

Formulas &
Programming

Page 2 Panorama Handbook

Panorama Formulas & Programming (Version 6.0)
Copyright © 2010, ProVUE Development,

All Rights Reserved

ProVUE Development
18685-A Main Street PMB 356
Huntington Beach, CA 92648

USA

www.provue.com

Page 3

Table of Contents

– Click on any entry to jump to the page —
Full

Formulas ..19
Formulas In Action .. 19

Displaying/Printing A Formula ... 20
Storing Formula Results in the Database.. 22
Using a Formula to Locate/Select Information... 25
Formulas in Procedures... 28
Using the Formula Wizard ... 29

Calculations with Database Fields ... 30
Changing the Active Database... 32
Using Fields from Other Databases ... 33
Topic and Functions Help Menus... 34
Function Search ... 36
Special Formula Result Formats .. 38
The Programming Reference Wizard... 41

Formula Components ... 42
Formula Grammar ... 42

Calculation Order and Parentheses ... 43
Functions.. 43
Multi-Parameter Functions ... 44
Zero Parameter Functions.. 44
Functions Menu.. 45
Whitespace... 46
Grammar Errors ... 47
Comments .. 49

Values ... 49
Constants... 49

Build in Constants: Pi, Carriage Return and Tab ... 50
“Pipe” Delimited Constants... 50

Fields ... 50
Using the Current Field .. 52
Line Item Fields .. 52

Variables ... 53
Variable Names ... 54

Page 4 Panorama Formulas & Programming

What’s Inside A Variable?.. 54
The Life Cycle of a Variable... 54
Creating Variables in a Procedure... 55

Initializing Variables.. 56
Variables and Data Types ... 56
SuperObject Variables... 56
Variable Name Conflicts .. 56
Permanent Variable Tips ... 57

Special Characters.. 57
Working With Extremely Complex Formulas .. 59

How Large Should the Buffer Be?.. 59
Arithmetic Formulas .. 60

Dividing by Zero... 61
Overflow/Underflow Problems ... 61
Adding Line Item Fields ... 62
Basic Numeric Functions ... 62
Scientific Functions.. 64
Financial Functions.. 66

Text Formulas ... 67
Gluing Strings Together... 67
Functions for Taking Strings Apart .. 68
Taking Strings Apart (Text Funnels) .. 69

Numeric Start and End Positions ... 70
Specifying Numeric Length Instead of Position.. 70
Start/End Positions by Character Matching.. 71
Cascading Text Funnels... 71
Character Matching in Reverse Gear... 72
Stripping Out Individual Words... 73
Multiple Matching Characters for Start/End Position.. 74
Non-Matching Character for Start/End Position ... 75
Limitations of Text Funnels .. 77

String Testing Functions .. 78
String Modification Functions... 80
Converting Between Numbers and Strings.. 84
Characters and ASCII Values.. 87

Working with Character Values .. 87
Invisible Characters.. 88
The ASCII Chart Wizard... 89
Showing Character Ranges with the ASCII Wizard ... 91
ASCII Character Constant Functions ... 92

Text Arrays .. 93
Picking a Separator Character ... 93
Working With Arrays... 94

HTML Tag and Tag Parsing Functions.. 101
Tag Parameter Functions... 103
HTML Table Parsing Functions.. 104
HTML/URL Conversion Functions.. 104
HTML Generating Functions .. 105
Encoding/Decoding Base64 Data .. 105

Date Arithmetic ... 106
Today’s Date.. 106
Converting Between Dates and Text ... 107
Date Functions... 108

Page 5

Calendar Functions .. 110
Time Arithmetic ... 113

Converting Between Times and Text... 113
Time Calculations .. 114

Time Calculations with Text ... 116
Calculating Time Intervals Smaller Than One Second.. 116
Time Code Calculations (Video/Film) .. 117

SuperDates (combined date and time) ... 118
Reminders... 119

Appointments vs. To-Do’s .. 120
Creating and Modifying a Reminder... 120
Reminder Functions ... 122
Alarms .. 123

True/False Formulas... 124
Comparison Operators .. 124

A beginswith B.. 125
A endswith B .. 125
A contains B ... 125
A notcontains B .. 125
A soundslike B.. 125
A match B... 126
A matchexact B .. 127
A notmatch B.. 127
A notmatchexact B ... 127
A like B ... 127

Combining Comparisons ... 127
A and B... 127
A or B ... 128
A xor B.. 128
not A ... 128

Equals Comparison vs. Assignment .. 128
True/False Values.. 129
The ? Function... 130
Converting a Boolean Value to Text .. 130

Linking With Another Database .. 131
The Lookup Wizard.. 132
Type Mismatch Problems .. 135
Lookup Variations .. 136
Looking Up Rates in a Rate Table... 137
Looking Up Multiple Fields From One Record... 137
The GrabData Function ... 139
Looking Up Multiple Values at Once.. 139
Linking Clairvoyance to the Lookup Key Field... 142
Looking Up Data in the Current File .. 144

The Assign Function ... 144
Zip Code Lookup... 145

US Post Office Abbreviation Functions .. 146
Graphic Co-Ordinates ... 146

Points... 147
Rectangles... 149

Colors.. 154
Raw Binary Data ... 156

The RPN Programmer’s Calculator ... 161

Page 6 Panorama Formulas & Programming

Converting Between Different Bases ... 161
Calculations with Reverse Polish Notation... 162
Boolean Operators ... 164

Disk Files and Folders .. 165
Resource Files... 170

Import/Export Functions.. 174
System and Database Information Functions ... 175

System Information.. 175
User Information .. 179
Variable Information... 180
Database Information .. 180
Window, Form and Report Information.. 187
Server Database Information (Panorama Enterprise) ... 194

Custom Functions ... 196
The Custom Functions Wizard .. 196

Function Names ... 197
Parameter Names .. 198
Advanced Topic: The FDF File... 198
Advanced Topic : Creating Custom Functions In A Procedure .. 198

The Custom Functions (ProVUE) Wizard .. 199

Procedures...201
Programming Isn’t Magic! ... 201
Introduction to (Panorama) Programming... 201

Procedures .. 202
Statements... 202
A Simple Procedure in Action .. 203
Creating a Procedure with the Recorder ... 210

Recording Mouse Clicks... 212
Non Recordable Menus and Tools... 213
Recording Data Entry ... 213

Writing a Procedure from Scratch.. 214
Writing Statements ... 215
Trying Out a Procedure .. 216
Checking for Mistakes .. 218
Mysterious Errors ... 220
Closing the Window When a Procedure is Finished .. 220
Re-Opening a Procedure ... 220
Font and Size ... 221
Adding a Recording to an Existing Procedure.. 221

Programming Helpers ... 223
The Programming Assistant Dialog ... 223

Using the Assistant from the Keyboard .. 224
Assistance Domains... 225
Getting Assistance with a Selection ... 227
Smart Text Insertion ... 227

The Programming Context Menu... 228
Help Submenu.. 228
Mark Submenu ... 230
Insert Field Name Submenu... 231
Insert Form Name Submenu .. 231
Insert Procedure Name Submenu.. 231
Topics Submenu .. 232

Page 7

Opening a Procedure or Form.. 233
Selecting Parentheses Contents .. 233
Comment/Uncomment ... 234

Programming Reference Wizard ... 235
Navigation Using the Search Panel and Topic List .. 235
The Full Text Search Option .. 237
Navigation Using the Topic, Statement and Function Menus .. 238
Navigation Using HyperLinks ... 238
Built In vs. Custom Statements and Functions... 239
Using the Template Panel .. 239
Minimizing the Programming Reference Wizard .. 240

Data Flow.. 241
Assignment Statements... 241

Triggering Automatic Calculations.. 241
The Define Statement .. 242
The Set Statement ... 242
 The FormulaValue Statement ... 243

Variables.. 245
Creating a Variable... 245
Assigning a Value to a Variable ... 246
Using a Variable in a Formula .. 246
The Birth and Death of a Local Variable .. 247
Long Life Variables... 247
Destroying a Variable ... 247
Variable Accessibility.. 248
Accessing “Dormant” Variables.. 248
“Hidden” Variables and Fields .. 249
Accessing Variables In Form Objects (Text or Images) ... 249
Creating Variables with a SuperObject .. 249
Permanent Variable Tips.. 251
Displaying and Changing Variables ... 251

Control Flow.. 253
True/False Formulas.. 253

Equals Comparison vs. Assignment... 254
True/False Values .. 254

IF Statements .. 255
ELSE Statements ... 255
Nested if Statements .. 255
Error Handling with if error ... 256

CASE Statements.. 257
LOOP Statements.. 257

Stopping a Loop in the Middle.. 258
Restarting a Loop in the Middle.. 259

Subroutines.. 259
CALL Statement ... 259
Calling Procedures With Unusual Names .. 260
Passing Values to a Subroutine (Parameters) ... 261
Passing Values Back From a Procedure.. 262
What if the parameters don’t match the procedure? .. 265
Calling a Subroutine in Another Database ... 267
Terminating a Subroutine in the Middle.. 267
Mini Subroutines within a Procedure.. 268
Subroutines and Local Variables.. 269

Page 8 Panorama Formulas & Programming

The UseCallersLocalVariables and UseMyLocalVariables Statements 270
Recursive Subroutines ... 271
Using a Subroutine in a Formula (the CALL(function)... 271

Restrictions on Subroutines used as Formulas... 275
Other Control Flow Statements ... 275

Jumping to an Another Location in the Program .. 275
Stopping the Program .. 276
Aborting a Program .. 276
Controlling the Abort Process... 277
Doing Nothing for a While .. 278

Building Subroutines On The Fly (The Execute Statement) .. 278
Tips for On-The-Fly Program Writing ... 280
Execute and Local Variables.. 282
Using Execute to Process Arrays... 282
Do It Yourself Data Merge.. 284
On-The-Fly Subroutine Error Checking.. 285
Building Parameters on the Fly (Parameters in a Variable) ... 286

Catching Program Errors (Especially for Web and other Server Applications)............................ 286
Custom Statements ... 287

The Custom Statements Wizard .. 289
Creating Your Own Custom Statement Library .. 291
Creating a New Custom Statement.. 291
Setting Up a Procedure Information Block ... 294
Processing Parameters .. 296
Optional Parameters .. 296
Repeating Parameters ... 297
Raw Parameters... 297
Debugging a Custom Statement .. 298
Accessing Forms & Procedures in the Library Database... 298
Advanced Topic: Using Libraries In Other Folders... 298

Program Formatting .. 299
Notes To Yourself .. 302

“Commenting Out” Statements... 302
Organizing Large Procedures (The Mark Menu) ... 303

Suppressing Display of Text and Graphics... 305
Updating the Display After (or Within) a NoShow Block.. 305

ShowPage .. 306
ShowLine.. 306
ShowFields field,field,…,field ... 306
ShowColumns field,field,…,field... 307
ShowVariables var,var,…,var... 307
ShowRecordCounter .. 307
ShowOther field,code ... 308
Checking NoShow Status... 308

Disabling the Watch Cursor ... 308
Hide and Show .. 309

Debugging a Procedure .. 310
The Panorama Interactive Debugger... 313

The Debug Statement .. 313
Using the Debugger ... 313
Single Stepping .. 314
Resuming Full Speed Execution .. 316
Making Corrections to a Procedure.. 316

Page 9

Watching Computations ... 316
Using the Inspector to Examine Fields, Variables and Formulas....................................... 318
What Fields or Variables can be Displayed?.. 321
Displaying Functions .. 322

Error Detail Wizard .. 323
Using the Error Detail Wizard... 324
Finding the Source of the Error .. 325
Open Reference Wizard... 327
Copy to Clipboard... 327
Error Detail Problems ... 327

Debugging with the TTY (Virtual Teletype) Wizard.. 328
Using TTY with Growl... 331
Selective TTY Output (Modes) ... 332
Keeping a Permanent Record .. 333

Procedure Debug Log.. 334
The Procedure Log Window... 334
Recording a New Log... 335
Decoding Parameters and Assignment Statements... 339
The LogMessage Statement .. 340
The Log Menu .. 341

Using the View Wizard with Procedures ... 342
Searching All Procedures .. 342
Displaying Source Code Statistics... 345
Exporting and Importing Procedure Source Code... 346

Cross Referencing .. 347
The Cross Reference Wizard .. 347

Opening a Form, Procedure or Crosstab ... 349
Setting up a New Cross Reference .. 351
Updating a Cross Reference .. 352

50 Ways to Trigger a Procedure ... 353
The Action Menu... 353

Action Menu Options ... 354
Setting Different Menu Item Styles (Bold, Italic, etc.) ... 354
Shortcuts/Command Key Equivalents.. 354
Disabled Menu Items.. 355
Separator Lines in a Menu ... 355
Renaming the Action Menu .. 357
Dividing the Action Menu into Multiple Menus.. 358
“Unlisted” Procedures... 359

Live Menus.. 360
The FileMenuBar Statement.. 360
The .CustomMenu Procedure.. 361

Programming the .CustomMenu Procedure... 362
The info("trigger") Function... 362
Processing Custom Menus with Simple IF’s .. 363
Processing Custom Menus with Nested IF’s.. 364
Splitting the Trigger into Menu/Item Names ... 364
Menus with Modifier Keys .. 365

Building Menus from Arrays... 365
Command Key Equivalents ... 366
Menu Styles ... 367
Disabled Menu Items and Separator Lines.. 367
Submenus (Hierarchical Menus) ... 368

Page 10 Panorama Formulas & Programming

Multiple Column Menus ... 369
The WindowMenuBar Statement... 370
Advanced Topic: Live Menus Behind the Scenes ... 370

Menu Titles... 370
Menu Items... 371
Submenus .. 372
Formula Errors ... 372
The menu(, menuitems(, arraymenu(and checkarraymenu(functions.............................. 372
Helper Functions for Standard Menus.. 373

Buttons.. 374
Hidden Triggers .. 376

Creating Hidden Trigger Procedures... 376
.About .. 377
AutoGrow... 377
.ClearRecord.. 378
.CloseWindow.. 378
.CurrentRecord .. 379
.CustomMenu .. 379
.DeleteRecord.. 379
.DialogKeyDown .. 379
.Help .. 380
.Initialize... 380
.KeyDown .. 380
.ModifyRecord.. 381
.ModifyFill... 382

Logging Changes (Audit Trail) with .ModifyRecord, .ModifyFill and info("modifiedfield") ... 383
.NewRecord ... 384
.OutOfBounds.. 385
.ZoomFailed... 385
Data Entry Triggers.. 385
Data Entry Triggers (Part Two).. 387
Hot Key Procedures... 388

HotKeys with Modifiers... 389
Universal HotKey Procedure .. 389

Triggering a Procedure Every Second... 389
Triggering a Procedure Every Minute... 391
Triggering a Procedure As Soon As Possible .. 391

Event Handler Procedures... 392
Text Editor SuperObject ..Handler Option.. 393
Focus Procedure .. 393
..OpenForm .. 394
..ActivateForm .. 394
..CustomAbout.. 395
..CloseDatabase... 395

Programming Techniques..397
Accessing Files ... 397

Files and Folders ... 397
Combined Folder Location and File Name... 398
Folder ID’s and Paths... 399

Locating a File with Standard Dialogs ... 400
Customizing the Standard File Dialogs .. 403

Opening a Panorama Database .. 403

Page 11

Suppressing the Default Extension .. 403
Appending Databases End-to-End... 404
Eliminating Duplicates in Appended Data .. 404
Replacing the Data in a Database.. 404

Saving a Panorama Database... 405
Closing a Database ... 405
Shutting Down Panorama.. 406
Importing Text Files ... 407

Carriage Returns in the Data.. 407
Importing a Text File into an Existing Database... 407
Importing from a Variable ... 408
Importing HTML Tables.. 408
Re-Arranging the Order of Imported Data .. 408
Building the ImportUsing Formula on the Fly ... 410

Exporting Text Files ... 411
Exporting Line Items as Separate Records.. 412
Analyzing Line Items .. 413
Exporting Array Elements as Separate Records.. 413

Opening a Document in Another Application... 414
Smart Merge Synchronization ... 415

How Smart Merge Synchronization Works... 415
Adding Smart Merge to Your Database ... 415
The Modified Field.. 416
Adding New Records.. 416
The Smart Merge Procedure.. 417

Directly Reading and Writing Disk Files... 419
What’s in a File?... 419
Reading Data Files... 420
Reading Really Big Data Files.. 421
Writing Data Files ... 422
Copying Data Files ... 423
Using FileSave and ArrayBuild to Export Data... 423
Reading and Writing Resource Forks .. 426
Erasing a File ... 427
Changing a File’s Name ... 427
Changing a File’s Type and Creator... 427
Creating a New Folder ... 427
Getting Information about a File ... 428
Getting and Setting Additional File Information .. 429
Accessing and Modifying File Permissions .. 429
Building a List of Files or Folders ... 429
Building a List of Disks (Volumes).. 430

Working with Resources .. 431
Opening and Closing Resource Files... 433
Opening a Resource File in the .Initialization Procedure ... 433
Reading a Resource... 434
Reading STR and STR# Resources .. 434
Writing a Resource... 435
Deleting a Resource... 436
Renumbering a Resource .. 436
Listing Resources... 436
Working with Multiple Resource Files .. 438

Accessing the Windows Registry... 439

Page 12 Panorama Formulas & Programming

Getting Information About Registry Items .. 439
Modifying Registry Entries.. 440
Deleting a Registry Entry.. 441

Monitoring Memory Usage.. 442
Windows ... 443

Opening a Window .. 443
Specifying the New Window Location.. 444

New Window Options ... 446
Non Standard Window Styles... 447
Changing a Window’s Position/Options ... 448

Changing a Window’s View ... 449
Changing the Name of a Window... 449

Scrolling Inside a Form Window .. 449
Closing a Window.. 450

Trapping the Close Box.. 451
Changing The Window Order (Who’s on Top?)... 451
Temporary “Invisible” Windows ... 452

Databases Without Windows ... 453
“Magic” Windows ... 454
Window Clones.. 455

Designing A Clone Window Application ... 456
Alerts... 462

Displaying a Message.. 462
Alerts With Multiple Buttons... 464

The Alert Statement ... 467
Obsolete Alert Statements ... 469
Suppressing Alerts ... 470

The SuperAlert Statement ... 470
The DisplayData Alert.. 477

Dialogs .. 478
Basic Text Entry Dialogs.. 478
The SuperGetText Statement.. 480
Obsolete Text Entry Statements.. 483
The SuperChoiceDialog Statement ... 483
Custom Dialogs ... 487

Preparing a Form for Use as a Dialog.. 487
Customizing the Dialog Code... 493
Options to the RunDialog Statement.. 497
Editing Database Information with a Dialog ... 499
Custom Dialog Menus .. 501

Accessing and Modifying the Database Structure (Fields) ... 503
Getting Information About Field Structure ... 503
Modifying Field Structure Directly .. 504
Hiding and Showing Fields .. 506
Working With the Design Sheet... 507
Updating Database Structure From Another Database... 507

Transferring Permanent Variables ... 508
Verifying Database Identity .. 509

Database Navigation and Editing.. 510
Moving Up and Down in the Database .. 510
Moving Left and Right.. 513

Moving “Left” and “Right” on a Form .. 514
Moving to an Empty Line Item Field ... 516

Page 13

Adding and Deleting Records.. 517
Modifying the Database One Cell at a Time.. 520

Accessing and Modifying the Current Cell ... 520
Accessing and Modifying the Clipboard ... 521
Triggering Automatic Calculations.. 521
Triggering Automatic Procedures... 522
The Set Statement ... 522
The FormulaCalc Statement .. 523
Opening the Input Box.. 523

“Natural” Data Entry... 525
Natural Data Display .. 526
Natural Data Entry.. 528

Validating a Credit Card Number... 531
Moving Data Between Files .. 532

Cross Database Assignment Statements .. 532
Identifying Data to Move.. 532
Transfer Function Parameters ... 533
Single Record Transfer Functions ... 535

grabdata(target database,data field) .. 535
lookup(target database,key field,key value,data field,default value,summary level).......... 535
lookuplast(target database,key field,key value,data field,default value,summary level) 535
lookupselected(target database,key field,key value,data field,default value,summary level)536
table(target database,key field,key value,data field,default value,summary level)............. 536

Clairvoyance and Lookups .. 538
The SpeedCopy Statement (Multiple Assignments in One Statement) 538
Multiple Record Transfer Functions... 540

lookupall(target database,key field,key data,data field,separator) 540
lookupcalendar(target database,key field,key data,data field,separator) 540
lookuprtime(target database,key field,key data,pattern,separator) 540

After a Lookup…Modifying the Original Data .. 541
Using Lookups for Display/Printing.. 542
Using ArrayBuild to Transfer Data Between Files ... 543
Posting Data to Other Databases.. 546

The Post Statement.. 546
The PostAdjust Statement.. 547

Sorting... 549
Reducing Screen “Flashing” .. 549
Making Sorts Even Faster ... 549

Locating Information ... 550
Finding Information .. 550

A Handy Universal Find Procedure .. 551
Find Next .. 553

Selecting Information ... 555
Handling Empty Selections .. 556

Selecting Duplicates .. 557
Live Clairvoyance™... 557

Adding a Cancel Search Button ... 563
Clicking on the Live Clairvoyance List Object .. 563

Summaries and Outlines... 564
Summary/Outline Examples .. 565
Calculating Grand Totals ... 567
Running Total .. 569
Running Difference.. 569

Page 14 Panorama Formulas & Programming

Transforming Big Chunks of Data... 570
Making Transformations Even Faster.. 571
Numeric Calculations with FormulaFill... 571

Suppressing Zero’s .. 572
Fill vs. FormulaFill .. 573

Using FormulaFill to Transform Text ... 575
Date Calculations with Formula Fill ... 577
The SEQ Function ... 578
Filling Empty Cells ... 579
Automatic Numbering .. 581
Propagate and UnPropagate... 582
Using UnPropagate to Eliminate Duplicates.. 582
Change (Find and Replace)... 582

Changing with the Replace(Function .. 585
Data Style and Color.. 586

Accessing Style and Color in a Formula .. 588
Processing/Transforming an Entire Array ... 589

“Filtering” an Array ... 589
Stripping Blank Elements From An Array .. 590
Reversing the Order of an Array.. 591
Using Regular Text Functions with Arrays... 591
Sorting an Array... 591
Removing Duplicate Items from an Array .. 592
Building an Array from a Database.. 592
Appending an Array to a Database.. 593
Copying Between Multiple Variables and an Array.. 593

Editing an Array using Separate Variables... 595
Processing/Transforming Binary Data .. 596

Bits... 596
Bytes.. 596
Words .. 597
Long Words ... 597
Creating Binary Values.. 597
One Dimensional Arrays of Binary Values... 598

The CharacterFilter Statement ... 598
The ChunkFilter Statement .. 599
The TextFilter Statement.. 599

