in the Variable Buffer
	Validating Data in the Variable Buffer
	Identifying Items with Data Validation Problems
	Displaying an Image Instead of an Exclamation Point
	Displaying Error Explanations
	Pre-Filling Database Fields when Displaying a Form that uses Buffered Data Entry
	Non Data Entry Forms (Searching, Navigation, etc.)
	Pre-Filling Non Data Entry Forms
	Using Cookies to Remember Form Values

	Chapter 11: Advanced Topics
	Working with Cookies
	Cookie Name and Value
	Creating a Cookie
	Cookie Expiration Date
	Cookie Options
	Retrieving a Cookie Value
	Listing Cookies
	Building a Very Simple Shopping Cart
	Displaying the Shopping Cart
	Adding a New Item to the Cart
	Clearing the Shopping Cart

	Accessing Additional Web Server Information
	Non HTML Content Types (text/plain)
	Custom Handling of Programming Errors
	Writing a Procedure to Handle Programming Errors

	Opening and Closing Databases on the Server
	Combining Web Publishing with Database Sharing
	Web Publishing vs. Record Locking
	Manually Locking and Unlocking Records
	Checking Record Lock Status

	Running a Program Every Minute on the Server
	Web Based Data Entry with the WebFormToDatabase Statement
	WebFormToDatabase — Displaying Form Items
	WebFormToDatabase — Adding a New Record
	Setting up a Custom Response Page
	Forcing Input to Upper or Lower Case
	Checking for Missing Fields
	Data Entry for Number and Dates
	Saving the Modified Database
	WebFormToDatabase — Modifying an Existing Record
	Handling Missing or Ambiguous Records
	WebFormToDatabase — Modifying an Existing Record with Embedded Record ID
	Manually Creating Web Forms for use with the WebFormToDatabase Statement

	Web Form Based Data Selection
	Searching All Fields

	Rendering Using an External Text File as a Template
	Rendering Using an External Text File containing a Form as a Template

	Chapter 12: Enterprise Sharing vs. Butler
	System Architecture
	Speed
	Database Configuration
	Data Storage Flexibility

	Client Subsets
	Converting from Butler to Enterprise Edition Server
	Reprogramming your Application

	Chapter 13: Secrets of the Enterprise Folder
	cgi-bin
	Log Cache
	Logs
	PanoramaCGI
	Public Databases
	ServerConfig.dat
	ServerList.dat
	temp