Data Dictionaries ... 600
Key/Value Pairs.. 601
Storing a Key/Value Pair in a Dictionary .. 601
Accessing Dictionary Entries.. 602
Another Technique For Initializing a Dictionary.. 603
Additional Methods for Modifying Dictionary Entries .. 603
Looking Up a Dictionary Key Given Its Value... 604

Accessing the Internet .. 605
Basic Web Access ... 605

Fetching Web Pages .. 605
Parsing Web Pages.. 606
Fetching Images... 611
Relative URLs .. 611
Submitting Forms ... 612
Cookies .. 614

Accessing Web Content .. 615

Page 15

Generating Map Images... 615
Generating the Same Map at Different Zoom Levels (Scales) or Sizes.................... 616

Adding an Interactive Map Interface to a Database ... 617
General Zip Code Information .. 620
Street Address Information... 621
White Pages ... 622
FedEx Shipment Tracking .. 623

Controlling Web and E-Mail Clients ... 624
Displaying a Web Page .. 624
Displaying a Web Page on a Local Hard Drive .. 625
Displaying a Map.. 625
Sending an E-Mail .. 626

Sending E-Mail .. 627
Channel Configuration.. 628
Sending a single e-mail .. 629
Sending multiple e-mails .. 629

Programming Graphic Objects on the Fly... 631
Basics of Graphic Object Programming... 631
Selecting an Object by Name .. 631
Selecting Multiple Objects ... 631
Getting Information About Individual Objects .. 632
Modifying Selected Objects ... 637
Getting Information About Selected Objects.. 640
Object ID Values.. 641
Redrawing an Object ... 641
Dragging a Rectangle .. 642
Movable Dividers ... 646

Drag and Drop .. 648
Drag Items and Flavors ... 648
The Dropalyzer Wizard .. 649
Dragging Items from Panorama... 650

Dragging a Single Flavor.. 650
Dragging Multiple Flavors... 651

Receiving Dragged Data.. 652
The .DropProcedure... 652
Dropping Files and Folders on Panorama.. 654

VCard Drag and Drop.. 654
Drag and Drop (Obsolete Method) .. 656

Program Control of SuperObjects™ ... 664
The Active SuperObject... 665
Accessing and Modifying a SuperObject’s Internal Data... 667

Internal Data Types .. 667
Text Editor SuperObject Commands... 668

Text Editor Internal Data .. 674
Text Display SuperObject Internal Data ... 675

Word Processor SuperObject Commands... 676
Word Processor Internal Data .. 687

Super Flash Art Commands (Including Movie Control) ... 688
Super Flash Art Internal Data... 691

Converting Between Image Formats ... 692
Working with JPEG Images... 693
Taking an iSight Snapshot... 694
Building Web Like HyperText Systems with Super Flash Art .. 695

Page 16 Panorama Formulas & Programming

Preparing Pictures with Extractable Text ... 695
Programming a HyperText Engine ... 697
Extracting All Text of a Specific Style... 699
Creating Multi-Page Pictures.. 700
Push Button Internal Data .. 701
Flash Art Push Button Internal Data... 702
Data Button SuperObject Internal Data.. 702
Flash Art Data Button SuperObject Internal Data .. 703
Sticky Push Button SuperObject Internal Data... 704
Pop-Up Menu SuperObject Internal Data... 705

List SuperObject™ Commands ... 706
Using Drag and Drop to Change the Order of Items in a List... 710
List SuperObject Internal Data ... 711

Auto Grow SuperObject™ Commands (Elastic Forms)... 712
Auto Grow SuperObject Internal Data.. 712

Super Matrix SuperObject™ Commands .. 713
Super Matrix SuperObject Internal Data .. 715

Scroll Bar SuperObject™ Commands ... 716
Speech Synthesis ... 717

The Speak Statement .. 717
Embedded Speech Commands ... 717

The StopSpeaking Statement.. 717
The info("speaking") Function.. 717
Buffered Speech.. 718
Speaking Using the Speech Wizard .. 719

Printing.. 720
Selecting a View for Printing.. 720
Selecting a Printer ... 720

Changing the Current Printer ... 720
Changing the Default Printer .. 720
Getting Information About Printers ... 721

Adjusting Page Setup .. 721
Preparing Data For Printing ... 721
Printing the Database .. 721
Printing a Single Record .. 722
Print Preview.. 722
Printing Using an Alternate Form... 723
Printing Data in an Array.. 724
Printing Directly to a PDF File.. 725

Installing the CUPS-PDF Package... 726
Form Comments .. 730

The FormSelect Statement .. 732
Reading and Modifying Form Comments in a Procedure .. 733

Accessing and Modifying Procedures... 734
Accessing a Procedure’s Source Code ... 734
Changing a Procedure’s Source Code .. 734

Creating a New Procedure ... 734
Storing Procedures in a Dictionary .. 735

Writing Your Own Channel Modules... 737
The ModuleInformation Procedure .. 737
Channel Specific Procedures .. 738
The Channel Workshop Wizard... 739

Previewing the ModuleInfo Procedure ... 741

Page 17

Creating the Module ... 742

Working With Alternate
Programming Languages...743
Choosing a Language... 743

AppleScript .. 743
Shell Scripts... 745
Scripting Languages.. 747

Perl ... 748
Ruby ... 749
Python .. 750
PHP .. 751

Code Embedding 101 ... 752
Quoting Embedded Code .. 752
Embedding Code from a Text File ... 753
Using Panorama Fields and Variables as Terms in an Embedded Program 753

Using the Field Menu to Insert Fields Names .. 754
Using a Panorama Formula as a Term in an Embedded Program 754

Getting Data (Results) Back from Embedded Code.. 755
Standard Output (stdout) .. 755
Code Embedding Functions ... 755
Code Embedding Statements and the ScriptResult Variable... 756
Bringing the Embedding Data Output Directly into a Panorama Field or Variable 757

Advanced Embedding Topics ... 758
The Embedded Code Pre Processor... 758

Transferring Dates from Panorama to Embedded Code.. 759
Using Panorama Formulas “Bare” within an Embedded Program 759

Generating Constant Values ... 760
The External Script Wizard .. 761

Dealing With Errors in Embedded Programs ... 762
Working with External Editors .. 763
Working with External Debuggers .. 764
AppleScript Debuggers .. 764
Shell Scripts ... 765
Perl Debuggers .. 766
Ruby Debuggers .. 768

Special Embedding Options .. 769
Specifying the Maximum Embedded Program Runtime... 769
Running Shell Scripts with Temporary Root Privileges (SUDO) .. 769
Specifying the Embedded Code Folder.. 770

Real World Embedded Code Examples ... 770
AppleScript — Address Book Search.. 771
Shell Script — File Info .. 774
Perl — POP3 Mail Reader... 776
Ruby — Verify Email Domains .. 779
Python — HTML + Plain Text Email with Images.. 780
PHP — Extract EXIF Information from Images.. 785

Using AppleScript to Control Panorama from Other Applications... 788
Everything You Really Need to Know… .. 788

Value of Cell ... 788
Executing Panorama Procedures... 789
Transferring Data Between AppleScript and a Panorama Program................................... 790
Transferring a Value Back From Panorama to the AppleScript (Returning a Value) 790

Page 18 Panorama Formulas & Programming

Working with Lists .. 791
AppleScript & Panorama… The Rest of the Story... 792

The Required Suite .. 792
The Core Suite ... 793

The Objects ... 794

Chapter 1: Formulas

The result we proceed to divide, as you see,
by Nine Hundred and Ninety Two:

Then subtract seventeen, and the answer must be
Exactly and perfectly true.

- Lewis Carrol, The Hunting of the Snark

Panorama’s primary job is storing and retrieving data. The primary job of formulas is to combine and manip-
ulate data, both numeric and textual. Using formulas Panorama can automatically add up all the items in an
invoice and calculate the sales tax. Using formulas Panorama can automatically divide all the names in a
database into separate first and last names, or convert all the company names in a database to upper case.
Using formulas Panorama can automatically look up the price of an item in inventory, or check the quantity
on hand, or look up and display the items on a customers previous order. As you can see, you’ll need to learn
how to use formulas to get the most from your Panorama investment. Fortunately, formulas are easy to learn
and use (especially the most common mathematical formulas like totals, taxes and percentages). (However,
we have to admit that sometimes formulas can be frustrating because they are very picky. If you get one little
detail wrong, the formula won’t work correctly. This isn’t just a problem with Panorama, but with virtually
any computer program that uses formulas. To help ease the potential frustration factor Panorama has some
wizards you’ll learn about later in this chapter that can help you build error free formulas.)

Formulas In Action

Formulas are a general purpose tool that Panorama can use in a variety of different situations. You can dis-
play or print the result of a formula, use a formula to modify the database, or use a formula to help locate
information in the database. The next few sections demonstrate each of these techniques.

Page 20 Panorama Formulas & Programming

Displaying/Printing A Formula

A formula can be displayed or printed anywhere on a form with an auto-wrap text object (see “Displaying
Formulas in Auto-Wrap Text” on page 602) or Text Display SuperObject (see “Text Display SuperObjects™”
on page 608 of the Panorama Handbook). For example, consider the database shown below. The auto-wrap text
object contains two formulas, one which calculates the total of the four columns (A, B, C and D) and one
which calculates the average.

When the form is switched to Data Access Mode, Panorama calculates the formula results and displays them.

When a formula is used this way the results are not stored anywhere in the database, they are simply calcu-
lated on the fly and displayed or printed, then thrown away. If you switch to a different record Panorama will
calculate and display the new values.

formula to calculate total

formula to calculate average

Chapter 1:Formulas Page 21

You can even print a report using formulas calculated on the fly. (See “Custom Reports” on page 1061 of the
Panorama Handbook to learn more about creating a custom report like this.)

Once again, the formula results are calculated on the fly as the report is printed, then discarded. Here is the
finished report.

(You may notice that the columns in the report above don’t line up because they don’t all have the same num-
ber of places after the decimal point. You can fix this with the pattern(function, see “Converting Between
Numbers and Strings” on page 84).

Panorama’s Flash Art feature allows a formula result to be displayed visually. See “Flash Art™” on page 750
of the Panorama Handbook.

formula to calculate total

formula to calculate average

Page 22 Panorama Formulas & Programming

Storing Formula Results in the Database

Sometimes you’ll want to actually store the result of a formula in the database itself. You can do this manu-
ally after data has already been entered, or automatically as data is entered or changed. To illustrate these two
techniques we’ll add two new columns to the example database used in the last section, Total and Avg.

To calculate the values for these new fields we need to use the Manipulate Data in Field command (see “The
Manipulate Data Dialog” on page 434 of the Panorama Handbook). To calculate the total, first click anywhere in
the appropriate column.

Now choose Manipulate Data in Field from the Fields menu, change the pop-up menu to Start with For-
mula, then enter the formula for calculating the total.

Chapter 1:Formulas Page 23

When you press Apply Panorama will calculate and store the value for every selected record in the database.
In this case it performs seven calculations and stores seven values.

Repeat the same process for the average, but of course with a different formula.

Here’s the end result.

Once the Formula Fill calculation is finished the formula is forgotten and the numbers are simply stored in
the database just like a number that has been typed in. You can even manually edit a value to override the
result of the formula calculation.

Page 24 Panorama Formulas & Programming

Since the Formula Fill formula is forgotten as soon as it is complete, Panorama does not update the values if
the original numbers (in this case A, B, C or D) change or if new records are added to the database. If you
want values stored in the database to update automatically as the database is updated you must set up auto-
matic calculations in the design sheet (see “Automatic Calculations” on page 303 of the Panorama Handbook).
Here’s the design sheet for our example updated to automatically calculate the total and average.

To activate these formulas you need to create a new generation for this database (see “Database “Genera-
tions”” on page 212 of the Panorama Handbook). Once you’ve done this you can start entering or updating
information. In this illustration a new record has been added (Diamond Bar) and the first number typed in
(but not entered into the database yet).

As soon as the data is entered by pressing the Tab (or Enter) keys the formulas update the Total and Avg
fields.

formula to calculate total
formula to calculate average

formulas in design sheet update fields as data is entered

Chapter 1:Formulas Page 25

As more data is entered the Total and Avg fields are updated instantaneously.

The Total and Avg fields will be updated any time the A, B, C or D fields are modified.

Using a Formula to Locate/Select Information

The Find/Select command (see “The Find/Select Dialog” on page 336) allows you to select data based on a
formula. This allows you to make selections on data that is not directly stored in the database. For example,
suppose you want to select all records with an average greater than 6.8, but without actually storing the aver-
age in the database. Here’s the database.

Choose the Find/Select command, then change the popup to Formula is true. Then enter the formula. This
formula calculates the average and then compares the average to 6.8.

Page 26 Panorama Formulas & Programming

When the Select button is pressed records with averages above the threshold are selected.

Hey - I cheated (sort of)! This database already has the averages stored in the database. I can expand the win-
dow to double check that I really selected only records with averages over 6.8.

Do you forgive me? Anyway, the point is that the selection can be made even if the average is not stored in
the database. Here’s another example. This formula will select every record where the city name is longer
than 10 characters (11, 12, 13, etc.)

Chapter 1:Formulas Page 27

Press Select to see only the records with long city names.

With a bit of ingenuity you can almost come up with a formula to locate or select even the most obscure infor-
mation.

11 characters

11 characters
12 characters

13 characters

Page 28 Panorama Formulas & Programming

Formulas in Procedures

Within a procedure formulas are used to calculate values and control program flow. Most procedures contain
many formulas — a typical example is shown below. The formulas in this procedure (there are 25 visible in
this window) have been highlighted with a light blue box. Don’t worry, I don’t expect you to understand this
procedure right now — the point is to show how vital formulas are to the operation of almost any procedure,
and to show the wide variety of formulas possible, from very simple like a single number or text item to a
complicated multi-line formula.

To learn more about creating procedures see “Procedures” on page 203.

Chapter 1:Formulas Page 29

Using the Formula Wizard

Panorama includes a Formula Wizard that you can use as a “sandbox” for playing with formulas. The For-
mula Wizard let’s you play around with formulas and see the results immediately. It’s great for trying out a
new function or technique you are not familiar with or to work the bugs out of a formula before actually
incorporating it into your database. To use this wizard start with any database and select Formula Wizard
from the Calculation submenu in the Wizard menu. (Tip: Unless you’ve changed this setting with the Hotkey
wizard, you can also open the Formula Wizard by pressing Control-1 on Macintosh systems.)

To use the Formula Wizard type a formula into the top section.

When you press the Enter key the result appears in the bottom section (see “Arithmetic Formulas” on
page 60).

As you can see, the Formula Wizard can be used as a handy calculator.

Page 30 Panorama Formulas & Programming

Calculations with Database Fields

The Formula Wizard can include values in database fields as part of the calculation. The name of the data-
base that is currently linked with the wizard is shown in the window’s title bar, in this case Phone Bill. If you
forget a field name you can see a list of all the fields in the Fields menu.

When you select a field from this menu the wizard will automatically type it in for you.

You can included as many fields as you want in the formula. However, they normally must all be from the
active database, in this case Phone Bill.

Once again when you press the Enter key the wizard will calculate the result, in this case the cost of the
phone call in cents per minute.

Chapter 1:Formulas Page 31

When the wizard performs the calculation it does so based on the currently active record in the active data-
base. In this example the calculation was based on a charge of 2.70 for a 42 minute phone call.

You can use the two small triangles to try out the calculation for other records in the active database. As you
press the triangles the active record will move up and down.

A formula can also work with text fields (see “Text Formulas” on page 67). This formula glues the city and
state together with a comma in between (see “Gluing Strings Together” on page 67).

press to move down one record

press to move up one record

calculation automatically updates

Page 32 Panorama Formulas & Programming

Changing the Active Database

You can change the database that is used by the Formula Wizard at any time with the Database menu. This
menu lists all of the currently open databases.

Now when we re-evaluate the same formula it comes up with a different result (Opelika, AL).

If you switch to a database that does not contain one or more of the fields used in the formula…

Chapter 1:Formulas Page 33

the result will be an error.

Another way to set the active database is to click on one of the database’s windows and then choose Formula
Wizard from the Calculations submenu of the Wizard menu. This brings the wizard back to the front and
makes the selected database active.

Using Fields from Other Databases

Some functions (for example lookup(and grabdata(, see “Linking With Another Database” on page 131)
use fields from other open databases, not just the active database. The Fields menu can help you type in these
field names. When more than one database is open the Fields menu will list the fields in all of them. The
fields for the active database (in this case Phone Bill) are listed first, followed by the name of each database (in
quotes) and the fields for each database.

To type in a database name or field simply select it from the menu.

active database fields

database name

fields in Mini Contacts

database name

database name

fields in Bank Accounts

fields in Books

Page 34 Panorama Formulas & Programming

Topic and Functions Help Menus

Panorama contains hundreds of function and operators available for your use. Even here at ProVUE Devel-
opment we can’t remember all of them, so we have several methods for finding a particular function. The
Topics menu organizes functions into submenus by topic.

When you release the mouse the function or operator will be typed into the formula.

Chapter 1:Formulas Page 35

If the function has one or more parameters (see “Multi-Parameter Functions” on page 44) you can select the
first parameter by pressing Command-1 (Macintosh) or Control-1 (Windows PC). This selects the first
parameter of the function.

Now you can type in the actual parameter, then press Command-1 (Macintosh) or Control-1 (Windows PC)
again to advance to the next parameter.

If this function had additional parameters you could continue to advance until all of the parameters were
complete.

The Topics menu lists most, but not all of Panorama’s functions. To see an alphabetical list of every available
function use the Functions menu. As you can see, this is a giant menu that will fill your entire screen.

Just like the Topics menu, you can select any function in this menu and it will be typed into the Formula Wiz-
ard for you.

Page 36 Panorama Formulas & Programming

Function Search

The Search dialog provides an alternate way to help you enter functions and operators. To open this dialog
choose Search from the Topics menu.

The dialog displays an alphabetized list of functions and operators.

To type a function or operator into the formula you can click on it and press OK or the Enter key, or you can
simply double click on the function or operator you want.

Chapter 1:Formulas Page 37

The list initially contains several hundred functions and operators. To cut down this list you can type in a
search criteria. As you enter each key the number of items in the list will be reduced to show only functions
or operators that contain the text you have typed in. For example the list below shows only functions that
contain the word date.

At any time you can click on one of these functions and press OK or the Enter key, or you can simply double
click on the function you want. If the list has been reduced to a single item you can simply press the Enter
key.

After the function or operator has been typed in you can advance through the parameters as described in the
previous section.

Page 38 Panorama Formulas & Programming

Special Formula Result Formats

The Formula Wizard normally displays the result of the formula as a number or as text. Using the Formula
menu you can select other custom formats for displaying the result.

Use the Date option when you want to display the numeric result of a formula as a date (see “HTML Gener-
ating Functions” on page 105). The table below illustrates how a date is displayed with both the Normal and
Date options.

Use the Time option when you want to display the numeric result of a formula as a time (see “Time Arith-
metic” on page 113). The table below illustrates how a time is displayed with both the Normal and Time
options.

Normal Date

Normal Time

Chapter 1:Formulas Page 39

Use the SuperDate option when you want to display the numeric result of a formula as a SuperDate (see
“SuperDates (combined date and time)” on page 118). The table below illustrates how a result is displayed
with both the Normal and SuperDate options.

Use the Hexadecimal option when you want to display the result of a formula as a hexadecimal number (see
“Raw Binary Data” on page 156). The table below illustrates how a number is displayed with both the Nor-
mal and Hexadecimal options.

Normal SuperDate

Normal Hexadecimal

Page 40 Panorama Formulas & Programming

The Hexadecimal option may also be used to display text results. The ASCII value of each character is dis-
played in hexadecimal.

Use the True-False option when you want to display the result of a formula as true or false (see “True/False
Formulas” on page 124). The table below illustrates how a number is displayed with both the Normal and
True-False options.

Normal Hexadecimal

Normal Hexadecimal

J a s p e r

Chapter 1:Formulas Page 41

The Programming Reference Wizard

The fastest way to find complete information for any function or operator is to use the Programming Refer-
ence wizard. To open this wizard, select it from the Documentation submenu of the Wizard menu, or simply
press Control-R if you are using a Macintosh computer.

To find complete information for any function or operator simply type in the name of the function or opera-
tor in the search box in the upper left, and/or select the function or operator in the scrolling list on the left.

For additional information on this wizard see “Programming Reference Wizard” on page 237.

Page 42 Panorama Formulas & Programming

Formula Components

Just as a sentence is constructed from basic words, a formula is created by combining simple elements — val-
ues (also called operands), operators and functions. Values (operands) are roughly equivalent to nouns,
while operators and functions act as verbs. This illustration show the components that go into a typical for-
mula.

Formula Grammar

Panorama formulas have grammar rules just as languages like English and Spanish do. These rules tell how
values, operands and functions can be combined to make a valid formula.

The simplest formula is a single data value. Here are four examples of such simple formulas.

A

47

"Oregami"

ShippingMethod

Two values can be combined with an operator in between. The first example below adds two numbers
together. The second example multiplies two numbers together. The third example appends two text values
together (to produce a value like Mr. Jones).

2 + 2

Total * TaxRate

"Mr. " + LastName

The values must be the appropriate type for the operator. For example, you can multiply two numbers
together like this

2 * 2

but you cannot multiply two text values together like this (see “Grammar Errors” on page 47).

"Mr. " * LastName

You can combine three or more data values with an operator between each pair of values.

7 + 3 * 4 / 2

FirstName + " " + MiddleInitial + " " + LastName

value
operator

function
value value

operator operator

value

operator

value
operator

value
value

Chapter 1:Formulas Page 43
Calculation Order and Parentheses

When a formula contains more than one operator, the calculations are performed from left to right unless one
of the operators has a higher precedence (priority). This is the natural arithmetic order—multiply and divi-
sion first, then addition and subtraction. This table lists the order of precedence for all operators.

For example, consider the formula below.

7 + 3 * 4 / 2

Panorama first multiplies 3 * 4 to get 12, then divides this by 2 to get 6. Finally it adds 7 (addition is last
because of its low precedence) to get the final result, 13.

You can override the natural calculation order with parentheses. For example, the parentheses in the formula
below force the addition to be calculated first, then the multiplication and division.

(7 + 3) * 4 / 2

Now the final result is 20 instead of 13. When in doubt you can always add parentheses to force Panorama to
calculate the formula in any order you want.

Functions

A function is a formula component that calculates a value. It may calculate the value out of thin air (for exam-
ple, calculating the value of the current date or time) or it can calculate the value from other values (for exam-
ple trigonometry functions calculate values from angles). Panorama has several hundred functions available.
Each function has a name, and is always followed by parentheses. For example, the tan(function calculates
the tangent (a trigonometry function) of an angle.

tan(30)

A function can be used in a formula anywhere a regular value can be used. Just as with ordinary values, you
can use operators to combine functions with other values (and functions).

3 + tan(30)

The value operated on by the function is called a parameter.

1. Unary minus (example: -12)

2. Raise to power (example: 10^5)

3. Multiply and Divide

4. Integer Divide

5. MOD (remainder)

6. Add and Subtract

7. Comparisons (=, <>, <, >, …)

8. NOT

9. AND

10. OR and XOR

function parameter

Page 44 Panorama Formulas & Programming
A function takes the parameter value (in this case 30) and transforms it into another value (in this case -
6.4053, the tangent of 30). The parameter can be a formula itself, like this.

tan(A + B)

In this case Panorama first calculates the value A+B, then computes the tangent of that sum. A parameter
may be as complex a formula as you need, with additional parentheses and even other functions nested
inside the first function.

tan(sqr(A + B) + 1)

The parameter to the sqr(function is A+B, while the parameter to the tan(function is sqr(A+B)+1. (The
sqr(function, by the way, calculates square roots.) Panorama will always calculate the formula from the
inside out until the entire formula has been computed.

Multi-Parameter Functions

Many functions use more than one parameter. When more than one parameter is required each parameter is
separated from the next by a comma. All of the parameters are surrounded by parentheses, just as with single
parameter functions. For example, the pattern(function (shown below) requires two parameters. The first
parameter must be a numeric value (in this case a calculated average) and the second parameter must be a
text value containing a pattern for formatting the number (see “Numeric Output Patterns” on page 250 of the
Panorama Handbook).

Some functions require as many as six parameters. You must always supply every parameter — you cannot
leave one out (see “Grammar Errors” on page 47).

Zero Parameter Functions

A small handful of functions don’t require any parameters at all. These functions generate a value all by
themselves, either by consulting the computer hardware (current date, current time), querying internal Pan-
orama data (line number, imported data) or by generating a completely random number each time the for-
mula is computed.

today() -- current date

now() -- current time

seq() -- line number

import() -- line of text from import file

rnd() -- random number

As you can see, these functions simply have both parentheses next to each other, with no parameter in
between. You cannot omit the parentheses — you are required to include them as shown in the examples
above.

function
first parameter second parameter

comma

Chapter 1:Formulas Page 45
Functions Menu

To help you type in a formula without errors Panorama has a special Functions menu that will type in a func-
tion for you. This menu is available whenever you enter a formula into a dialog, the design sheet or a proce-
dure window. The function has a number of submenus that allow you to select from many of the hundreds of
functions available. (Note: The Functions menu does not have ALL of Panorama’s functions. For a complete
and always up-to-date list see the Formula Wizard (see “Topic and Functions Help Menus” on page 34) and
the Programming Reference Wizard (see “The Programming Reference Wizard” on page 41).)

When you select the function you want Panorama will automatically type it in for you. If the function
requires parameters Panorama will type in a template for each parameter.

Simply type in the actual parameters to complete the function.

Page 46 Panorama Formulas & Programming
Whitespace

Most of the examples you’ve seen so far have extra spaces between the components, like these.

7 + 3 * 4 / 2

FirstName + " " + MiddleInitial + " " + LastName

tan(sqr(A + B) + 1)

Panorama ignores spaces between components. You can leave out the spaces, like this.

7+3*4/2

FirstName+" "+MiddleInitial+" "+LastName

tan(sqr(A+B)+1)

Or you can add extra spaces between components, or even carriage returns, like this. (Note: Some dialogs do
not allow you to enter carriage returns, because pressing the Return key closes the dialog.)

7 + 3 * 4 / 2

FirstName + " " +
 MiddleInitial + " " +
 LastName

tan(sqr(A + B) + 1)

Spaces are only ignored between components, not within components. A common mistake is to place a space
in between the function name and the left parenthesis. This is not allowed. The formula below will not work
(see “Grammar Errors” on page 47) because of the spaces after tan and sqr.

tan (sqr (A + B) + 1)

Another common problem is spaces or other punctuation in field names. If your database has fields named
First Name, Middle Initial and Last Name you might be tempted to try a formula like this.

First Name + " " + Middle Initial + " " + Last Name

Sorry, but it won’t work (see “Grammar Errors” on page 47). Because of the spaces inside the field names,
Panorama will think that First and Name, Middle and Initial and Last and Name are separate components.
The solution is to place chevron (« and ») characters around the field names. In many cases you can use the
Field menu to type in the field name with chevrons for you. Otherwise, on the Macintosh press Option-\ to
create the « chevron character and Shift-Option-\ to create the » chevron character. On Windows systems
press Alt-0171 to create the « chevron character and Alt-0187 to create the » chevron character. Here’s the
revised formula, which will work perfectly

«First Name» + " " + «Middle Initial» + " " + «Last Name»

You’ll also need to put chevrons around a field or variable name that contains punctuation, for example «P/E
Ratio». Without the chevrons Panorama will think that this is four separate components — P, /, E and Ratio.

Chapter 1:Formulas Page 47
Grammar Errors

Unlike a human listener, Panorama is not able to tolerate incorrect or sloppy grammar. If you ask Panorama
to calculate a formula that has incorrect grammar it will refuse to comply until you correct the mistake. For
example, consider the formula shown below in an auto-wrap text object.

When you switch to Data Access Mode Panorama tells you about the grammar error.

The error message tells you that Panorama expected an operand (value) after the + operator. The solution is
either to remove the extra + operator or add another value in between the two + symbols.

When you are editing a formula within a procedure, Panorama will attempt to point out the location of the
grammatical error. For example, here is the same formula with the same error used in a procedure.

If you click to another window or use the Check Procedure command (in the Edit menu) Panorama will dis-
play an alert letting you know about the problem.

Grammar error! Can’t have two operators in a row!

Page 48 Panorama Formulas & Programming
When you close the alert window Panorama will move the insertion point to the location where Panorama
detected the error.

This location is usually fairly close to where the actual error is. However, in some cases Panorama is unable to
determine exactly where the problem is. Consider the formula shown below, which has a missing left paren-
thesis.

When you click to another window or use the Check Procedure command (in the Edit menu) Panorama will
display an alert letting you know about the problem.

When you close the alert window Panorama will move the insertion point to the location where Panorama
detected the error.

But wait — is this really where the error is? No, the error actually is somewhere earlier in the formula. In this
case the missing (probably goes in front of the B or the C. Panorama has done the best job it could to locate
the error for you. One thing you do know for sure, though, is that the error is always before the insertion
point and not after.

location where Panorama detected the error

location where Panorama detected the error

Chapter 1:Formulas Page 49
Comments

Panorama allows “comments” to be placed inside a formula. A comment is a note within the formula that is
ignored when the formula is evaluated. A comment must start with /* and end with */. Anything between
these will be ignored. (C and JavaScript programmers will recognize this style.) For example, this formula:

«CRatio» /* CRatio must be updated every 24 hours */ * Amount

will produce the same value as this one:

«CRatio» * Amount

In addition to notes to yourself, comments are also useful for temporarily disabling a section of a long for-
mula (for example if you are trying to debug the formula).

Values

Values are the raw material that formulas work with—numbers and text. A value may be embedded in the
formula itself, may be stored in a database field or may be stored in a variable (see “Variables” on page 53
and “Variables” on page 247).

Constants

When a value is embedded in the database itself it is called a constant. A numeric constant may be in fixed
point format, like the numbers in this example (the numeric constants are highlighted in purple).

x + 2

today() - 90

Total * 0.0625

A numeric constant may also be in floating point format, which consists of the mantissa followed by the letter
e followed by the exponent. The example below is equivalent to the mathematical formula x • 6.0223.

x * 6.02e23

A formula may also contain text constants. A text constant is a series of characters surrounded by quotes.
When writing a text constant you may choose from five different types of quotes, as shown in this table.

The primary reason for different types is to allow quotes themselves to be used in a text constant. Suppose
that you needed to use the text The shim was 6" high in a formula. Using double quotes around the constant
will cause a grammar error, because Panorama won’t know what to do with the text after 6" (shown in red
below).

"The shim was 6" high"

Type Open Close Example

Double Quote " " "January"

Single Quote ' ' 'Tuesday'

Curly Braces { } {San Francisco}

Smart Double Quote “ ” “Gothic”

Smart Single Quote ‘ ’ ‘Bohemian’

Pipes
|, ||,
|||
etc.

|, ||,
|||
etc.

|||abc|||

Page 50 Panorama Formulas & Programming
One possible solution is to use a different quote character around the constant. Any of the examples shown
below will work.

'The shim was 6" high'

{The shim was 6" high}

“The shim was 6" high”

‘The shim was 6" high’

Another solution is put two double quotes in a row (as highlighted dark blue in the example below). Pan-
orama will convert these into a single quote and continue with the text constant.

"The shim was 6"" high"

Build in Constants: Pi, Carriage Return and Tab

Panorama has one built in numeric constant—pi. Use the Greek π symbol to access this value. For example
the area of a circle can be calculated with this formula.

π * radius^2

To create the π symbol on the Macintosh press Option-P. On the PC, type Alt-0254.

Panorama has two built in text constants—¶ (Carriage Return) and¬ (Tab). For example three line address
can be included in a formula like this.

"Suzette Elliot"+¶+892 Melody Lane"+¶+"Fullerton, CA 92831"

To create the ¶ symbol on the Macintosh press Option-7. On the PC, type Alt-0182.

To create the ¬ symbol on the Macintosh press Option-L. On the PC, type Alt-0172.

“Pipe” Delimited Constants

Panorama has a special pipe constant delimiter that is very handy for creating contants that have other types
of quotes within the constant. The constant starts with a series of pipes, and doesn’t end until an equal num-
ber of pipes. For example if the constant starts with 3 pipes it should also end with three pipes.

|||last="Elliot" first="Suzette" address="892 Melody Lane"|||

You can even embed pipes within a piped constant, like this:

|||| language=javascript code=||alert("Hello World");|| ||||

As you can see pipe delimited constants are very handy for creating text constants that contain computer
code.

Fields

To use a field within a formula, type the name of the field into the formula. This formula adds up the sum of
three fields.

SubTotal+Shipping+Tax

When a field is used in a formula it always refers to the value of that field in the current record in the current
database (the database belonging to the topmost window). As you move from record to record the result of
the computation will change depending on the values in that particular record. (The only exception to this
rule is the lookup(and grabdata(functions, which may refer to fields in other records or even other data-
bases.)

Chapter 1:Formulas Page 51
If a field name contains spaces, numbers, or punctuation marks in it, you must surround the name with chev-
ron characters (« and »). (On the Macintosh press Option-\ to create the « chevron character and Shift-
Option-\ to create the » chevron character. On Windows systems press Alt-0171 to create the « chevron char-
acter and Alt-0187 to create the » chevron character.) If the field name contains carriage returns, they must be
represented with spaces. Here is a database with some unusual field names.

The first two names can be used without chevrons, but the last two require chevrons because of spaces and
punctuation in the names.

Price

Quantity

«Zip Code»

«P/E Ratio»

Formulas require field names to be spelled exactly as they appear in the database, with no typos allowed.
Fortunately, Panorama can help you out with this. Start by positioning the insertion point where you want
the field to appear.

Now pick the field from the Field Menu. This menu is available whenever you are editing a formula in a dia-
log, design sheet or procedure.

Page 52 Panorama Formulas & Programming
Panorama will type in the field name for you, including the chevrons if necessary (as they are in this case).

If the chevrons are not necessary (for example for Price or Quantity) Panorama will not include them.

Using the Current Field

A formula may use «» (see “Special Characters” on page 57) to refer to the current field without having to
know what the current field is. For example, this formula converts the current cell to upper case.

upper(«»)

If necessary, a formula can find out what the current field name is with the info("fieldname") function
(see “INFO("FIELDNAME")” on page 5375).

Line Item Fields

Line items are used for repeating items within a record (see “Repeating Fields (Line Items)” on page 222).
Line item fields always end with a numeric suffix, for example Qty1, Qty2, Qty3, etc. Line item fields can be
used in formulas just like other fields, for example:

Quantity3*Price3

When the current cell is a line item field the Ω symbol (see “Special Characters” on page 57) can be used as an
automatic numeric suffix. Panorama automatically adjusts the suffix depending on what cell is currently
active. For example, consider this formula using the Ω symbol.

QuantityΩ*PriceΩ

Chapter 1:Formulas Page 53
When this formula is calculated, Panorama will automatically substitute the correct line item number for
each Ω symbol as shown in this table.

If a formula containing the Ω character is used when the current cell is not a line item cell an error will occur.

To add up a series of line items you can use the sum(function. See “Adding Line Item Fields” on page 62.

Variables

A variable is a place in the computer where an item of data can be stored, kind of like a storage bin for a
value. Variables may be created by procedures or by SuperObjects. Most procedures will use one or more
variables to hold and transfer data as the program runs (see “Variables” on page 247 for more details on how
variables can be created and used in procedures). Use a variable whenever you need to store a single data
item so that you can use it later. Unlike a field, the value variable doesn’t change as you move from record to
record, or, in the case of a global variable, even when you move from database to database.

Current Cell Adjusted Formula

Quantity1*Price1

Quantity2*Price2

Quantity6*Price6

current cell
is Quantity1

current cell
is Quantity2

current cell
is Price6

Page 54 Panorama Formulas & Programming
Variable Names

Just as a house is identified by its address, a variable is identified by its name. A street address tells you
exactly how to find a house or business. It doesn’t tell you who or what is inside the house, however. Families
may come and go, but the street address remains the same. In a similar way, a variable name identifies a place
where data can be stored. The data may change, but the variable name remains the same.

Panorama allows any sequence of characters to be used as a variable name. However, if the variable name
contains any punctuation (including spaces) it must be surrounded by the chevron characters « and ». (On
the Macintosh press Option-\ to create the « chevron character and Shift-Option-\ to create the » chevron
character. On Windows systems press Alt-0171 to create the « chevron character and Alt-0187 to create the »
chevron character.) Here are some examples of typical variable names:

X

birthDay

Counter

«Tax Rate»

«PrimeRate%»

A variable name must be spelled exactly the same way every time, including upper and lower case. The vari-
able name birthDay is not the same as Birthday or birthday. In fact, you could create three different variables
using these three different names (although this is not recommended because it would be very confusing).

By the way, it’s always ok to use chevrons around a variable name, even if the name doesn’t have any punc-
tuation. «Counter» is exactly the same as Counter, and they can be used interchangeably. So if you have any
doubts about whether or not chevrons are necessary, go ahead and use them. No harm, no foul.

What’s Inside A Variable?

By itself, a variable has no meaning, no value…until you put some data in it. When you use a variable in a
formula or procedure, you are actually telling Panorama to use the contents of the variable.

A variable is sort of like a cup that you can pour anything into. A cup may contain water, soda, tea, or coffee.
If you tell a person to drink the blue cup, what you really mean is to drink whatever liquid is in the blue cup.
Each time they drink they may get a different liquid, depending on what the blue cup has been filled with.

Using a variable is similar. If you tell Panorama to calculate X+Y (where X and Y are variable names), what
you really mean is “take whatever value is in X and whatever value is in Y and add them together.”

It’s important to remember that a variable name simply identifies the variable, but the name is not the vari-
able itself. The name is like a placeholder for the real contents of the variable.

The Life Cycle of a Variable

A variable doesn’t just appear by magic. It must be created, just as you have to build a house before you can
move in. Once the variable has been created it can be used for storing a data item. However, variables don’t
last forever. Most variables eventually disappear without a trace. You can also force a variable to disappear at
any time — see “Destroying a Variable” on page 249.

Panorama has five kinds of variables: local, window, fileglobal, global and permanent. The only difference
between these three types of variables is how long they last before disappearing and when the variables are
available.

Chapter 1:Formulas Page 55
Local variables are the most short-lived. A local variable disappears when the procedure that created the
variable is finished. In addition, a local variable can only be used by the procedure that created it. If proce-
dure A calls procedure B as a subroutine, procedure B cannot access the local variables created by procedure
A. In fact, procedure B could create its own local variables with the same names as the local variables created
by procedure A. Panorama keeps the local variables for each procedure completely separate from each other.

Window variables are associated with a particular window. A window variable is only accessible when the
window it is associated with is on top, and the variable disappears completely when the window is closed. It
is possible for several different windows to have window variables with the same name. In that case, each
window variable may have a different value.

FileGlobal variables are associated with a particular database (file). A fileglobal variable is only accessible
when the database it is associated with is the current database (on top), and the variable disappears com-
pletely when the file is closed. It is possible for several different files to have fileglobal variables with the
same name. In that case, each fileglobal variable may have a different value. For many applications fileglobal
variables are the best choice because there is no chance of an accidental conflict with a variable of the same
name in another database.

Global variables are relatively long-lived. A global variable doesn’t disappear until you quit from Panorama.
Even if you close the database, the global variable remains. Once a global variable has been created it can be
accessed in any procedure, in any database or window, at any time. You should avoid using global variables
unless you absolutely need universal access across databases for the value stored in the variable. If the value
is only needed in one database it is much better to use a fileglobal variable to avoid the chance of an acciden-
tal conflict with another database using the same global variable name.

Permanent variables are almost immortal. When the database is saved, all permanent variables in that data-
base are also saved. Like a fileglobal variable, a permanent variable is only accessible when the database it is
created in is the current database, and a fileglobal variable disappears when you close the database. How-
ever, unlike a fileglobal variable, a permanent variable will re-appear like a phoenix from the ashes when you
re-open the database. In fact, there are only two ways a permanent variable can permanently disappear. First,
you can explicitly kill a permanent variable with the unpermanent statement. Secondly, you can create a
permanent variable but never save the database.

Creating Variables in a Procedure

Panorama has five statements for creating variables in a procedure: local, windowglobal, fileglobal,
global, and permanent. Each of these statements is exactly the same except for the type of variable created.
The statement must be followed by a list of one or more variables to create, with each variable name sepa-
rated from the next by a comma. (Remember: if a variable name contains punctuation, it must be surrounded
by chevrons « and ».)

Here are a few examples of typical statements for creating variables:

There is no limit to the number of local, global, and permanent statements you use in your programs, and no
limit to the total number of variables (except for scratch memory, see below).

Page 56 Panorama Formulas & Programming
Initializing Variables

Creating a variable creates a place to store data, but it doesn’t actually put any data in the variable. It’s kind
of like a new house that no one has moved into yet. If you try to access the variable before any data has been
put into it, an error occurs.

To put data into a variable, use an assignment statement. Here’s the start of a procedure that creates a vari-
able named Count and initializes it to zero. The variable is now ready to use.

local Count
Count=0

Sometimes you may not be sure if a global variable has been initialized yet. If it has not been, you want to ini-
tialize it. But if it has already been initialized, you don’t want to disturb the value that is already there. You
can get around this problem with the if error statement, as shown in this example.

global AreaCode
AreaCode=AreaCode
if error

AreaCode="714"
endif

This procedure starts by creating a global variable named AreaCode. However, it’s possible that AreaCode
has already been created and initialized by another procedure. To test this, the procedure copies the variable
to itself. If the variable is already initialized, there will be no error and the contents of the variable have not
been disturbed. If the variable is brand new and has not been initialized, an error occurs. This error is trapped
by the if error statement and the variable is initialized. If you have a number of variables that are always ini-
tialized as a group, you don’t need to test each one. Just test one, and if an error occurs initialize the entire
group of variables (see “The Define Statement” on page 244).

Variables and Data Types

A variable can hold any kind of data: text, numbers, and secondary data types like dates, times, points, rect-
angles, etc. In addition, you can change the type of data in a variable at any time. One minute the AreaCode
variable can contain text, moments later it can contain a number. The variable takes on the data type of what-
ever data you copy into it.

SuperObject Variables

A number of Panorama SuperObjects™ have the option of linking to a variable or a field. These SuperOb-
jects™ include the Text Editor, Data Button, Pop-up Menu, List, Sticky Button and Scroll Bar. If one of these
objects is linked to a variable and the variable does not exist, Panorama will automatically create a global
variable when it opens the form, and initialize the variable to empty text. Except for how it was created, this
global variable is just like any other global variable and can be used freely in procedures and formulas.

Variable Name Conflicts

If two database files define a global variable with the same name, you’ve got a conflict. It’s kind of like two
families trying to share the same house. This can work if the two families have an arrangement, but if they
don’t the result is chaos.

The best solution to this problem is to avoid it. If you can, use a fileglobal variable instead of a global variable.
If this is not possible, stay away from simple global variable names like X, Payment, Count, etc. If possible,
choose names that incorporate the database name (or an abbreviation of the name), for example Invoice-
TaxRate, ReceivablesTotal, or APLastReconcileDate.

Variable names (even for local variables) can also conflict with fields in a database. In this battle, the variable
always wins. Panorama will use the data in the variable instead of the data in the field. Avoid variable names
that are the same as field names.

Chapter 1:Formulas Page 57
Permanent Variable Tips

When the permanent statement creates a permanent variable, it really creates two variables: one in memory
and one in the current database. The one in memory is an ordinary fileglobal variable. Whenever the data-
base is saved, Panorama copies the contents of the fileglobal variable into the copy of the variable in the data-
base itself, then saves the database. Just like any other data, the contents of the permanent variable are not
saved unless the database itself is saved. However, if you have not made any other changes to the database,
Panorama will not warn you if you attempt to close a database without saving changes to the permanent
variable.

Whenever a database is opened, Panorama automatically creates fileglobal variables for any permanent vari-
ables associated with that database. Next it copies the values from the database into the fileglobal variables.
The variables are now ready to use.

If you ever want to make a permanent variable un-permanent, use the unpermanent statement, which is fol-
lowed by a list of variables you want to make unpermanent. This statement doesn’t make the variables go
away, but they will no longer be permanent. The unpermanent statement only affects variables that are per-
manent in the current database. The example below changes two permanent variables back into regular (non-
permanent) fileglobal variables.

unpermanent myAreaCode,myZipCode

Special Characters

Formulas are very picky about special characters. You’ve got to use the right special character in the right
spot—no substitutes are allowed.

For example, some people mistake the bracket [] characters for the parentheses (). On your keyboard, the
parentheses are created by pressing Shift and the 9 or 0 keys. Another common mistake is using the \ (back-
slash) instead of the / (slash) for divide. The table below lists all the special characters used by formulas and
shows how to type them.

Character Name Mac PC

(left parenthesis Shift-9 Shift-9

) right parenthesis Shift-0 Shift-0

[left bracket [[

] right bracket]]

{ left curly brace Shift-[Shift-]

} right curly brace Shift-] Shift-]

« left chevron Option-\ Alt-0171

» right chevron Shift-Option-\ Alt-0187

^ caret (raise to power) Shift-6 Shift-6

* asterisk (multiply) Shift-8 Shift-8

÷ divide Option-/ not available, use /

= equal = =

≠ not equal Option-= not available, use <>

< less than < <

> greater than > >

≤ less than or equal Option-< not available, use <=

≥ greater than or equal Option-> not available, use >=

Page 58 Panorama Formulas & Programming
To use the Alt key on the PC you must hold down the Alt key, then press the numeric digits (for example
0182) then release the Alt key. When you release the Alt key the special symbol will appear.

¶ paragraph Option-7 Alt-0182

¬ export tab Option-L Alt-0172

§ section mark Option-6 Alt-0167

¢ cents Option-4 Alt-0162

‘ left smart quote Option-] Alt-0145

’ right smart quote Shift-Option-] Alt-0146

“ left smart double quote Option-[Alt-0147

” right smart double quote Shift-Option-] Alt-0148

Ω omega (line items) Option-Z Alt-0166

π pi Option-P Alt-0254

Character Name Mac PC

Chapter 1:Formulas Page 59
Working With Extremely Complex Formulas

Panorama has an internal 32000 byte buffer it uses for processing formulas. This allows very complicated for-
mulas to be processed (since each function is represented in the buffer by a single byte, the actual formula can
contain even more than 32,000 characters). However, it is possible to create a formula too large to fit into the
buffer. When this happens Panorama generates an Expression too complicated error message.

To avoid this error Panorama allows you to create a larger expression buffer, letting you work with formula
as complex as you want. To increase the size of the expression buffer, use the formulabuffer statement.
This statement has one parameter, the number of bytes to make the formula buffer. For example, to make the
formula buffer 120,000 bytes long, insert the following line into your procedure (you probably want to put
this line into your .Initialize procedure, see “.Initialize” on page 382):

formulabuffer 120000

This would allow formulas up to six times as complicated as would be allowed normally.

The formulabuffer statement is semi-permanent: it applies to all formulas in all databases until you quit
Panorama or change the setting again. If you want to cancel expanded buffer and go back to the internal
buffer, use formulabuffer statement with a size of 0:

formulabuffer 0

The expanded formula buffer is not created until the procedure is run. That means that if the complex for-
mula is in the same procedure as the formulabuffer statement, you won’t be able to compile the proce-
dure because the buffer hasn’t been expanded yet. The best way to eliminate this problem is to put the
formulabuffer statement into your .Initialize procedure.

How Large Should the Buffer Be?

Most users have never encountered the Expression too complicated error message and have no need to
expand the buffer. If you do encounter this error, you should probably start by modestly expanding the
buffer, perhaps to 40000 to 50000 bytes. If you still have a problem you can expand it further until the prob-
lem disappears.

However, if your database allows users to enter formulas that are out of your control (for example a formula
that is automatically generated by selecting options on a form or a web page), you may wish expand the
buffer in advance to a very large size, perhaps100000 bytes.

Page 60 Panorama Formulas & Programming
Arithmetic Formulas

Panorama formulas are very adept at performing arithmetic—from simple addition to complex financial cal-
culations. Arithmetic formulas usually work just like the ones you learned about in high school. Panorama
has seven arithmetic operators, as shown in this table.

The ^ operator (press Shift-6) raises the operand on the left to the power specified on the right. For example
the formula

2^3

means raise 2 to the third power (equivalent to the mathematical formula 23).

The \ operator converts both operands into integers and then divides them. The result is also an integer. For
example,

19/5

is 3.8 (a normal division), but

19\5

is 3. Notice that because this is an integer operation, the result is not rounded.

The mod operator computes the remainder after an integer division. For example the result of the formula

19 mod 5

is 4, but

20 mod 5

is zero. The result of the mod operator will always be an integer between zero and the value of the operand
on the right (in this case 0, 1, 2, 3, or 4).

symbol operator

+ add

- subtract

* multiply

/ or ÷ divide

^ raise to power

\ integer divide

mod modulo
(remainder)

Chapter 1:Formulas Page 61
Dividing by Zero

Dividing by zero is, of course, a no-no. If you do attempt to divide by zero, Panorama will display an alert
reminding you of this arithmetical impossibility. Sometimes, however, you may want to defy mathematical
reality and divide by zero without getting slapped on the wrist. For example, since formulas treat empty data
cells as zeros, attempting to divide by a cell that hasn’t been entered yet will result in a divide by zero error.
To bypass the error message, use the divzero(function instead of the / operator. The divzero(function
returns zero if you attempt to divide by zero. For example, using the formula

Price/Qty

can result in a divide by zero error if Qty field is empty, but

divzero(Price,Qty)

will not.

Overflow/Underflow Problems

A number is a number, right? Well, not quite. You may remember that Panorama actually stores two different
kinds of numbers—fixed digit and floating point, with fixed digit numbers being further divided into 0, 1, 2,
3, and 4 digit precision (see “Numeric Data” on page 249 of the Panorama Handbook). In a formula these differ-
ences may be important, since some numbers are too big or too small to be represented in some of the fixed
point formats.

Formulas try to perform arithmetic using the final numeric type required for the answer. For example, if the
result of a formula will be placed in a fixed 2 digit field, calculations will be performed in a fixed 2 digit for-
mat unless you force the formula to use another format. If the final destination is not a numeric field, arith-
metic will be performed using floating point. Floating point is also used when the answer is not going to be
stored in a field—for example formulas that are merged into auto-wrap text object (see “Displaying Formulas
in Auto-Wrap Text” on page 602) or Text Display SuperObject (see “Text Display SuperObjects™” on
page 608 of the Panorama Handbook).

Since the internal format used for arithmetic can vary depending on the final destination of the answer, the
same formula can give different results depending on where it is used. For example, the formula

1/4

gives the result 0.25 if the result is a floating point field, but 0 if the result is a fixed 0 digit field.

A more subtle problem can occur if an intermediate calculation causes an overflow, underflow, or loss of pre-
cision. Often this can be fixed by re-arranging the formula. For example, this formula for computing sales tax
can have problems if the result will be stored in a 2-digit fixed field.

total*taxrate/100

If the tax rate is 6.5%, the intermediate result of the division is 0.065. But since 2-digit fixed point arithmetic is
being used, this intermediate result will be rounded to 0.07, resulting in an incorrect calculation. You can fix
this formula by doing the multiplication first.

(total*taxrate)/100

You can also fix this formula by forcing all the numbers to floating point using the float(function.

float(total)*float(taxrate)/float(100)

If all the operands are in the same numeric format, the formula will calculate the result using that format, in
this case floating point.

Page 62 Panorama Formulas & Programming
If you don’t want to worry about overflow/underflow problems one solution is simply to make all numeric
fields floating point. Floating point fields take up slightly more RAM than fixed point fields, but for most
databases the difference isn’t critical.

Adding Line Item Fields

Line items are used for repeating items within a record (see “Repeating Fields (Line Items)” on page 222 of
the Panorama Handbook). Line item fields always end with a numeric suffix, for example Qty1, Qty2, Qty3, etc.
Line items can be added up just like ordinary fields:

Qty1+Qty2+Qty3+Qty4+Qty5

You can also use the sum(function to add up line item fields:

sum("QtyΩ")

Using the sum(function is easier to type, and it is slightly faster than regular addition when used in the
design sheet or a procedure. (Ordinary addition is faster than the sum(function when used in a Formula
Fill.)

When you use the sum function, don’t forget to include the quotes around the field name as shown above,
and don’t forget the Ω symbol (see “Special Characters” on page 57). To learn how to perform calculations
within line item fields see “Line Item Fields” on page 52.

Warning: The sum(function is not compatible with the Design Sheet’s Spreadsheet Mode (see “Spreadsheet
Mode Calculations” on page 303 of the Panorama Handbook). If you are using Spreadsheet Mode you must
add up the items field by field (i.e Qty1+Qty2+Qty3…).

Basic Numeric Functions

These functions perform various mathematical operations. Each of these functions takes one or more numeric
parameters and returns a numeric result.

Function Reference
Page Description

abs(number) Page 5010
This function returns the absolute (positive) value of the numeric param-
eter. In other words, negative numbers are converted to positive numbers
while positive numbers remain positive.

divzero(numerator,denominator) Page 5178
This function divides two numbers. However, unlike the / operator, the
divzero(function does not care if you attempt to divide by zero. If you
attempt to divide by zero, this function simply returns zero.

fix(number) Page 5254

This function truncates a number to an integer. It always truncates
towards zero. For example fix(-4.6) is -4, while int(-4.6) is -5. For positive
numbers the int(and fix(functions are identical.

Don’t confuse this function with the fixed(function, which converts num-
bers from floating to fixed point format.

fixed(number) Page 5255

This function forces a number to fixed point format, using the least num-
ber of digits possible. Since formulas usually perform this conversion
automatically, you probably won’t ever need this function. Don’t confuse
this function with the fix(function, which truncates a number to an inte-
ger but does not change the type of the data.

float(number) Page 5256
This function forces a number to a floating point format. You may need to
use floating point to get around overflow, underflow, and accuracy prob-
lems that can occur when using fixed point arithmetic.

int(number) Page 5458
This function truncates a number to an integer. It always truncates
towards negative infinity. For example int(-4.6) is -5, while fix(-4.6) is -4.
For positive numbers the int(and fix(functions are identical.

Chapter 1:Formulas Page 63
max(number,number) Page 5523
This function compares two numbers and returns the larger value. If you
need to compare more than two numbers, you can nest this function
within itself, for example max(a,max(b,c)).

min(number,number) Page 5530
This function compares two numbers and returns the smaller value. If
you need to compare more than two numbers, you can nest this function
within itself, for example min(a,min(b,c)).

numsandwich(value,extra)

This function is similar to the sandwich function, but for numbers. If the
value is zero the result is zero, but if the value is not zero the result is the
value plus the extra. For example, this could be useful for calculating the
size of an object plus a border. If the object size is zero, the border is omit-
ted also, for example numsandwich(20,7) will be equal to 27, but num-
sandwich(0,7) will be equal to zero.

randominteger(startnum,endnum) Returns a random integer value greater than or equal to the startnumber
and less than or equal to the end number.

round(number,step) Page 5682

This function rounds a number to the nearest step. You can use any value
you want for the step: 1, 10, 0.5, whatever.

For example, you could use the formula round(Quantity,12) to round the
quantity to the nearest dozen. The quantity 16 will be rounded to 12; the
quantity 20 will be rounded to 24.

Since dates are treated as numbers (see “HTML Generating Functions”
on page 105) you can use this function round to the nearest week. Use a
step value of 7 (7 days per week), for example round(Date,7).

rnd() Page 5681

This function returns a random number between 0 and 1. Each time you
use this function it will return a different number. If you need a random
number in a different range just adjust the output of this function. For
example, to get a random number between 1 and 10, use the formula
int(1+10*rnd()). Notice that even though this function has no parameters,
you must still include the empty parentheses after the function name.

sum("lineitemΩ") Page 5816

This function adds up all the instances of a line item field within the cur-
rent record. You must specify the name of the line item field followed by
the Ω character (see “Special Characters” on page 57). The whole thing
must be surrounded by quotes, for example sum("QtyΩ"). This example
is the same as the formula Qty1+Qty2+Qty3… but much easier to type!

Warning: The sum(function is not compatible with the Design Sheet’s
Spreadsheet Mode (see “Spreadsheet Mode Calculations” on page 303 of
the Panorama Handbook). If you are using Spreadsheet mode you must
add up the items field by field (i.e Qty1+Qty2+Qty3…).

zeroblank(number) Page 5915

This function tells Panorama to store zero as an empty space. If the final
formula result is not zero, this function has no effect. The zeroblank(
function is handy when you want to leave the result of a calculation
blank if one of the operands are blank. For example, if you use the for-
mula zeroblank(Qty*Price), the result will be empty if either the quantity
or price is empty.

Function Reference
Page Description

Page 64 Panorama Formulas & Programming
Scientific Functions

These functions perform various log, trig, and exponential calculations. Each of these functions takes one or
more numeric parameters and returns a numeric result.

The trig functions listed in this table normally use radians to measure angles (1 radian = 180/π degrees). In a
procedure the degree statement may be used to temporarily switch Panorama’s trig functions to use
degrees instead of radians (see “DEGREE” on page 5155 of the Panorama Reference). The radians statement
switches the mode back to radians (Panorama also switches back automatically when the procedure is fin-
ished). For example, the procedure below calculates the tangent of 30 degrees, not 30 radians.

degree
height=tan(30)

Calculations performed outside of a procedure always use radians (for example in a Text Display SuperOb-
ject). If you need to convert degrees into radians you can simply multiple the number of degrees by 180/π
(see “Special Characters” on page 57), for example tan(30*180/π).

Function Reference
Page Description

arccos(number) Page 5030

This function calculates the inverse cosine of a number. The number must
be between -1 and +1. The result is normally in radians, but may be in
degrees if the degree statement has been used (see “DEGREE” on
page 5155 of the Panorama Reference).

arccosh(number) Page 5031 This function calculates the inverse hyperbolic cosine of a number. The
number must be between 1 and ∞.

arcsin(number) Page 5032 This function calculates the inverse sine of a number. The number must
be between -1 and +1.

arcsinh(number) Page 5033 This function calculates the inverse hyperbolic sine of a number.

arctan(number) Page 5034
This function calculates the inverse tangent of a number. The result is
normally in radians, but may be in degrees if the degree statement has
been used (see “DEGREE” on page 5155 of the Panorama Reference).

arctanh(number) Page 5035 This function calculates the inverse hyperbolic tangent of a number. The
number must be between -1 and +1.

cos(number) Page 5128

This function calculates the cosine of an angle. The angle is normally
specified in radians, not degrees. To convert degrees to radians, divide by
180/π, which is 57.2958. For example cos(A*180/π) calculates the cosine
of A, where A is in degrees. It is also possible to modify the action of Pan-
orama to use degrees instead of radians for all trig functions, see
“DEGREE” on page 5155 of the Panorama Reference.

cosh(number) Page 5130 This function calculates the hyperbolic cosine of a number. The result will
be a value between 1 and ∞.

exp(number) Page 5202
This function raises e to a number. For example, the formula exp(10.2) is
equivalent to e10.2. Incidentally, e is a constant that is used in many math-
ematical formulas. Its approximate value is 2.71828.

fact(number) Page 5214
This function calculates the factorial of a number. For example, the for-
mula fact(4) is equivalent to 4! or 4*3*2*1. You can calculate the factorial
of any integer from 0 to 170.

log(number) Page 5492 This function calculates the natural logarithm (base e) of a number.

log10(number) Page 5493 This function calculates the common logarithm (base 10) of a number.

Chapter 1:Formulas Page 65
sin(angle) Page 5772

This function calculates the sine of an angle. The angle is normally speci-
fied in radians, not degrees. To convert degrees to radians, divide by 180/
π, which is 57.2958. For example sin(A*180/π) calculates the sine of A,
where A is in degrees. It is also possible to modify the action of Panorama
to use degrees instead of radians for all trig functions, see “DEGREE” on
page 5155 of the Panorama Reference.

sinh(angle) Page 5774 This function calculates the hyperbolic sine of a number.

sqr(angle) Page 5791 This function returns the square root of the number.

tan(angle) Page 5841

This function calculates the tangent of an angle. The angle is normally
specified in radians, not degrees. To convert degrees to radians, divide by
180/π, which is 57.2958. For example tan(A*180/π) calculates the tangent
of A, where A is in degrees. (Note: The tangent of π/2 (90°) is ∞, which
results in an overflow error.) It is also possible to modify the action of
Panorama to use degrees instead of radians for all trig functions, see
“DEGREE” on page 5155 of the Panorama Reference.

tanh(number) Page 5843 This function calculates the hyperbolic tangent of a number. The result
will be a value between -1 and +1.

Function Reference
Page Description

Page 66 Panorama Formulas & Programming
Financial Functions

These functions calculate financial data, including loan payments, future value, and present value. They are
designed to be compatible with the same functions in Microsoft Excel®. The financial functions are based on
the following formula.

pv(1+rate)periods+payment(1+rate × begin)×((1+rate)periods-1)/rate+fv=0

Function Reference
Page Description

pmt(rate,periods,amount,fv,begin) Page 5604

This function calculates the periodic payment required to pay off a loan.
The rate is the interest rate of the loan per period. Periods is the term of
the loan expressed in payment periods, for example 36 months for a three
year loan that is paid monthly. Amount is the amount being borrowed.
The fv (future value) and begin values are optional, and should usually
be set to zero.

For example, suppose you are taking out a 36 month loan of $20,000 to
buy a car. If the annual interest rate is 13.5% (1.125% compounded
monthly), what would the monthly payment be?

pmt(0.135/12 , 36 , 20000 , 0 , 0)

The monthly payment is $678.71.

fv(rate,periods,payment,pv,begin) Page 5283

This function calculates the future value of an investment. Rate is the
interest rate per period. Periods is the term of the investment, for exam-
ple ten years or 48 months. The pv is the present value of the investment,
for example the starting balance in a savings account. Begin should be
either 1 or 0; 1 if the payments occur at the beginning of the period, 0 if
the payments occur at the end of the period.

For example, to calculate the final balance in a savings plan when you
invest $500 per year for 10 years at 9% annual interest use the formula—

fv(0.09 , 10 , -500 , 0 , 1)

At the end of ten years you would have $8280.15. What if this savings
plan already has $2000 in it at the time you start this 10 year savings pro-
gram? The new formula would be—

fv(0.09 , 10 , -500 , -2000 , 1)

At the end of 10 years you would have $13,014.87.

pv(rate,periods,payment,fv,begin) Page 5621

This function calculates the present value of an investment. Rate is the
discount rate, periods is the periodic investment, and payment is the
periodic payment. The fv is an optional lump sum at the end of the final
period; use zero if there is no lump sum. Begin specifies whether pay-
ments are received at the beginning or end of each period—1 for begin-
ning or 0 for end.

Present value is a variation of the old theme that a bird in the hand is
worth two…well, you know. It’s better to get $1000 now instead of $1000
next year, but how much better? The present value computation puts a
numeric value on time and money.

For example, suppose you find an investment opportunity that promises
to pay you $1,000 per year for the next 3 years. Assuming the current
interest rate is 10% per year, how much are these payments worth right
now?

pv(0.1 , 3 , 1000 , 0 , 0)

The computation shows that $3000 paid over 3 years is worth $2486 right
now (assuming 10% interest).

Chapter 1:Formulas Page 67
Text Formulas

Formulas can work on text as well as numbers. Formulas can combine two or more pieces of text, extract a
portion of a piece of text (for example the area code or last name), or even re-arrange the text. Formulas can
also convert numbers into text and back again.

Programmers call a piece of text a string, referring to the fact that the text is made up of a string of characters.
Since this is such a handy term we’ll use it ourselves. So whenever you see the word string think “piece of
text.”

Where do strings come from? Most strings come from the database itself. Any text or choice field can be used
as a string. You can also store strings in a variable (see “Variables” on page 53), or put a string right into the
formula itself (see “Constants” on page 49).

Gluing Strings Together

The simplest operation that can be performed on two strings is sticking them together, also called concatena-
tion. To glue strings together use the + operator. This operator attaches the string on the right to the end of
the string on the left. For example the formula

"abc"+"def"

produces the result abcdef. To attach the word Mr. to the beginning of a last name field use the formula

"Mr. "+«Last Name»

(Of course, you better be sure everyone in the database is a man!).

You can use more than one + operator to stick several strings together at once. For example to combine sepa-
rate first and last names into a single string using the format Last, First use this formula:

 «Last Name»+", "+«First Name»

Another way to glue strings together is with the sandwich(function (reference page 5689). This function
combines up to three items of text: a prefix, a suffix, and the root text. The prefix and suffix are slapped on the
ends of the root, just like a sandwich. However, if the root is empty (sort of like a sandwich with no meat!) the
prefix and suffix are also left off, just as you wouldn’t bother to make a sandwich without any meat.

Let’s revisit our previous example with the sandwich(function. The previous formula will work fine as
long as there is a first name. But if the first name is empty, the formula will produce an extra comma, for
example Jones, . The sandwich function can solve this problem:

«Last Name»+sandwich(", ",«First Name»,"")

If the First Name field contains a name, the sandwich(function will slap the prefix in front of the name (in
this case the prefix is a comma and a space). But if the First Name field is empty, the sandwich(function will
also leave off the prefix. All the formula will produce is the Last Name, with no extra comma and space.

The rep(function (reference page 5662) repeats an item of text by concatenating it to itself over and over.
The number of times the item is repeated is specified by the second parameter, which must be an integer. For
example, this formula will create twenty asterisks in a row:

rep("*",20)

This is exactly the same as the formula:

"********************"

Page 68 Panorama Formulas & Programming
The rep(function, however, is less prone to error, and the count can be changed easily or even vary dynam-
ically. Here is a function which adds leading asterisks to a number so that there are always 15 characters.

rep("*",15-length(pattern(Amount,"$#,.##")))+pattern(Amount," $#,.##")

This formula is perfect for displaying numbers with an auto-wrap text object or Text Display SuperObject.
The numbers will be padded with asterisks, for example ***** $4,983.45.

Functions for Taking Strings Apart

These functions return portions of a string. See also “Taking Strings Apart (Text Funnels)” on page 69, “String
Modification Functions” on page 80, “Text Arrays” on page 93 and “HTML Tag and Tag Parsing Functions”
on page 101.

Function Reference
Page Description

after(text,tag) This function extracts all of text after a specified tag (sequence of charac-
ters. If the tag doesn’t exist within the text the function returns "".

before(text,tag) This function extracts all of text before a specified tag (sequence of char-
acters. If the tag doesn’t exist within the text the function returns "".

firstline(string) This function extracts the first line from the text.

firstword(string) This function extracts the first word from the text (the text up to the first
space).

lastline(string) This function extracts the last line from the text.

lastword(string) This function extracts the last word from the text (the text from the last
space to the end).

left(string,len) Extracts characters from the left edge of the text. For example left(text,2)
extracts the leftmost two characters.

mid(string,len) Extracts characters from the middle of the text. For example mid(text,6,4)
extracts four characters starting with the sixth character.

nthline(string,num) This function extracts the nth line from the text. For example nth-
line(text,4) extracts fourth line.

nthword(string,num) This function extracts the nth word from the text. For example nth-
word(text,7) extracts seventh word.

removeprefix(text,prefix) This function checks to see if a text item starts with a prefix. If it does, the
prefix is removed.

removesuffix(text,suffix) This function checks to see if a text item starts with a suffix. If it does, the
suffix is removed .

Chapter 1:Formulas Page 69
Taking Strings Apart (Text Funnels)

Sometimes you may have an item of text where you only need a portion of the text and want to strip off the
beginning and or the end of the text. In addition to the functions in the previous section Panorama has a spe-
cial tool for stripping off the ends of a text item. This tool is called a text funnel. Text funnels are powerful
tools, however, many users find them a bit difficult to figure out. In recent years we’ve added many functions
that can perform most of the operations that a text tool can perform. Before deciding to use a text funnel you
may want to check out “Functions for Taking Strings Apart” on page 68, “String Modification Functions” on
page 80, “Text Arrays” on page 93 and “HTML Tag and Tag Parsing Functions” on page 101.

A text funnel is used a bit differently than other Panorama functions and operators. The text funnel always
follows the text item that is being “stripped.” In a sense a text funnel has three parameters, the text item, start,
and end. But as you can see below, these parameters are arranged quite differently than they are for other
functions:

<text item>[<start>,<end>]

The first parameter, text item, is the item of text which will be stripped to get the final result. This may be a
field, a variable, or an entire formula (as long as it produces a text item as its final result). If you use an entire
formula you should put parentheses around the formula.

The second parameter, start, specifies the first character you want to include in the final output. For example
if you want to strip off the first three characters the start should be 4 (because the 4th character is the first one
we want to keep). If the starting position is past the end of the text all the text will be stripped out and the for-
mula is left with an empty text item.

The third parameter, end, specifies the last character you want to include. For example, if you want to strip
off everything after the 12th character, the end should be 12. If the starting position is after the ending posi-
tion, all the text will be stripped and the formula is left with an empty text item.

The real trick in setting up text funnels is deciding what the start and end parameters should be. The follow-
ing sections will describe several techniques for setting up these parameters.

right(string,len) Extracts characters from the right edge of the text. For example
right(text,7) extracts the rightmost seven characters from the text.

snip(string,startposition,count)

This function removes (snips!) one or more characters from the middle of
an item of text. The startposition specifies the first character removed, the
count is the number of characters to remove. (Note: This function
requires the startposition to be a positive number.) If count is -1 then all
the text from the start position to the end of the text is snipped, otherwise
the count must be a positive number.

textafter(string,tag)

This function extracts the text after the tag. The tag many be one or more
characters long. If the tag doesn't occur in the text then the entire original
string is returned. For example textafter("someone@isp.net","@") will
return isp.net.

textbefore(string,tag)

This function extracts the text before the tag. The tag many be one or
more characters long. For example textbefore("someone@isp.net","@")
will return someone. If the tag doesn't occur in the text then the entire
original string is returned.

trim(string,len) This function removes characters from the right edge of the text. For
example trim(text,4) removes the last four characters from the text.

trimleft(string,len) This function removes characters from the left edge of the text. For exam-
ple trimleft(text,2) removes the first two characters from the text.

Function Reference
Page Description

Page 70 Panorama Formulas & Programming
Numeric Start and End Positions

The simplest way to specify starting and ending positions is with a number. Positive numbers are counted
from the beginning of the original text item (1 is the first character in the original text item). Negative num-
bers are counted from the last character of the original text item (-1 is the last character).

Our first example removes the first character from the Notes field.

Notes[2,-1]

The next example does the exact opposite—it removes the last character from the Notes field.

Notes[1,-2]

By using the same number for the start and end a text funnel can strip out a single character. The procedure
below uses the text funnel [1,1] to check to see if the first character of the phone number is a (. If so, it uses
another text funnel to strip out the area code.

if Phone[1,1]="("
AreaCode=Phone[2,4]

endif

A procedure can use a variable to pre-load the start and end positions. The procedure below will strip out
everything starting with the phrase Private Notes Below ---.

local X
X=search(Notes,"Private Notes Below ---")
if X≠0

PublicNotes=Notes[1,X-1]
else

PublicNotes=Notes
endif

Specifying Numeric Length Instead of Position

An alternate form of text funnel allows you to specify the length of the text to be stripped out, instead of the
ending position. This alternate form simply uses a semicolon instead of a comma:

<text item>[<start>;<length>]

The length specifies the number of characters from the starting position. A positive length means that the
stripped text begins at the starting position and extends to the right. A negative length means that the
stripped text begins at the starting position and extends to the left. The character at the starting position is
always included (unless the length is zero).

Let’s look at two examples of this technique. The first extracts the area code from a long distance phone num-
ber.

Phone[2;3]

The next example strips out the local phone number (the last 8 characters).

Phone[-1;-8]

If the original text item is too short to fulfill the request the text funnel will take whatever it can get. For
example, if the phone number is only 3 characters long, the value in LocalNumber will be 3 characters long.

Chapter 1:Formulas Page 71
Start/End Positions by Character Matching

The previous section described how to strip out text by absolute numeric position within the original text (for
example from character 3 to character 8). Another technique is to specify not the absolute position, but the
character value where stripping should begin and/or end. For example instead of telling the text funnel to
strip off everything before position 5, you tell the funnel to strip off everything before the first $ character, or
everything after the last % character. The text funnel scans the original text looking for a matching character,
and then strips the text accordingly.

To specify a starting or ending position by character matching, simply supply a character instead of a num-
ber. For example, suppose you had a field named Line that contained data like this:

X2245A Tape Cartridge $22.95

To extract just the price from Line you could use this text funnel.

Line["$",-1]

This formula will take Line and strip off everything in front of the first dollar sign. In our example this will be
the value $22.95. If there is no dollar sign in Line then the result will be empty text ("").

Notice that the output of a text funnel is always a text item, not an actual number. If you wanted to convert
this to a number you would have to remove the dollar sign with an additional text funnel and use the val(
function (reference page 5886).

A text funnel can use a character value for either the starting or ending position, or both. Here is an example
that extracts the hour from the time by stripping off everything after the first colon:

Time[1,":"]

Both of these examples are developed further in the next section.

Cascading Text Funnels

The examples in the previous section both have a problem: they don’t strip off enough text. The first example
strips off the price but leaves the dollar sign (for example $45.67). The second example strips the hour from
the time but leaves the colon (for example 9:). These problems can be solved by using two text funnels in a
row.

Adding a second text funnel is easy—just enter it after the first funnel. This example strips off the $ symbol
from the beginning of the price using a regular numeric position text funnel.

Line["$",-1][2,-1]

The table below shows how some typical data would be processed by this formula.

This example strips off the hour from the time—including the pesky extra colon.

Time[1,":"][1,-2]

Original Data After
["$",1]

After
[2,-1]

X2245A Tape Cartridge $22.95 $22.95 22.95

AF8899 Data Casette $7.80 $7.80 7.80

XB3 Head Cleaner $19.50 $9.50 9.50

Page 72 Panorama Formulas & Programming
Once again, the table shows how the data is processed by each text funnel.

These examples show two text funnels cascaded together, but there is no limit to the number of text funnels
you can use in a row. Each funnel chops away at the text until you have just the text you want. Usually the
best approach to developing a series of cascaded funnels is to develop one funnel at a time. Make sure one
funnel really does what you want and expect it to before adding the next one.

Character Matching in Reverse Gear

If the character to be matched is preceded by a minus sign the text funnel will match the last instance of the
value in the original text instead of matching the first.

The example below strips out the year from an appointment. The formula assumes that there is a date in the
format mm/dd/yy somewhere in the text item. The funnel will attempt to match up the last / symbol in the
original text.

Year="19"+Appointment["-/",-1][2;2]

Here is how the data is processed.

The last two lines above shows the hazards of making faulty assumptions. Neither line contains a valid mm/
dd/yy date. The result in this case is a bogus year. Unfortunately there is no magic pill fix for this kind of
problem. As a programmer you must think of, check for and process every possible option. If you absolutely
know that there will be a date in the text item, fine. If not, you’ll have to write a more complicated procedure
to check for a properly formatted date before you strip out the year. Here’s an example of a more robust pro-
cedure.

if Appointment notmatch "*/*/*"
message "Sorry, the appointment has no year!"

stop
endif
Year="19"+Appointment["-/",-1][2;2]

This procedure could still be fooled—for example data containing two dates would trip it up. Designing a
completely foolproof procedure is left as an exercise to the reader.

Original Data After
[1,":"]

After
[1,-2]

9:42 AM 9: 9

3:07:12 PM 3: 3

11:23 AM 11: 11

Original Data After
["-/",-1]

After
[2;2]

Lunch with Bob 3/4/01 /01 01

call Joan 4/2/99 3PM /99 2PM 99

10/7 L’s Birthday /7 L’s Birthday 7

call Ted call Ted al

Chapter 1:Formulas Page 73
Stripping Out Individual Words

One of the most common needs is to strip out a single word at the beginning, middle or end of a text item.
This is easily done by using a space as the matching character value. You’ll need to look at the formulas in
this section very carefully. Don’t confuse a space (" ") with an empty text item (""). They’re not the same thing.
(For clarity, the samples below showing how the data is processed use ˙ to show a space whenever it is at
the beginning or end of a text item. For example, ˙now means space followed by now.)

Here’s a formula that extracts the first word from an item of text by stripping off all the rest of the words.

Original[1," "][1,-2]

Here’s how this formula would process several sample text strings.

This next formula does the exact opposite: it strips off the first word, leaving the rest of the words.

Original[" ",-1][2,-1]

Here is how this formula would process the same sample strings as before.

You can cascade these two text funnels to produce a formula that extracts the 2nd word from the original text,
stripping off the rest.

Original[" ",-1][2,-1][1," "][1,-2]

Here is how this formula would process the same sample strings as before.

This process can be repeated indefinitely. However, a better approach is probably to use the array(function
with space as a separator character. See reference page 5036 to learn more about this function.

Here’s a simple formula that extracts the last word from a text item, stripping off the earlier words (if any).

Original["- ",-1][2,-1]

Original Data After
[1," "]

After
[1,-2]

Now is the time Now˙ Now

Boston reports 23 degrees Boston˙ Boston

Apple stock up 5 points Apple˙ Apple

Original Data After
[1," "]

After
[1,-2]

Now is the time ˙is the time is the time

Boston reports 23 degrees ˙reports 23 degrees reports 23 degrees

Apple stock up 5 points ˙stock up 5 points stock up 5 points

Original Data After
[" ",-1]

After
[2,-1]

After
[1," "]

After
[1,-2]

Now is the time ˙is the time is the time is˙ is

Boston reports 23 degrees ˙reports 23 degrees reports 23 degrees reports˙ reports

Apple stock up 5 points ˙stock up 5 points stock up 5 points up˙ up

Page 74 Panorama Formulas & Programming
Here’s how this formula would process several sample text strings.

A close examination will show that this is exactly the same as the first example but with an extra minus sign
to specify the last space instead of the first space.

Multiple Matching Characters for Start/End Position

Sometimes you may need to use multiple character values to specify the starting or ending position of a text
funnel. Any one of these character values will match up with the original text. For example, a sentence may
end with a period, a question mark, or an exclamation mark. To use more than one matching character sim-
ply list each character separated by commas. Here is an example that extracts the first sentence from a letter.
All the text after the first sentence is stripped off.

Letter[1,".,?,!"]

You can include a comma as one of the character values. This example extracts everything up to the first
semicolon, comma, or colon. All the text after that point is stripped off.

Description[1,";,,,:"]

If you use alphabetic values, don’t forget that upper and lower case are separate values, even for the same let-
ter. This example extracts am or pm from a text item.

Appointment["a,p,A,P";2]

It’s also possible to specify a range of matching characters, for example 0 through 9 or A through Z. To specify
a range the starting and ending characters must be separated by a dash, for example "0-9". The range will
include all characters between the two characters on the ASCII table (see “Characters and ASCII Values” on
page 87.)

Here is an example that extracts the frequency from a radio station. The call letters are stripped off.

Station["0-9",-1]

Here’s how this formula would process several sample text strings.

Original Data After
["- ",-1]

After
[2,-1]

Now is the time ˙time time

Boston reports 23 degrees ˙degrees degrees

Apple stock up 5 points ˙points points

Original Data After
["0-9",-1]

KFI 640 AM 640 AM

KLSX 97.1 FM 97.1 FM

KFAC 105.1 FM 105.1 FM

KROQ 106.7 FM 106.7 FM

Chapter 1:Formulas Page 75
A text funnel can combine multiple character ranges, or combine a range with one or more separate character
values. The next example strips off everything before the first number, or before the first dollar sign (which-
ever comes first).

Line["0-9,$",-1]

Here’s how this formula would process several sample text strings.

The last line shows a possible pitfall of this text funnel. Text funnels rely on consistent patterns in the data. If
there isn’t a pattern you can identify accurately, you won’t be able to design a funnel to strip the text apart
reliably. In this case a more reliable pattern would be to notice that the price is always the last word of Line,
so the text funnel below will strip off the price reliably.

Line["- ",-1][2,-1]

Be sure to test your text funnels with a wide variety of sample data to make sure you have identified a consis-
tent pattern.

As mentioned in the previous section, putting a minus sign in front of the character value tells the text funnel
to find the last matching character, instead of the first. This works for character ranges too. This example
extracts the item name from Line by stripping off everything after the last letter.

Line[1,"-A-Z,a-z"]

Here’s how this formula would process our sample text strings.

Although this example has two ranges (A-Z or a-z) only one minus sign is needed (at the beginning). If the
first character is a minus sign, the text funnel will always look for the last matching character in the original
text.

Non-Matching Character for Start/End Position

The previous examples have all used one or more characters that must match a character in the original text
item. By using the ≠ symbol (see “Special Characters” on page 57) you can specify that the text funnel should
begin (or end) with the first character (or characters) that does not match. For example, you might want to
match with the first character that is not a number, or the last character that is not a space.

Original Data After
["0-9,$",-1]

Tape Cartridge $22.95 $22.95

Data Cassette 7.80 7.80

XB3 Cleaner $19.50 3 Cleaner $19.50

Original Data After
[1,"-A-Z,a-z"]

Tape Cartridge $22.95 Tape Cartridge

Data Cassette 7.80 Data Casette

XB3 Cleaner $19.50 XB3 Cleaner

Page 76 Panorama Formulas & Programming
An example should make this clearer. Suppose you have imported some numbers that have one or more
asterisks in front of them, and you want to strip off the asterisks. The text funnel in this formula will set the
starting position to the first character in the original text that is not an asterisk.

Imported["≠*",-1]

Here’s how this formula would process some sample text strings.

You can use this feature to strip off leading spaces.

Name["≠ ",-1]

Here’s how this formula would process some sample text strings (leading spaces are shown as ˙ for clar-
ity).

(An easier way to strip leading and trailing spaces is to use the strip(function, which is designed for that
purpose. See reference page 5801 for more information about this function.)

The example below specifies that the starting position should be the first character that is not a letter, not a
comma, and not a space. It extracts the zip code or Canadian postal code from an address.

CityStateZip["≠A-Z,a-z,,, ",-1]

Here’s how this formula would process some typical addresses.

The astute reader may have realized that a simpler text funnel can do the same job, ["0-9",-1]. Of course
it would not have illustrated the ≠ feature. The moral of the story is: watch out for college solutions when a
grade school solution may work just as well!

Original Data After
["≠*",-1]

****23.67 23.67

***782.12 782.12

*****2.98 2.98

Original Data After
["≠ ",-1]

˙˙Jeff Nance Jeff Nance

˙Williams Williams

Original Data After
["≠A-Z,a-z,,, ",-1]

Fullerton, CA 92831 92831

Kamloops, BC 3J2 X7G 3J2 X7G

Chapter 1:Formulas Page 77
A text funnel that uses the ≠ symbol can also work in reverse gear, so that it specifies the last character that
does not match, instead of the first. The ≠ symbol must be first, and then the - symbol. For example, here is
yet another formula for extracting the price from Line.

Line["≠-0-9,.",-1][2,-1]

Here’s how this formula would process some of our favorite sample text strings.

Unlike some of our previous examples, this formula does not rely on a $ symbol or a space in front of the
price, and it does not choke if there is a number in the item description.

Limitations of Text Funnels

Unlike Humpty Dumpty, text items are easy to put together but hard to take apart intelligently. Text funnels
are a powerful tool, but they do have limitations. One limitation is that, by themselves, they can only work
with one character at a time. If you want to start stripping text with the word fax or P.O. Box a text funnel
can’t do it on its own. You’ll have to combine the funnel with the search(function for jobs like this (see ref-
erence page 5707).

The most important limitation of text funnels is that they cannot work reliably if there is not a single consis-
tent pattern in the data. If the data has no pattern at all, you’re out of luck (short of re-keying data). If the data
has two or more patterns you’ll need to isolate each pattern and process each one with a separate text funnel.
One way to do this is with the ?(function (see reference page 5008). This formula extracts the local phone
number from a complete phone number. If the complete phone number starts with (, the formula uses a text
funnel that strips out the area code, otherwise the local number starts with the first character.

?(Phone[1,1]="(" , Phone[7;8] , Phone[1;8])

Here’s how this formula would process some of our favorite sample text strings.

Don’t be afraid to combine text funnels with other functions and statements. Some functions that are often
useful with text funnels include ?((see reference page 5008), length((see reference page 5467), strip(
(see reference page 5802), stripchar((see reference page 5802), search((see reference page 5707),
replace((see reference page 5665), and array((see reference page 5036).

Original Data After
["≠-0-9,.",-1][2,-1]

Tape Cartridge $22.95 22.95

Data Cassette 7.80 7.80

XB3 Cleaner $19.50 19.50

Original Data After
?(Phone[1,1]="(",Phone[7;8],Phone[1;8])

(714) 555-1212 555-1212

852-9632 852-9632

(562) 492-1438 ext 23 492=1438

Page 78 Panorama Formulas & Programming
String Testing Functions

These functions return information about the content of a string.

Function Reference
Page Description

cardvalidate(text)

This function returns true if the text contains a credit card number that is
valid, false if it is not. Credit cards have an internal checksum that allows
a number to be validated for simple data entry errors (for example miss-
ing or transposed digits). This function checks to make sure that a num-
ber is a valid credit card number. Of course the function cannot tell
whether this card number has actually been issued, or what the credit
limit is or any other financial information about the card. It simply pro-
vides a simple check for missing or transposed digits. If this function says
the card number is not valid you are sure that the number is wrong, but if
the function returns true you would still need to check with the issuer to
determine if this is a valid card. (Note: Unlike the cardvalidate statement,
this function will remove any non-numeric data from the card number, so
it's ok to leave in spaces, dashes, etc.)

checkenglish(word)
This function returns true if the specified word is in Panorama's English
dictionary, false otherwise. (Note: If the optional Panorama Spell + Zip
package is not installed this function will always return false.)

length(string) Page 5467 This function counts the number of characters in a string. The result is an
integer. If the string is empty, the result will be zero.

linecount(string) This function counts the number of lines in the text.

rangecontains(thetext,therange)

This function checks to see if the text contains any characters in the speci-
fied range. The range must be a series of character pairs, for example AZ
for upper case alphabetic characters, AZaz for upper and lower case, 09
for numeric digits, etc. If the text contains any characters in the specified
range the function returns true, otherwise it returns false. For example,
rangecontains(Company,"09") will return true if the company name con-
tains any numeric digits, false if it doesn't..

rangematch(string,range)

This function checks text to see if the text matches the specified range.
The range must be a series of character pairs, for example AZ for upper
case alphabetic characters, AZaz for upper and lower case, 09 for numeric
digits, etc. If it matches the function returns true, if it doesn't match, it
returns false. For example, rangematch(Address,"AZaz09 ") will return
true if the address contains only letters, numbers and spaces, false if it
contains any other characters.

search(string,phrase) Page 5707

This function searches through a string looking for a word or phrase. If
the search is successful, the function returns the position of the phrase
within the string, otherwise the function returns zero. For example, the
formula search(Name,"Dr.") will return a non-zero value (usually 1) if the
name contains Dr., or zero if it does not.

Chapter 1:Formulas Page 79
sizeof(name) Page 5777

This function calculates the amount of memory used by a field cell or a
variable. Name is the name of the field or variable that you want to calcu-
late the size of. The function returns the number of bytes of memory used
by the variable or field cell.

The sizeof(function can be used to decide if a numeric or date field is
empty or not. The example procedure shown below selects all the records
with no price (not the same as records with a price of zero).

select sizeof(Price)=0

 Another use for the sizeof(function is to check if a variable is taking up
too much memory. This example checks to see if the variable importLet-
ter is more than 500 bytes long. If it is, the procedure clears the variable.

if sizeof(importLetter)>500
importLetter=""

endif

wordcount(string) This function counts the number of words in the text.

Function Reference
Page Description

Page 80 Panorama Formulas & Programming
String Modification Functions

These functions modify the contents of a string. Usually the string is actually a database field. Remember, to
use a database field as a string parameter simply use the name of the field, for example upper(Name).You’ll
often want to use these functions to modify the existing data in a field. For example, you might want to con-
vert all company names to upper case. To convert existing data use the Manipulate Data in Field command
in the Fields Menu (see “Starting with a Formula” on page 439 of the Panorama Handbook). This command cal-
culates the formula over and over again—once for each selected record.. Note: In addition to the functions
listed here you will also find methods for modifying strings in “Functions for Taking Strings Apart” on
page 68, “Taking Strings Apart (Text Funnels)” on page 69, “Text Arrays” on page 93 and “HTML Tag and
Tag Parsing Functions” on page 101.

Function Reference
Page Description

applescriptstring(string)

This function converts the string into an AppleScript string literal. It sur-
rounds the text with double quote characters, and escapes any double
quote and/or backslash characters within the text. This function is
designed to be used with the executeapplescript statement.

batchreplace(text,array,sep,subsep)

This function performs multiple find and replace operations on a string
of text. The array must be two dimensional, it specifies what words or
phrases are going to be replaced and with what. This is similar to replace-
multiple(but the before and after strings are combined into a single array,
making it easier to use.

connect(prefix,connector,suffix)

This function appends a prefix and suffix together with a connector in
between. If either the prefix or the suffix is missing then the connector
will also be left out. For example, connect(City,", ",State) combines the city
and state with a comma and space in between, but if either the city or
state is missing then the comma and space will also be left out. See also
the sandwich(and yoke(functions in this table.

crtovtab(string)

This function converts carriage returns (ASCII 0x0D) into vertical tabs
(ASCII 0x0B). Some programs (including Panorama) will convert vertical
tabs into carriage returns when importing, allowing individual data cells
to contain carriage returns.

defaulttext(text,default)
This function returns the text value supplied in the first parameter. How-
ever, if this text value is empty ("") the function will return the specified
default value.

extract(text,separator,item) Page 5211

This function extracts a single data item from a text array. This function is
almost identical to the array(function. The extract(function is excellent
for extracting a word, line or phrase from a larger text item. It can also be
used to count the number of items in the array. There are three parame-
ters: text, separator and item. Text is the item of text that contains the data
you want to extract. Separator is the separator character for this array.
This should be a single character. For carriage return delimited arrays,
use the ¶ character (see “Special Characters” on page 57). For tab delim-
ited arrays use the ¬ character. Item is the number of the data item you
want to extract. The first item is item 1, the second is item 2, etc.

Using an item number of -1 tells the extract(function to count the number
of data items in the array. This is similar to the arraysize(function. In this
case the extract(function will return a number, not text.

 If the item parameter is 1 or greater, this function returns an item of text
from the array. Only the item itself is returned, the separator characters
on each end are not included. If the item does not exist (for example if
you ask for item 12 from a 7 item array) the function will return empty
text ("").

fixedwidth(string,width)
This function makes the text a fixed width. If the text is shorter than the
specified width, it is padded with spaces. If it is longer than the specified
width, it is cut off.

Chapter 1:Formulas Page 81
fixedwidthright(string,width)
This function makes the text a fixed width. If the text is shorter than the
specified width, it is padded with spaces on the left (i.e. the text is right
justified). If it is longer than the specified width, it is cut off on the left.

linestrip(text) This function removes any blank lines from the text.

lower(string) Page 5516
This function converts all of the letters in the string to lower case. For
example, the formula lower(Terms) will convert NET 30 to net 30, or
C.O.D. to c.o.d. See also the upper and upperword functions.

obscuredigits(number,count)

This function obscures digits (usually a credit card number) with X's. The
first parameter is the text that contains the digits. The second parameter
is the number of digits on the end that will NOT be obscured. For exam-
ple the formula obscuredigits("1234-5678-9876-5432",4) will produce the
value XXXX-XXXX-XXXX-5432. Notice that the function retains any addi-
tional formatting in the text, in this case dashes.

onespace(string) This function removes any extra spaces between words, so that there is
exactly one and only one space between each word.

onewhitespace(string)

This function removes any extra whitespace between words, making sure
that there is one and only one space between each word. Other
whitespace characters (carriage returns, tabs) are converted to spaces and
removed if there is more than one between words.

padzero(text,width)
This function makes the text a fixed width. If the text is shorter than the
specified width, it is padded with 0's on the left (i.e. the text is right justi-
fied). If it is longer than the specified width, it is cut off on the left..

quoted(string)

This function surrounds the supplied text with double quote characters.
If the text contains any double quotes they will be doubled, making this a
legal string constant. This function is typically used in conjunction with
the execute and executeapplescript statement.

randomletter(option)

This function returns a random letter. If the option is "U" then the letter
will be between A and Z. If the option is "L" then the letter will be
between a and z. If the option is any other value then the result may be
either A-Z or a-z.

randomline(text) This function picks a random line from some text.

randomword(wordlist) This function picks a random word from some text.

rep(string,count) Page 5662

This function replicates a string over and over. The number of replica-
tions is specified by the count (a number). This function is handy for cre-
ating a long repeating string. For example to create a string containing
twenty asterisks in a row, use the formula rep("*",20). The count does not
have to be a constant, but it must be an integer.

replace(string,search,replace) Page 5665

This function searches for a word or phrase within a string and if found,
replaces it with a new word or phrase. The first parameter is the string
that may contain the word or phrase. Usually this parameter is a database
field. The second parameter is the word or phrase to search for. The third
parameter is the new word or phrase.

For example, to replace Corporation with Corp. in the Client field, use the
formula replace(Client,"Corporation","Corp."). To use this formula to
replace the data in the database, use the Formula Fill command. (For a
simple replace case like this, however, it is easier to use the Change com-
mand. The replace(function is useful when you want to perform other
transformations in addition to the replace.)

Function Reference
Page Description

Page 82 Panorama Formulas & Programming
replacemultiple(
string,search,replace,sep) Page 5667

This function searches for a set of words or phrases and replaces them
with another set of words or phrases. It is similar to the replace(function,
but can replace a whole set of items at once. The string parameter must
contain the text that contains the words or phrases you want to replace.
The search parameter contains a list of words or phrases to search for. The
items in this list must be separated by the sep character. Here’s an exam-
ple that uses comma as the separator.

"Drive,Lane,Avenue,Boulevard"

The replace parameter contains another list of words or phrases. These
must use the same separator character and be in the same order as the
search parameter. Here’s another example.

"Dr,Ln,Ave,Blvd"

Putting it all together, here’s an example that inserts abbreviations in an
address.

replacemultiple(
 Address,
 "Drive,Lane,Avenue,Boulevard",
 "Dr,Ln,Ave,Blvd",
 ",")

In this example we’ve separated each parameter onto a separate line, but
this is not necessary. Also, keep in mind that you can use any character as
a separator, not just a comma.

sandwich(prefix,root,suffix) Page 5689

The sandwich(function assembles a text item from three smaller text
items. The prefix and suffix are slapped on the ends of the root, just like a
sandwich. However, if the root is empty, the prefix and suffix are also left
off (the result is an empty text item), just as you wouldn’t make a sand-
wich without any meat.

Suppose you have a database with names and titles, and you want to dis-
play this information in a report with the titles surrounded by parenthe-
ses. The formula below could be used with an auto-wrap text object or
Text Display SuperObject.

Name+sandwich(" (",Title,")")

If the person has a title it will appear in parentheses like this: Steve
Johnson (Sales Mgr). If they don’t have a title then no parentheses will
appear. The sandwich(function is useful any time you have optional data
items combined together with punctuation in between. See also the con-
nect(and yoke(functions in this table.

strip(text) Page 5801

This function strips off leading and trailing blanks and other whitespace
(carriage returns, tabs, etc.) This function has one parameter, the item of
text that you want to strip. The function removes blanks at the beginning
or end of the text, but does not affect blanks in the middle of the text. It
also removes carriage returns, tabs, or any character with an ASCII value
less than 32.

Function Reference
Page Description

Chapter 1:Formulas Page 83
stripchar(text,range) Page 5802

This function removes characters you don’t want from a text item. You
specify exactly what kinds of characters you want and don’t want
included in the final output. Text is the item of text that you want to strip.
Range specifies what kinds of characters you want to keep and what
kinds of characters you want to strip away. The range consists of one or
more pairs of characters. Each pair specifies a set of characters you want
to keep. For example, the pair AZ means that you want to keep the char-
acters from A to Z. For alphanumeric characters the set is pretty obvious.
For other types of characters you should check an ASCII chart (see “Char-
acters and ASCII Values” on page 87). For example the pair #& specifies a
set of four characters: #, $, % and &. You can use the ASCII Chart wizard
to try out your character ranges, see “Showing Character Ranges with the
ASCII Wizard” on page 91.

If a pair consists of the same character repeated twice in a row, the set is
just that single character. For instance the pair ## means you want to
keep one character: #.

The range may consist of several pairs put together. For example the
range AZaz09.. consists of four pairs, and specifies that all letters, num-
bers, and periods will be kept, with all other characters stripped away.

One handy use for this function is to quickly check if a field or variable
contains any inappropriate characters. If a field or variable changes when
you run it through the stripchar(function it must contain characters that
are not part of the specified range.

striphtmltags(text) This function removes all HTML tags from the text.

stripprintable(text) This function removes any non-displayable characters from the text.

striptoalpha(text) Page 5805

This function removes everything but alphabetic letters from a text item.
Everything else (numbers, spaces, punctuation, non-English letters, etc.)
will by removed from the text.

One handy use for this function is to quickly check if a field or variable
contains all alphabetic characters. If a field or variable changes when you
run it through the striptoalpha(function it must contain non-alphabetic
characters.

striptonum(text) Page 5807

This function removes everything but numeric digits from a text item.
Everything else (letters, spaces, punctuation, non-English letters, etc.)
will by removed from the text.

One handy use for this function is to quickly check if a field or variable
contains all numeric digits. If a field or variable changes when you run it
through the striptonum(function it must contain non-numeric charac-
ters.

upper(string) Page 5880
This function converts all of the letters in the string to upper case. For
example, the formula upper(Terms) will convert net 30 to NET 30, or
c.o.d. to C.O.D. See also the lower(and upperword(functions.

upperword(string) Page 5881

The upperword(function converts the first letter of each word in the
string to upper case, and all other letters to lower case. For example the
formula upperword(State) will convert new york to New York, or will
convert VERMONT to Vermont. See also the lower and upper functions.

vtabtocr(string)

This function converts vertical tabs (ASCII 0x0B) into carriage returns
(ASCII 0x0D). Some programs (including Panorama) will convert vertical
tabs into carriage returns when importing, allowing individual data cells
to contain carriage returns. After the import you can use this function to
turn the vertical tabs back into carriage returns.

yoke(prefix,joiner,suffix)

This function appends two text items (prefix and suffix) together. If both
are non-blank, a joiner is placed in between. If either (or both) is blank,
the joiner is not used. In some ways this is the reverse of the sandwich(
function.

Function Reference
Page Description

Page 84 Panorama Formulas & Programming
Converting Between Numbers and Strings

These functions convert numbers into strings and strings into numbers.

Function Reference
Page Description

asc(string) Page 5060

This function converts the first character of the string into a number
based on the ASCII value of the character. For example the formula
asc("Y") returns the value 89, while asc("Z") returns the value 90. See also
the chr(function.

bytepattern(number)

This function converts a number into text. The number is treated as a
number of bytes, and depending on the size will be displayed as bytes,
kilobytes, megabytes, or gigabytes. This function uses SI units, meaning
that 1 kB = 1000 bytes, 1 MB = 1000 kB, and 1 GB = 1000 MB. See http://
en.wikipedia.org/wiki/Megabyte for more information on SI units for
data size.

chr(number) Page 5099

This function converts a number into a single character of text based on
the ASCII value of the number. The number should be an integer between
0 and 255. For example, the letter A has an ASCII value of 65, while the
letter B is 66. You can create special characters with this function; TAB is 9
and RETURN is 13. See also the asc(function.

commastr(number)
This function converts a number into text, with a comma every third
digit. The number is converted as an integer, with no places after the dec-
imal point.

dollarsandcents(number)
This function converts a number to text formatted as dollars and cents
(for example 98123.45 becomes Ninety eight thousand one hundred
twenty three dollars and 45 cents).

exportcell(value) Page 5209

This function converts a value into text without any special formatting.
For numeric values this function is the same as the str(function (see
below). The advantage of this function is that it works with any kind of
value - text, numeric or date. Use this function when for some reason you
don’t know what kind of data you need to convert. (Important Note: If
the field is a text field, only the first line of the original text will be
returned by this function. Any additional lines will be stripped off.)

hex(string) Converts text with hex characters into a number. For example the value
of hex("0C2") is 194.

hexbyte(number) Converts a number to text formatted as a two digit hexadecimal number.
For example the result of hexbyte(68) is 44.

hexlong(number) Converts a number to text formatted as a eight digit hexadecimal num-
ber. For example the result of hexlong(68) is 00000044.

hexstr(number)

Converts a number to text formatted as a hexadecimal number. For exam-
ple the result of hexstr(68) is 00000044. This function can also accept
binary values with more than 4 bytes (see “Raw Binary Data” on
page 156).

hexword(number) Converts a number to text formatted as a four digit hexadecimal number.
For example the result of hexword(68) is 0044.

money(number) Converts a number to text, formatted with commas every three digits and
two digits after the decimal point (for example 98,123.45).

nth(number) This function converts a number into an ordinal, i.e. 1=1st, 2=2nd, 3=3rd,
4=4th, etc.

pattern(number,string) Page 5599

This function converts a number into text, using the string as an output
pattern. For example the formula pattern(Price,"$#.,##") will convert the
price 3458.23 into the string $3,458.23. The pattern adds the $ and the
comma. For more information on numeric output patterns see “Numeric
Output Patterns” on page 250 of the Panorama Handbook.

Chapter 1:Formulas Page 85
places(number,places)
This function converts a number to text with a specific number of places
after the decimal point. The value is truncated (not rounded) to the num-
ber of places specified..

radix(radix,text) Page 5626

This function converts a text item containing a hex, octal, or binary num-
ber into a standard Panorama number (decimal). See “NON DECIMAL
NUMBERS” on page 5543 of the Panorama Reference for background infor-
mation on hex, octal and binary numbers. Radix is the base for the num-
bering system you are converting from. Legal radix values are 2, 4, 8, 16
or 32. Or you can specify the radix as "binary" (same as 2), "octal" (same
as 8) or "hex" (short for hexadecimal, same as 16). Text is a text item that
contains the non-decimal number you want to convert. This function nor-
mally returns an integer that contains the decimal (base 10) number cor-
responding to the hex, octal, or binary number input to the function.

 If the radix is hex and there are more than 8 digits in the input text, or if
the radix is binary and there are more than 32 digits, this function will
return a raw binary value instead of a number. This binary value may be
of unlimited length. Like all binary values, it cannot be calculated with,
but should be handled as a text item.

radixstr(radix,number) Page 5628

This function converts a number into a text item containing the equiva-
lent hex, octal, or binary number. See “NON DECIMAL NUMBERS” on
page 5543 of the Panorama Reference for background information on hex,
octal and binary numbers. Radix is the base for the numbering system
you are converting from. Legal radix values are 2, 4, 8, 16 or 32. Or you
can specify the radix as "binary" (same as 2), "octal" (same as 8) or "hex"
(short for hexadecimal, same as 16). Number is the number you want to
convert to hex, octal, or binary. If the radix is 2, 16, "binary", or "hex" the
number can be a raw binary data (text) value. This function returns a text
item that contains the hex, octal, or binary number equivalent to the num-
ber (or binary data) passed to the function. The first example converts the
decimal value 256 to hexadecimal.

radixstr(16,256)

This function will calculate that 25610 is 100 hex.

Here is another example:

radixstr("binary",5)

This will calculate that 5 10 is 00000000000000000000000000000101 binary.

scientificnotation(number) Converts a number to text, formatted in scientific notation with three
places after the decimal point (for example 9.812e+4).

str(number) Page 5799
This function converts a number into text without any special formatting.
If you want to format the number (add commas, set # of digits, etc.) use
the pattern(function.

val(string) Page 5886

This function converts a string into a number. The string must start with
one or more numeric digits. Everything after the first non-numeric char-
acter will be ignored. For example, the formula val(Address) will return
the number 731 if the address is 731 N. Miller St.

Function Reference
Page Description

Page 86 Panorama Formulas & Programming
zbpattern(number,pattern)
This function displays a number using a pattern. Unlike the normal pat-
tern(function, the zbpattern(function will output "" if the number is zero.
(Note: zb is short for zeroblank.)

exportcell(field) Page 5209

This function takes any database field and converts it to text, using the
appropriate pattern if one has been defined in the design sheet. Field is
the name of the field to be converted to text.

The function always returns a text type data item. The power of the
exportcell(function is that it does not require you to know what type of
data you are exporting. It simply takes whatever kind of data is in the
field (text, number, date, whatever) and converts it into text.

Function Reference
Page Description

Chapter 1:Formulas Page 87
Characters and ASCII Values

Just as molecules are built from atoms, text is built from characters. And like an atom which can be divided
into electrons, protons, and neutrons (among others), characters also have an internal structure. Just as with
atoms, the internal structure of characters can usually be ignored, and you may want to skip the following
section if you are a beginner. Sometimes however, knowledge of the internal structure of characters can be
very helpful.

On most computer systems there are 256 possible characters. (Some Japanese and Chinese systems allow
thousands of characters, however Panorama does not currently support this.) Each character has a number
from 0 to 255. Of these 256 characters, about 200 are associated with symbols (letters, digits, punctuation,
etc.). For example, the symbol for the letter A is represented by character number 65. You can use the ASCII
Chart wizard (in the Developer Tools subfolder of the Wizard menu) to see a complete list of all 256 charac-
ters and their symbols.

The numbers have not been assigned to symbols arbitrarily, but have been assigned using a system called
ASCII. The number associated with a character is called the ASCII value of the character. (For you techno-
weenies, ASCII stands for American Standard Computer Interchange Interface.) If you look at the ASCII table
on the next page you’ll notice that the characters with ASCII values from 0-31 have no symbols. These charac-
ters are used for special keys like return, tab, and enter. ASCII value 32 is the space character, then we have
some punctuation. ASCII values 48 through 57 are the numeric digits 0 through 9, in order. ASCII values 65-
90 are the upper case letters A through Z, in alphabetical order. ASCII values 97-122 are the lower case letters
a through z, again in alphabetical order.

Panorama uses the ASCII values of characters when it compares two text items to see which is larger or
smaller. Since the ASCII value of B (66) is greater than the ASCII value of A (65), the text item B is “larger”
than A. However, the ASCII value of a (97) is greater than B (66), so the text item a is “larger” than B. You
have to watch out for this problem whenever you compare text that is a mixture of upper and lower case.

Working with Character Values

Usually it’s not necessary to worry about the numeric value of a particular character—you can just think of it
as a character. However, if you want to perform any kind of math on the character itself it is necessary to con-
vert the character in to a number. For example you can add one to a character value to get the next character
value (A ➛ B ➛ C etc.). Or you can calculate the number of characters between two characters.

Page 88 Panorama Formulas & Programming
Panorama has two special functions that allow you to work with character values directly. The asc(function
converts a character to its ASCII value. The chr(function converts an ASCII value to the corresponding
character.

The following example procedure asks the user to enter a range of characters, for example A-F. It uses the asc(
function to convert the characters into the corresponding ASCII numeric values, then calculates the number
of characters in the range.

local LetterRange,StartLetter,EndLetter,LetterCount
LetterRange=""
gettext "Enter character range:",LetterRange
StartLetter=LetterRange[1,1]
EndLetter=LetterRange[-1,-1]
LetterCount=abs(asc(EndLetter)-asc(StartLetter))
message LetterRange+": "+pattern(LetterCount+1,"# character~")

If the person enters A-F the procedure will display A-F: 6 characters.

The next example procedure is similar but actually displays a list of the characters in the range. It uses the
chr(function to convert the numbers back into characters.

local LetterRange,StartLetter,EndLetter
local LetterCount,LetterBump,Letters
LetterRange=""
gettext "Enter character range:",LetterRange
StartLetter=asc(LetterRange[1,1])
EndLetter=asc(LetterRange[-1,-1])
LetterCount=EndLetter-StartLetter
LetterBump=LetterCount/abs(LetterCount)
Letters=""
loop

Letters=Letters+chr(StartLetter)
StartLetter=StartLetter+LetterBump

while StartLetter≠EndLetter
message LetterRange+": "+Letters

If the person enters A-F the procedure will display A-F: ABCDEF. If the person enters F-A the procedure will
display F-A: FEDCBA.

Warning: Don’t confuse the asc(and chr(functions with the val(and str(functions. The asc(and
chr(functions convert single characters based on their ASCII values. The val(and str(functions convert
entire text items based on the number the characters spell out. For example asc("4") is 52, because 52 is the
ASCII value of the character “4.” On the other hand, val("4") is 4. Confused? You almost certainly want to
use val(and str(unless you are sure you know what you are doing.

Invisible Characters

The ASCII system contains a number of characters that are normally invisible. In fact, every ASCII character
with a value of 32 or lower is invisible. Normally you will not be concerned with invisible characters. How-
ever, there are three special invisible characters that do get a lot of use: space, carriage return, and tab.

The space character (ASCII value 32) is not quite invisible, because it does take up space. You can easily enter
this value by pressing the Space Bar. In a formula you can enter a space directly [" "] or using the chr(
function [chr(32)].

The carriage return character is used to start a new line of text. This character has an ASCII value of 13. You
can enter this value into a formula using the ¶ symbol (see “Special Characters” on page 57) or as chr(13).

Chapter 1:Formulas Page 89
(Trivia question: why is this character called carriage return? In a few years probably no one will remember.
In case you are already too young to remember, typewriters (and teletypes) used to place the paper on a car-
riage that moved back and forth as you typed. When you pressed the Return key the carriage would “return”
back to the beginning of the line and also advance down to the next line, hence carriage return. In fact, on old
manual typewriters this was accomplished with a lever, not a key.)

The tab character is usually not found inside data, but is often found in text files created by editors or word
processors (including the Panorama word processor). The tab character has an ASCII value of 9. You can
enter this value into a formula using the ¬ symbol (see “Special Characters” on page 57) or as chr(9).

The ASCII Chart Wizard

The ASCII Chart wizard allows you to displays a matrix showing all 256 ASCII characters. When you click
on a character it types that character into the box at the bottom.

If you select the Decimal option then clicking on a character enters the corresponding numeric value of the
character into the box.

click on characters in matrix

to type them into this box

click on any character

to see it’s numeric equivalent

Page 90 Panorama Formulas & Programming
Use the Hex option to see the numerical value of the character in hexadecimal (see “Raw Binary Data” on
page 156).

HTML has special codes for many characters. Use the HTML option to see the equivalent code (if any) for a
special character.

click on any character

to see its hexadecimal equivalent

click on any character

to see its HTML equivalent

Chapter 1:Formulas Page 91
Showing Character Ranges with the ASCII Wizard

Several Panorama features use character ranges, including field properties (see “Restricting Character Types”
on page 293), text funnels (see “Taking Strings Apart (Text Funnels)” on page 69) and the stripchar(func-
tion (see “String Modification Functions” on page 80). The ASCII Chart wizard allows you to preview a char-
acter range by selecting the Show Range option and typing the range into the box. All of the characters in the
range will be highlighted in blue. For example, the illustration below shows the range 09, which includes all
numeric characters.

Here is a more complex range that includes all the characters used in basic mathematical formulas.

You can use the ASCII Chart wizard to try out your ranges before you actually use them in a database.

Page 92 Panorama Formulas & Programming
ASCII Character Constant Functions

These functions return common ASCII characters.

Function Description

info("lineseparator")
This function returns the line separator character on the current platform.
On Macintosh systems this is a carriage return. On Windows PC systems
this is a carriage return followed by a linefeed (CR-LF).

cr() This function generates a carriage return. This is equivalent to chr(13)
and is also the same as ¶.

crlf() This function generates a carriage return line feed. This is equivalent to
chr(13)+chr(10).

lf() This function generates a line feed. This is equivalent to chr(10).

tab() This function generates a tab character. This is equivalent to chr(9) and is
also the same as ¬.

vtab() This function generates a vertical tab character. This is equivalent to
chr(11).

Chapter 1:Formulas Page 93
Text Arrays

An array is a numbered collection of data items. Panorama includes a number of functions and statements
that treat a single text data item as if it were a numbered collection of smaller items. The smaller text data
items must be separated from each other by a delimiter, for instance a comma or carriage return.

Consider the text data item shown below. Panorama would normally treat this as a single item with a length
of 40 characters. The functions described in this section, however, can treat this text as a collection of 7 ele-
ments separated by semicolons.

white;red;orange;yellow;green;blue;black

In this example, the ; is the separator character. You can use any character you want for a separator character,
in fact, you can use different separator characters at different times. You could even build a multi-level array
by using two different separator characters.

Using the array functions and statements provided by Panorama you can extract elements from an array,
change array elements, even sort an array. Since arrays are really text, they can be stored in any variable or
any text field, and they can be edited with the data sheet, a data cell, or a Text Editor SuperObject.

There are many statements and user interface elements that work with text arrays, including lists and pop-up
menus. There are also a number of functions that generate text arrays, including functions for building lists of
files, windows, fields, choices, and data. Most of these statements, user interface elements, and functions
require that carriage returns be used as separators, so that each array element is on a separate line.

It is up to you to keep track of the fact that you are using an array and what the separator character is. Pan-
orama won’t stop you from trying to access the array of colors above as if it were delimited with commas
instead of semicolons, but you probably won’t get the results you wanted unless you use the correct separa-
tor character.

(If you are familiar with the arrays in C or Pascal, Panorama text arrays are quite a bit different, although
both are a numbered collection of items. As with anything unfamiliar, Panorama text arrays probably won’t
look as good as the ones you are used to at first. Panorama arrays do have some significant advantages
though: they don’t have to be declared in advance, each array element can be of unlimited length without
wasting space, and Panorama arrays can be directly edited. It’s also very easy to “pre-fill” a Panorama array
with a list of values.)

Picking a Separator Character

Any ASCII character can be used as a separator character, so you have 256 possible choices. Common separa-
tors include comas, semicolons, slashes, carriage returns, spaces and tabs.

It’s important to pick a separator character that will not occur in the data elements of your array. If your data
may include commas, don’t use the comma as a separator character. If the data might include carriage
returns, don’t use a carriage return. If you want to be extra sure to avoid conflicts, pick a non-printing charac-
ter. You can use the chr(function (reference page 5099) to generate non-printing characters, for example
chr(1), chr(2), chr(3). Most chr(values below 32 are non-printing except for chr(9) and chr(13),
which correspond to tab and carriage return.

Some Panorama user interface elements and functions use text arrays as parameters or to hold a list of values.
For these applications the separator character is usually required to be a carriage return. For example, the
Pop-Up Menu SuperObject uses a carriage return delimited array to define the list of pop-up menu choices
(see “The Pop-Up Menu Formula” on page 863 of the Panorama Handbook). The lookupall(function (refer-
ence page 5502) extracts information from another database and places it into an array with whatever separa-
tor you specify. Consult the documentation for each individual statement, function or SuperObject to see the
exact specifications for any arrays they may use.

Page 94 Panorama Formulas & Programming
Working With Arrays

Panorama has about a dozen functions and procedure statements for working with arrays. These functions
are described in this table.

Function Reference
Page Description

array(text,item,sep) Page 5036

This function extracts a single data item from a text array. Text is the item
of text that contains the data you want to extract. Item is the number of
the data item you want to extract. The first item is item 1, the second is
item 2, the third item is 3, etc. Separator is the separator character for this
array. This should be a single character. For carriage return delimited
arrays, use the ¶ character (see “Special Characters” on page 57). For tab
delimited arrays use the ¬ character.

The array(function returns a single item of text from the array. Only the
item itself is returned, the separator characters on each end are not
included. If the item does not exist (for example if you ask for item 12
from a 7 item array) the function will return empty text ("").

There are 7 VHF television stations in Los Angeles. The example proce-
dure below will convert channel numbers into the names of the stations.
For example, the procedure converts Channel 7 into KABC.

Stations=",KCBS,,KNBC,KTLA,,KABC,,KCAL,,KTTV,,KCOP"
«Channel Name»=array(Stations,7,",")

 The example uses an array called Stations. This array uses commas as a
separator character.

arrayboth(a1,a2,sep)
This statement compares two arrays. The result is a list of elements that
are included in both arrays. Note: Empty array elements, if any, will be
ignored. Both arrays must use the same separator.

arraybuild(sep,db,formula)

This function builds an array by scanning all records in a database. Note
that the usage of this function is slightly different than the arraybuild
statement in that the formula itself must be quoted. For example, instead
of just upper(Name) you would need to use "upper(Name)" or
{upper(Name)}.

arraychange(text,value,item,sep) Page 5040

This function changes a single value inside a text array. Only the one item
is changed, all the other items in the array remain the same. Text is the
text array that contains the data you want to change. Value is the new
value of the data item. Item is the number of the data item you want to
change. Items are numbered starting from 1 (1,2, 3,…). This item must
already exist in the array. The arraychange(function will not add the item
if it does not exist. Sep is the separator character for this array. This
should be a single character. For carriage return delimited arrays, use the
¶ character (see “Special Characters” on page 57). For tab delimited
arrays use the ¬ character. This function returns a copy of the text array,
with the data item changed. If you want to change the original array you
should use an assignment statement (see below).

The example procedure below will change the 5th item of the array to
Navajo White.

 Colors=arraychange(Colors,"Navajo White",5,";")

This example assumes that a field or variable named Colors already
exists.

arraycolumn(array,colnum,
rowsep,colsep)

This function extracts a column from a two dimensional array. The sec-
ond parameter specifieds what column to extract. The third paramter
specifies the main separator between each row of the array, the fourth
parameter is the sub-separator between each column.

Chapter 1:Formulas Page 95
arraycontains(text,item,sep)

This function checks to see if any element of an array matches the speci-
fied text. For the result to be true, the array element must match the spec-
ified text exactly, including upper and lower case. Otherwise the function
will return false. So checking for "Green" will only match that exact array
element, not "green" or "Olive Green". (Note that this is quite different
from the contains operator, which ignores upper and lower case and
allows a submatch.)

arraydeduplicate(text,separator) This function removes duplicate values from an array. As a byproduct it
also sorts the array.

arraydelete(text,item,count,sep) Page 5043

This function deletes one or more elements from the middle of a text
array. Text is the text array that you want to insert elements into. Item is
the spot where you want the elements to be deleted. Count is the number
of elements you want to delete from the array. Sep is the separator charac-
ter for this array. This should be a single character. For carriage return
delimited arrays, use the ¶ character (see “Special Characters” on
page 57). For tab delimited arrays use the ¬ character. This function
returns a copy of the original text array, with the specified elements
deleted from the middle. The example procedure below will delete the
3rd item from the SpeedDial array:

 SpeedDial=arraydelete(SpeedDial),3,1,¶)

arraydeletevalue(text,value,sep)

This function deletes any array elements that match the value parameter.
This mush be an exact match, including upper and lower case. If the
value occurs multiple times in the array, every occurrence of the value
will be removed, with one exception: If the value occurs in two consecu-
tive array elements, only the first occurrence will be deleted.

arraydifference(a1,a2,sep)
This statement compares two arrays. The result is a list of elements that
are in the first array but not the second. (Note: Empty array elements, if
any, will be ignored.) Both arrays must use the same separator.

Function Reference
Page Description

Page 96 Panorama Formulas & Programming
arrayelement(text,position,sep) Page 5044

This function converts between character positions and array element
numbers in a text array. Given a character position within the overall text,
the arrayelement(function tells what array element the character is in.
For example, in the array red;blue;green the 7th character (u) is in the 2nd
array element.

This function has three parameters: text, position and sep. Text is the text
array that you are working with. Position is the position of the character
within the overall text (starting with 1 for the first character). Sep is the
separator character for this array. This should be a single character. For
carriage return delimited arrays, use the ¶ character (see “Special Charac-
ters” on page 57). For tab delimited arrays use the ¬ character.

This function returns a number. This is the number of data element in the
array corresponding to the character position parameter. If the position
corresponds to a separator character, the function will return the element
number of the data element to the right of the separator.

The example procedure below adds a new color to the RecentColors
array. It then arbitrarily cuts off the array so that it is less than 200 charac-
ters long. The arrayelement(function makes it possible to write this pro-
cedure so that the array can be cut off without cutting an array element in
the middle.

local lastElement
RecentColors= parameter(1)+
 sandwich(¶,RecentColors,"")
lastElement=arrayelement(RecentColors,200,¶)
RecentColors=
 arrayrange(RecentColors,1,lastElement,¶)

This procedure could be useful for maintaining a pop-up menu of
recently used colors. The procedure automatically keeps the menu to a
reasonable size by lopping off old colors from the bottom if the array gets
over 200 characters long.

arrayfirst(text,sep) This function extracts the first element of an array.

arrayinsert(text,item,count,sep) Page 5047

This function inserts one or more elements into the middle of a text array.
Text is the text array that you want to insert elements into. Item is the spot
where you want the new elements to be inserted. Count is the number of
blank elements you want to insert into the array. Sep is the separator
character for this array. This should be a single character. For carriage
return delimited arrays, use the ¶ character (see “Special Characters” on
page 57). For tab delimited arrays use the ¬ character.

This function returns a copy of the original text array, with the new blank
array elements inserted into the middle. The example procedure below
will add 5 new array items to the SpeedDial array between the 2nd and
3rd array items:

SpeedDial=arrayinsert(SpeedDial),¶,3,5)

The new array items created by arrayinsert(are blank (empty). You can
fill them in with the arraychange(function.

arraylast(text,sep) This function extracts the last element of an array.

arraylefttrim(text,count,sep)
Removes the first elements of an array. For example
arraylefttrim(text,2,",") removes the first two elements from a comma sep-
arated array.

Function Reference
Page Description

Chapter 1:Formulas Page 97
arraylookup(text,key,mainsep,
subsep,default)

This function looks up a value in a double column table, similar to a
lookup. The first column in the table is the key value, the second column
is the data value. Each line in the table is separated by the mainsep char-
acter, while the two columns in each line are separated by the subsep
character. If no match is found the default value is returned. For example
this function: arraylookup("AL.ALABAMA;AK.ALASKA; ... WY.WYO-
MING",State,":",".","") can be used to look up a long state name given the
two letter abbreviation.

arraymerge(array1,array2,
separator,joiner)

This function merges two text arrays together. This function has four
parameters: array1, array2, separator and joiner . Array1 is the first text
array you want to merge, array2 is the second array. Separator is the sep-
arator character for both arrays (in other words, both arrays must use the
same separator). This should be a single character. For carriage return
delimited arrays, use the ¶ character (option-7). For tab delimited arrays
use the ¬ character (option-L). Joiner is from 1 to 10 characters of text that
will be used to join the individual elements of the two arrays.

The result is a new array with the elements of the original arrays joined
together. This means that the first element of the first array will be joined
with the first element of the second array, then the second element of the
second array will be joined with the second element of the second array,
and so on until both arrays are completely merged.

The example could be used to display names and phone numbers from a
contact database in a Text Display SuperObject.

 arraymerge(
 lookupall("Contacts","Company","Name",¶),
 lookupall("Contacts","Company","Phone",¶),
 ¶,", ")

The display will look something like the text shown below.

 John Smith , (510) 323-4905
 Susan Wilson , (510) 590-1341
 Bill Franklin , (510) 323-6781

arraynotcontains(text,item,sep) This function is the reverse of the arraycontains(function.

arraynumericsort(text,separator) This function sorts an array in numerical order (instead of alphabetical
order).

arraynumerictotal(text,separator)
This function totals the numerical elements of an array. For this function
to work each array element must contain a number. The result is a num-
ber.

arrayrandomize(text,separator) This function re-arranges the elements of an array in random order.

Function Reference
Page Description

Page 98 Panorama Formulas & Programming
arrayrange(text,start,end,sep) Page 5050

This function extracts a series of data item from a text array. Text is the
item of text that contains the data you want to extract. Start is the number
of the first data item you want to extract. Items are numbered starting
from 1 (1, 2, 3,…). End is the number of the last data item you want to
extract. Items are numbered starting from 1 (1, 2, 3,…). Sep is the separa-
tor character for this array. This should be a single character. For carriage
return delimited arrays, use the ¶ character (see “Special Characters” on
page 57). For tab delimited arrays use the ¬ character.

 This function returns a series of items from the array. It returns the first
item, the last item, and everything in between (including any separators
that are in between). If the last item does not exist (for example if you ask
for item 12 from a 7 item array) the function will return up to the actual
last item in the array. If both requested items do not exist, the function
will return empty text ("").

This example procedure will fill the variable WeekDays with the text
Mon,Tue,Wed,Thu,Fri.

Days="Sun,Mon,Tue,Wed,Thu,Fri,Sat"
WeekDays=arrayrange(Days,2,6,",")

arrayreplacevalue(text,
oldvalue,newvalue,sep)

This function replaces any array elements that match the value parame-
ter. This must be an exact match, including upper and lower case. If the
value occurs multiple times in the array, every occurrence of the value
will be replaced, with one exception. If the value occurs in two consecu-
tive array elements, only the first occurrence will be replaced.

arrayreverse(text,sep) Page 5051

This function reverses the order of the elements in a text array. In other
words, the first element becomes the last element, the second element
becomes the second to last, etc. Text is the text array that you want to
modify. Sep is the separator character for this array. This should be a sin-
gle character. For carriage return delimited arrays, use the ¶ character
(see “Special Characters” on page 57). For tab delimited arrays use the ¬
character.

The arrayreverse(function reverses the order of the elements of an array.
For example, the formula:

 arrayreverse("1;2;3;4",";")

will produce the array 4;3;2;1.

arrayreverselookup(text,key,
mainsep,subsep,default)

This function looks up a value in a double column table, similar to a
lookup. The first column in the table is the key value, the second column
is the data value. However, this function reverses the function of these
two columns. The key parameter is looked up in the second column, then
the associated value is returned from the first column. This is the reverse
of the arraylookup(function. Each line in the table is separated by the
mainsep character, while the two columns in each line are separated by
the subsep character. If no match is found the default value is returned.
For example this function: arrayreverselookup("AL.ALA-
BAMA;AK.ALASKA; ... WY.WYOMING",State,":",".","") can be used to
look up a two letter state abbreviation given the full name of the state.

Function Reference
Page Description

Chapter 1:Formulas Page 99
arrayscan(field,sep) Page 5052

This function allows the individual elements of a text array in a database
field to be exported on separate lines. Field is the name of the field that
contains the array you want to export. (You can also use a variable, but
this usually doesn’t make sense). Sep is the separator character for this
array. This should be a single character. For carriage return delimited
arrays, use the ¶ character (see “Special Characters” on page 57). For tab
delimited arrays use the ¬ character.

This function returns one element from the array. However, unlike the
array(function, the arrayscan(modifies the way the export and
arraybuild statements work. These statements will repeat the formula
containing arrayscan(over and over again for each record. Each time, the
function will return the next element in the array, until there are no more
items.

arraysearch(array,text,start,sep) Page 5054

This function searches a text array to see if it contains a specific value.
Array is the text array that you want to search. Text is the text that you
want to search for. This parameter may contain the wildcard characters ?
and * . For example, to search for array items that start with John use
John* . To search for any array item containing Pacific use *Pacific*. The
array item must match the text exactly, including upper/lower case. For
more information on wildcard characters, see “A match B” on page 126.
Start is the spot in the array where you want the search to begin from. If
you want to search the entire array, this parameter should be one. Sep is
the separator character for this array. This should be a single character.
For carriage return delimited arrays, use the ¶ character (see “Special
Characters” on page 57). For tab delimited arrays use the ¬ character.

If the arraysearch(function finds an array element that matches what you
are searching for it returns the number of that array element (1, 2, 3, etc.).
If there is no matching element, the function returns 0.

arrayselectedbuild(sep,db,formula)

This function builds an array by scanning the selected records in a data-
base. Note that the usage of this function is slightly different than the
arrayselectedbuild statement in that the formula itself must be quoted.
For example, instead of just upper(Name) you would need to use
"upper(Name)" or {upper(Name)}.

arraysize(text,sep) Page 5057

This function counts the number of items in a text array. Text is the text
array that you want to count. Sep is the separator character for this array.
This should be a single character. For carriage return delimited arrays,
use the ¶ character (see “Special Characters” on page 57). For tab delim-
ited arrays use the ¬ character.

This function returns a number. This is the number of elements in the
array. If there is no text in the array, the function will return one. If you
need a function that returns zero if there is no text you can use the extract
function with the last parameter set to -1 (see “String Modification Func-
tions” on page 80).

This example uses the arraysize(function to display the number of forms
in the current database. (The dbinfo("forms,"") function creates an array
listing all the forms in the current database, separated by carriage
returns.)

message "This database contains "+
 str(arraysize(dbinfo("forms",""),¶))+" forms"

arraysort(text,separator) This function sorts an array in alphabetical order.

Function Reference
Page Description

Page 100 Panorama Formulas & Programming
arraystrip(text,sep) Page 5059

This function removes any blank elements from a text array. Text is the
text array that you want to strip the blank elements from. Sep is the sepa-
rator character for this array. This should be a single character. For car-
riage return delimited arrays, use the ¶ character (see “Special
Characters” on page 57). For tab delimited arrays use the ¬ character.
This function returns a copy of the original text array, with any blank
array elements removed from the array.

arraytableceiling(array,key,sep,
subsep,default)

This function looks up a value in a double column table, similar to the
table(function but from an array instead of a database. The table must be
sorted in ascending order. The first column in the table is the key value,
the second column is the data value. (Note: If the sub separator is "", the
first column is used as the data value also.) If there is no exact match this
function will return the next higher value, if any. If the key value is
numeric or contains all numbers, numeric comparisons (50 < 200) will be
used instead of text comparisons (50 > 200). (Note: This function always
returns a text value, even if the key is numeric.) If the key value is not
within the array bounds the default value will be returned.

arraytablefloor(array,key,sep,
subsep,default)

This function looks up a value in a double column table, similar to the
table(function but from an array instead of a database. The table must be
sorted in ascending order. The first column in the table is the key value,
the second column is the data value. (Note: If the sub separator is "", the
first column is used as the data value also.) If there is no exact match this
function will return the next lower value, if any. If the key value is
numeric or contains all numbers, numeric comparisons (50 < 200) will be
used instead of text comparisons (50 > 200). (Note: This function always
returns a text value, even if the key is numeric.) If the key value is not
within the array bounds the default value will be returned.

arraytrim(text,count,sep)
This function removes the last elements of an array. For example arrayt-
rim(text,2,",") removes the last two elements from a comma separated
array.

arrayunpropagate(text,separator)

This function scans an array from top to bottom. If it finds two or more
duplicate values in a row, it blanks out all but the first. This is similar to
Panorama's UNPROPAGATE command in the Math menu, but for an
array instead of a database field.

lineitemarray(field,separator) Page 5468

This function converts the data in a set of line item fields into a text array
(see “Text Arrays” on page 93). Field is the line item field that contains
the data. You should put the line item field name in quotes, and it should
end with the Ω symbol (see “Special Characters” on page 57). Separator is
the separator character for this array. This should be a single character.

This function returns a copy of the line item data packed into an array. If
the line items contain numbers or dates they are converted to text before
being added to the array.

makenumberedarray(sep,start,end) This function generates a numeric sequenced array, for example 1, 2, 3, 4,
5. You can specify the starting and ending number of the sequence.

Function Reference
Page Description

Chapter 1:Formulas Page 101
HTML Tag and Tag Parsing Functions

Panorama has several functions for working with text that contains data delimited by tags. These functions
are not actually specific to HTML, and you may find other uses for them.

These functions treat a tag as three components: header, body and trailer. In this example the tag header is <,
the tag trailer is >, and the tag body is IMG SRC="happy.gif".

The tag header and trailer may be more than one character long. Here is the same tag but with only the pic-
ture name as the body. In this example the tag header is , and the tag body is
happy.gif.

The tag functions don’t care about upper or lower case, so this tag will work fine if it is .

Here are descriptions of all of the tag parsing functions.

Function Reference
Page Description

htmltabletoarray(table,
rowsep,colsep,columns)

This function converts an HTML table into a two dimensional text array.
You must specify two separator characters — the row separator (between
lines) and the column separator (between columns). The fourth parame-
ter is a list of table columns to include, comma separated. For example
"2,5,6,10" would tell this function to include 4 of the HTML columns in
the final array. If this parameter is set to "" then all of the columns in the
HTML table will be included in the output array.

tagarray(text,header,trailer,sep) Page 5830

This function builds an array containing the body of all the tags in the
text. The header is the character or sequence of characters that appears at
the start of each tag. To extract all HTML tags the header would be <. To
extract all image tags the header would be <img or <IMG (either upper or
lower case will work). The trailer is the character or sequence of charac-
ters that appears at the end of each tag. To extract all HTML tags the
trailer would be >. Each element in the array is separated from the next
with the sep character. This character is often a carriage return (¶) or
comma, see “Text Arrays” on page 93.

This example displays a list of all HTML tags in the variable Page. The
list will be separated by commas, for example H1,/H1,B,/B,IMG
SRC="my picture.jpeg".

message tagarray(Page,"<",">",",")

This example lists all of the pictures in the variable Page.

message tagarray(Page,"",¶)

This will list each image on a separate line, like this:

src="happy.gif"
src="rocket.jpeg"
SRC="My Picture.jpeg"
src="logo.gif"

Page 102 Panorama Formulas & Programming
tagcount(text,header,trailer) Page 5832

This function returns the number of tags in the text. The header is the
character or sequence of characters that appears at the start of each tag.
To count all HTML tags the header would be <. To count all image tags
the header would be <img or <IMG (either upper or lower case will
work). The trailer is the character or sequence of characters that appears
at the end of each tag. To count all HTML tags the trailer would be >.
Here is an example that uses this function to count the number of links in
an HTML document.

message "This page contains "+
 str(tagcount(Page,"<A HREF",">"))+" links."

tagdata(text,header,trailer,number) Page 5833

This function returns the body of the specified tag. The header is the char-
acter or sequence of characters that appears at the start of each tag. To
extract an HTML tag the header would be <. To extract an image tags the
header would be <img or <IMG (either upper or lower case will work).
The trailer is the character or sequence of characters that appears at the
end of each tag. To extract an HTML tag the trailer would be >. The
number parameter specifies which tag you want: 1, 2, 3, etc. for the first,
second, third tag etc.

tagstart(text,header,trailer,number) Page 5840 These functions return the starting and ending position of the body of a
tag within a text. The header is the character or sequence of characters
that appears at the start of each tag. The trailer is the character or
sequence of characters that appears at the end of each tag. The number
parameter specifies which tag you want: 1, 2, 3, etc. for the first, second
third tag etc. This example displays 20 characters or so around the first
image tag.

message Page[tagstart(Page,"<IMG",">",1)-20,
tagend(Page,"<IMG",">",1)+20]

If the requested tag does not exist, the tagstart(and tagend(function will
return 0.

tagend(text,header,trailer,number) Page 5834

tagnumber(text,header,trailer,pos) Page 5835

This function checks to see if position is in a tag within text, and if so,
returns the number of that tag within the document (1, 2, 3). If the posi-
tion is not inside of a tag the function will return zero. The header is the
character or sequence of characters that appears at the start of each tag.
The trailer is the character or sequence of characters that appears at the
end of each tag.

striphtmltags(text) This function removes all HTML tags from the text.

xtag(tag,text)
This function generates an HTML/XML tag. For example the formula
xtag("italic","hello world") will generate the text <italic>hello world</
italic>.

xtagvalue(text,tag)
This function extracts the data from the first matching HTML or XML tag
in the text. For example the formula xtagvalue(page,"title") will extract
the page title from an HTML page.

Function Reference
Page Description

Chapter 1:Formulas Page 103
Tag Parameter Functions

Many HTML tags contain parameters. For example, this tag has three parameters, src, align and border.

Panorama has built in functions that can help you extract a series of parameters like this. Although these
functions were designed with parsing HTML tags in mind you may find other uses for them as well.

Function Reference
Page Description

tagparameter(text,name,num) Page 5837

This function returns the value of a specified parameter in the tag. Text is
the list of parameters. If you are parsing HTML this should be the body of
the tag. Name is the name of the parameter you want to extract, including
any trailing punctuation (= for HTML tags). Either upper or lower case is
ok. For example to extract the name of the image itself from an image tag
(see example above) the name would be src= or SRC=. To extract the
alignment the name would be align= or ALIGN=. The num is in case
there is more than one parameter with the specified name, it tells Pan-
orama which one to extract (1, 2, 3, etc.)

If the parameter value is quoted (for example src="my logo.jpg" Pan-
orama will remove the quotes as it extracts the value. If the parameter
value is not quoted it will extract up to the first non-alphanumeric value.

For example, this formula will return the image file name of the first IMG
tag in a field named HTML.

tagparameter(tag(HTML,"<img",">",1),"src=",1)

If the first image tag in this text is <IMG SRC="mylogo.gif" align=left bor-
der=0> this function will return mylogo.gif.

tagparameterarray(text,name,sep) Page 5838

This function returns an array of the specified parameters in a tag. This is
useful if the same parameter may occur multiple times within the tag.
Text is the list of parameters. If you are parsing HTML this should be the
body of the tag. Name is the name of the parameter you want to extract,
including any trailing punctuation (= for HTML tags). Either upper or
lower case is ok. For example to extract the name of the image itself from
an image tag (see example above) you the name would be src= or SRC=.
To extract the alignment the name would be align= or ALIGN=. Sep is the
separator character that will be placed in between each value in the out-
put array (see “Text Arrays” on page 93).

To illustrate this function, suppose that you have a field named HTML
that somewhere within it contains text that looks like this:

<MERGE field="Name" field="Address" field="City"
field="State">

Using this formula we can extract an array of all the field names.

tagparameterarray(tag(HTML,"<merge",">","field=",";")

With the sample data listed above this formula will return the value
Name;Address;City;State.

Page 104 Panorama Formulas & Programming
HTML Table Parsing Functions

These functions are specifically designed for extracting data from an HTML table.

HTML/URL Conversion Functions

The HTML and URL standards used on the Internet do not use standard ASCII text. Panorama includes con-
version functions for converting between standard ASCII and HTML and URL’s. These functions are very
convenient for generating HTML from a database, for example in CGI code for a web server.

Function Reference
Page Description

htmltablecell(table,row,cell)

This function extracts the data from a cell in an HTML table. Any HTML
tags in the cell are removed, leaving only the actual text. The thetable
parameter must contain the body of an html table with <tr> and <td>
tags (however, the actual <table> and </table> tags themselves are not
required.)

htmltablecellexists(table,row,cell)

This function checks to see whether a cell in an HTML table exists or not.
The result will be true if the cell exists, or false if it doesn't. The thetable
parameter must contain the body of an html table with <tr> and <td>
tags (however, the actual <table> and </table> tags themselves are not
required.)

htmltablecellraw(table,row,cell)

This function extracts the data from a cell in an HTML table. Unlike the
htmltablecell(function, any HTML tags in the cell are retained. The
thetable parameter must contain the body of an html table with <tr> and
<td> tags (however, the actual <table> and </table> tags themselves are
not required.)

htmltableheight(table) This function calculates the height (number of rows) in an HTML table. It
assumes that the table is a regular matrix (no rowspan tags).

htmltablerowraw(table,row,cell)

This function extracts the data from a row in an HTML table. Any HTML
tags in the row are retained. The the table parameter must contain the
body of an html table with <tr> and <td> tags (however, the actual
<table> and </table> tags themselves are not required.)

htmltablewidth(table)
This function calculates the height (number of rows) in an HTML table. It
assumes that the table is a regular matrix (no colspan tags) and that all of
the rows have the same number of columns as the top row in the table.

Function Reference
Page Description

htmlencode(text) Page 5346

This function converts from standard ASCII to HTML. Wherever possi-
ble, special characters are converted to their HTML equivalents (for
example © is converted to ©, & is converted to &. Special char-
acters that do not have HTML equivalents are removed. (However, the
smart quote characters, “,”, ‘ and ’ are converted to regular quote charac-
ters " and '.)

To allow you to convert HTML text that contains tags, the htmlencode(
function does not convert the < and > characters. If you want to convert
these characters into their HTML equivalents use this formula:

replacemultiple(
 htmlencode(text),
 "<.>",
 "<.>",
 ".")

htmldecode(text) Page 5343
This function converts from HTML to standard ASCII, the exact opposite
of the htmlencode(function. HTML characters like © and &
are converted into the normal ASCII characters © and &.

Chapter 1:Formulas Page 105
HTML Generating Functions

These functions help with generating HTML.

Encoding/Decoding Base64 Data

Base64 is an algorithm used to encode binary data into text. Base64 is widely used on the web and in e-mail.
For more information on this encoding method see http://en.wikipedia.org/wiki/Base64.

urlencode(text) Page 5884 The urlencode(function converts standard ASCII to URL format. For
example, the text My URL would be converted to My%20URL.

urldecode(text) Page 5883 The urldecode(function converts a URL to standard ASCII format. For
example the text My%20URL would be converted to My URL.

urlfilename(url) This function extracts the filename from a complete url.

urlpath(url) This function extracts the path from a url.

webtext(text)

This function converts a number or regular text into text that may be dis-
played on a web browser. As far as possible, any special characters are
converted into HTML entities so that they will display correctly (for
example accented characters like å, special characters like ©, and the <
and > symbols). This function goes beyond the htmlencode function in
that it also encodes <, >, and carriage return (converted into
).

Function Reference
Page Description

htmlbold(string) This function takes the text and adds and tags to it.

htmlitalic(string) This function takes the text and adds <i> and </i> tags to it.

weblink(url,caption) This function builds an HTML link tag. If the caption is not supplied ("")
the URL will be used for the caption.

weblinknewwindow(url,caption)
This function builds an HTML link tag. The link will open the new page
in a new window instead of in the same window. If the caption is not sup-
plied ("") the URL will be used for the caption.

xtag(tag,text)
This function generates an HTML/XML tag. For example the formula
xtag("italic","hello world") will generate the text <italic>hello world</
italic>.

Function Reference
Page Description

encodebase64(data,linelength)

This function encodes text using the Base64 algorithm. The data parame-
ter is the data to be encoded. LineLength is the maximum line length of
the encoded text. A common value is around 70 characters per line -
MIME data may contain an maximum of 76 characters per line.

decodebase64(data)

This function decodes text that has been encoded using Base64 encoding.
It is the reverse of the encodebase64(function described below. If you
first use encodebase64(then decodebase64(you will get back the original
data.

Function Reference
Page Description

Page 106 Panorama Formulas & Programming
Date Arithmetic

Formulas can perform several useful calculations on dates. For example, you can calculate the number of
days between two dates, or you can add or subtract a certain number of days to a date. You can also convert a
date to text using a wide variety of formats.

Usually we think of a date in terms of years, months, and days. Formulas, however, treat dates as a certain
number of days—specifically, the number of days between that date and January 1, 4713 B.C., adjusted for
the Gregorian calendar correction in October 1582. (The date 4713 B.C. is chosen for obscure astronomical rea-
sons). For example, to a formula the date August 7, 1991 is day number 2,448,476.

Fortunately you should never have to worry about numbers like 2,448,476. The formula will automatically
convert a date field into the number of days, perform the calculation, and then convert back into a regular
date again.

Since formulas handle dates as numbers, you can use any numeric operator or function to manipulate dates.
However it doesn’t make much sense to take the square root of a date (although Panorama will let you).
There are really only two numeric operations that make sense on dates—subtracting two dates to find the
number of days in between and adding or subtracting a number of days to a date.

To calculate the number of days between two dates, just subtract one from the other. For example, the for-
mula

«Ship Date»-«Order Date»

will calculate the number of days required to process an order.

To calculate an offset from a given date, just add the number to the date. For example the formula

«Ship Date»+30

calculates the normal due date 30 days after the ship date.

Today’s Date

The today() function (reference page 5862) returns the number corresponding to today’s date, allowing you
to use today’s date in a formula. For example, to calculate the age of an invoice use a formula like this.

today()-«Ship Date»

To calculate the due date for a library book, use the formula like this.

today()+14

This formula assumes that books are checked out for two weeks.

Chapter 1:Formulas Page 107
Converting Between Dates and Text

These functions allow you to convert a date into text, or text into a date. You should only use these functions
if you want to store the result of a date calculation in a text field instead of a date field, or if you want to
access a date that has been stored as text.

Note: Remember, formulas handle dates as numbers, so these functions actually convert numbers into text
and vice versa. It’s up to you to make sure that these numbers actually represent the correct dates.

Function Reference
Page Description

completedatestr(number) Convert a date to text, including the day of the week (for example Sun-
day, April 20th, 2003).

date(text) Page 5146

This function converts a text string in a date format into the number rep-
resenting that date. Use this function to include a constant date in your
formula, for example date("12/9/1979"). You should also use this func-
tion to access dates that have been stored in text fields (but why are you
doing that in the first place?).

Several formats are supported, including mm/dd/yy, mm/dd/yyyy,
Month dd, yyyy, and Mon dd, yyyy. Dates in the current week can be rep-
resented by the name of the day, for instance Tuesday or Fri. Dates in the
previous or upcoming week can be represented by adding the words last
or next, for example last friday or next wed.

datepattern(number,pattern) Page 5148

This function converts a number representing a date into a formatted text
string. The pattern parameter is an output pattern telling the function
how to format the date. For more information on date output patterns,
see “Date Output Patterns” on page 255 of the Panorama Handbook.

Use the datepattern(function to store a date in a text field, or to display a
formatted date in an auto-wrap text object or Text Display SuperObject.
For example, the formula:

datepattern(«Ship Date»,"Month ddnth, yyyy")

can be used to display the date an order was shipped in the format May
12th, 2003.

datestr(number) Convert a date to text using format mm/dd/yy (for example 4/20/03).

daystr(number) Convert a date to the day of the week (for example Sunday).

eurodatestr(number) Convert a date to text in European format (for example 20-APR-2003).

exportcell(field) Page 5209

This function takes any database field and converts it to text, using the
appropriate pattern if one has been defined in the design sheet. Field is
the name of the field to be converted to text.

The function always returns a text type data item. The power of the
exportcell(function is that it does not require you to know what type of
data you are exporting. It simply takes whatever kind of data is in the
field (text, number, date, whatever) and converts it into text.

longdatestr(number) Convert a date to text with format Month ddnth, yyyy (for example April
20th, 2003).

naturaldata(date)

This function converts a date to text in a natural format similar to how
people would refer to the date, for example Today, Tue, Apr 4. If the date
is more than 180 days in the past or is in the future the pattern mm/dd/
yy is used. This is similar to how the Apple Finder displays dates..

Page 108 Panorama Formulas & Programming
Date Functions

These functions perform various calculations and conversions on date values. Unless specified otherwise the
date is always processed as a numeric value (see “HTML Generating Functions” on page 105).

Function Reference
Page Description

datevalue(year,month,day)

This function converts three integers into a date. The three integers are
the year, month and date. This function provides a way to create a date
that is independent of the system date settings (the date(function, which
can also create dates, will produce different values in different countries
depending on the date formats used in those countries).

dayofweek(date) Page 5149

This function computes the day of the week (0-6) of a date, with Sunday
being 0, Monday 1, etc. The function returns a number from 0 to 6. The
days of the week are:

0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

The procedure below uses the dayofweek(function to select all weekday
records (monday through friday).

 select dayofweek(Date)≥1 and dayofweek(Date)≤5

dayvalue(date) This function extracts the day of the month from a date as a numeric
value (1 to 31).

month1st(date) Page 5532

This function computes the first day of a month. For example, if the date
passed to this function is October 18, 1997, this function will return the
date October 1, 1997. The date is returned as a number.

The example procedure below uses this function to select the orders
placed this month, then displays the count.

select OrderDate≥month1st(today()) and
 OrderDate<month1st(today())+monthlength(today())
message str(info("records"))+" orders this month"

monthlength(date) Page 5533

This function computes the length (number of days) of a month. For
example, if the date passed to this function is October 18, 1997, this func-
tion will return 31, the number of days in October. This function knows
about leap years and adjusts the length of February accordingly.

The example procedure below uses this function to select the orders
placed this month, then displays the count.

select OrderDate≥month1st(today()) and
 OrderDate<month1st(today())+monthlength(today())
message str(info("records"))+" orders this month"

Chapter 1:Formulas Page 109
monthmath(date,offset) Page 5534

This function takes a date and computes another date that is one or
months before or after the original date. Date is a number representing
the original date. Offset is the number of months that you want to add or
subtract to the original date. Use a positive number to move forward in
time, a negative number to go backwards. For example, if you offset the
date May 12, 1997 by 2 (two months forward) the result is July 12, 1997. If
you offset the same original date by -2 (two months backward) the result
is March 12, 1997.

If the new date does not exist because a month does not have enough
days in it, the monthmath(function will pick the last day of the month.
For example, if you offset March 31 by 1 month the result is April 30. If
the new month lands in February the function knows about leap years
and adjusts accordingly.

This example calculates a renewal date exactly one year from today.

 monthmath(today(),12)

monthvalue(date) This function extracts the month from a date as a numeric value (1 to 12).

quarter1st(date) Page 5623
This function computes the first day of a quarter. For example, if the date
passed to this function is August 18, 1997, this function will return the
date July 1, 1997. The date is returned as a number.

quartervalue(date) This function extracts the quarter within a year from a date as a numeric
value (1 to 4).

today() Page 5862 This function returns today’s date (assuming, of course, that your com-
puter clock has been set correctly).

week1st(date) Page 5890

This function computes the first day of a week (Sunday). For example, if
the date passed to this function is July 12, 1995 (a Wednesday), this func-
tion will return the date July 9, 1997 (a Sunday). The date is returned as a
number.

year1st(date) Page 5912

This function computes the first day of a year. For example, if the date
passed to this function is July 12, 1995, this function will return the date
January 1, 1995. The date is returned as a number.

The example below calculates the number of days remaining in the cur-
rent year.

yearfirst(year1st(today())+366)-today()

weekvalue(date) This function extracts the week from a date as a numeric value (this is the
number of weeks since the start of the year, 1 to 52).

yearvalue(date) This function extracts the year from a date as a numeric value.

Function Reference
Page Description

Page 110 Panorama Formulas & Programming
Calendar Functions

The functions described in this section facilitate the creation of monthly calendars like this.

See “Building a Calendar” on page 971 of the Panorama Handbook for step-by-step instructions on building a
calendar like this.

Function Reference
Page Description

calendarday(date,boxnumber) Page 5084

This function is designed to help in creating monthly calendars. A stan-
dard monthly calendar has 6 rows and 7 columns (Sunday through Satur-
day) for a total of 42 boxes. For any given month from 28 to 31 of these
boxes will be valid dates. The calendarday(function calculates what
number from 1 to 31 (if any) should be displayed in one of these 42 boxes.

This function has two parameters: date and boxnumber. Date is any date
in the month being displayed. Boxnumber is the box within the monthly
calendar being displayed. The boxes are numbered from 1 to 42, starting
with the upper left hand corner. The table below shows the position of all
42 monthly calendar boxes.

 S M T W T F S

 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28
 29 30 31 32 33 34 35
 36 37 38 39 40 41 42

This function returns a number from 1 to 31, or zero if the specified calen-
dar box does not contain a day in this month.

use calendarday(function to determine number for each box

use calendardate(function
to determine date value
for each box

Chapter 1:Formulas Page 111
calendardate(date,boxnumber) Page 5082

This function is designed to help in creating monthly calendars. A stan-
dard monthly calendar has 6 rows and 7 columns (Sunday through Satur-
day) for a total of 42 boxes. For any given month from 28 to 31 of these
boxes will be valid dates. The calendarday(function calculates what date
corresponds to one of these 42 boxes.

 This function has two parameters: date and boxnumber. Date is any date
in the month being displayed. Boxnumber is the box within the monthly
calendar being displayed. The boxes are numbered from 1 to 42, starting
with the upper left hand corner. The table below shows the position of all
42 monthly calendar boxes.

 S M T W T F S

 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28
 29 30 31 32 33 34 35
 36 37 38 39 40 41 42

This function returns a date value (a number), or zero if the specified cal-
endar box does not contain a day in this month.

The output of the calendardate(function is usually fed into a lookupall(,
lookupcalendar(, or lookuprtime(function. The last two functions can be
used to lookup the events (appointments, to-do’s, etc.) that occur on a
particular day.

lookupcalendar(

file,

reminderField,

date,

dataField,

separator)

Page 5504

This function builds a text array containing one item for every record in
the target database where the date in the reminderField matches the date.
Each item in the text array contains the value extracted from the
dataField for that record.

This function has five parameters: file, reminderField, date, dataField and
separator. File is the name of the database that you want to search and
grab data from. The database must be open. If you want to search and
grab from the current database, use info("databasename").
ReminderField is the name of the field that you want to search in. This
field must contain valid reminders (see “Reminders” on page 119). The
field must be in the database specified by the first parameter. Date is the
actual date that you want to match. For example if you want to look up
all appointments on july 23rd, this should be date("July 23"). This param-
eter is often a field in the current database. DataField is the name of the
field that you want to retrieve data from. For example if you want to
retrieve appointment information, this should be the name of the field
that contains that information. This must be a field in the database speci-
fied by the first parameter. Separator is the separator character for the text
array you are building (see “Text Arrays” on page 93).

The function returns a text array from all the records in the specified data-
base where the reminderField and date match. This example returns a list
of today’s reminders.

lookupcalendar("Reminders",When,today(),Message,¶)

Function Reference
Page Description

Page 112 Panorama Formulas & Programming
lookuprtime(

file,

reminderField,

date,

pattern,

separator)

Page 5509

This function builds a text array containing one item for every record in
the target database where the date in the reminderField matches the
date. Each item in the text array contains the time of the corresponding
reminder.

This function has five parameters: file, reminderField, date, pattern and
separator. File is the name of the database that you want to search and
grab data from. The database must be open. If you want to search and
grab from the current database, use info("databasename").
ReminderField is the name of the field that you want to search in. This
field must contain valid reminders (see “Reminders” on page 119). The
field must be in the database specified by the first parameter. Date is the
actual date that you want to match. For example if you want to look up
all appointments on july 23rd, this should be date("July 23"). This param-
eter is often a field in the current database. Pattern is the pattern you
want to use to format the time. See the timepattern(function for details
(reference page 5861). Separator is the separator character for the text
array you are building (see “Text Arrays” on page 93).

The function returns a text array from all the records where the reminder-
Field and date match. The text array contains the times for the reminders
that match.

lookuprtypes(

file,

reminderField,

date,

pattern,

separator)

Page 5511

The lookuprtypes(function builds a text array containing one item for
every record in the target database where the date in the reminderField
matches the date. Each item in the text array contains the type of the cor-
responding reminder, either "a" (appointment) or "t" (to-do).

 This function has five parameters: file, reminderField, date, pattern and
separator. File is the name of the database that you want to search and
grab data from. The database must be open. If you want to search and
grab from the current database, use info("databasename").
ReminderField is the name of the field that you want to search in. This
field must contain valid reminders (see “Reminders” on page 119). The
field must be in the database specified by the first parameter. Date is the
actual date that you want to match. For example if you want to look up
all appointments on july 23rd, this should be date("July 23"). This param-
eter is often a field in the current database. Pattern is not used, and
should be "". Separator is the separator character for the text array you are
building (see “Text Arrays” on page 93).

The function returns a text array from all the records where the reminder-
Field and date match. Each element of the text array contains either "a"
or "t" for the reminders that match.

Function Reference
Page Description

Chapter 1:Formulas Page 113
Time Arithmetic

To Panorama, time is not hours, minutes, and seconds, but simply seconds. To be precise, a time is the num-
ber of seconds since midnight. For example, the time 4:32 AM is 16,320 seconds after midnight. As you can
see, a Panorama time is really a number in disguise. Since times are numbers, it’s easy to compare them, sort
them, or find the difference between them (number of seconds).

Converting Between Times and Text

Unlike dates, Panorama does not automatically provide a time data type that automatically converts a date in
text format into a number. You must use a function to convert time in text format into seconds before you can
do math calculations with the time, and use another function to convert back.

Function Reference
Page Description

now() Page 5548 This function returns the current time (number of seconds since mid-
night). Of course the clock on your computer must be set correctly!

seconds(text) Page 5709

This function converts text into a number representing a time. The func-
tion has one parameter — the text that you want to convert to a number
representing a time. If the text includes and AM or PM suffix, the number
of seconds is calculated from midnight (12 A.M.), otherwise it is calcu-
lated from 0:00:00 (elapsed time). The text must contain a valid time. Here
are some examples of valid times:

4:13 PM
11:00 AM
2:30
18:45

This function returns a number representing the time. The number is the
number of seconds since midnight. For example, if the time is 10:23 AM
this function will return the number 37,380.

timepattern(number,pattern) Page 5861

This function converts a number representing a time into text. The func-
tion uses a pattern to control how the date is formatted.

The function has two parameters: number and pattern. Number is the
number that you want to convert to text. This number must be the num-
ber of seconds since midnight. Pattern is text that contains a pattern for
formatting the date. The pattern is assembled from four components: hh
(hours), mm (minutes) ss (seconds), and am/pm. Some of the more com-
mon time patterns are listed here:

Pattern Converted Text
"hh:mm:ss am/pm" 4:32:17 pm
"hh:mm am/pm" 4:32 pm
"hh:mm:ss" 16:32:17

 If am/pm is left off the pattern the time will be formatted in 24 hour for-
mat, as shown on the last line of the table above. You should also leave off
am/pm for converting elapsed times.

Page 114 Panorama Formulas & Programming
Time Calculations

Once time has been converted into seconds you can perform arithmetic on it. For example, to calculate the
number of hours worked from a time card use a formula like this (this formula assumes that In and Out are
text fields containing times).

(seconds(Out)-seconds(In))/3600

(The division by 3600 converts the result into hours.)

To find out when a task will be finished that takes 2 1⁄2 hours to complete, use the formula

seconds(«Start Time»)+seconds("2:30")

time(text) Page 5855

This function converts text into a number representing a time. The func-
tion has one parameter — the text that you want to convert to a number
representing a time. The time function allows you to leave out the colons
in the time, and also allows you to leave off the am/pm. Here are some
examples of valid times:

4:13 PM
11:00 AM
2:30
18:45
230
4p
midnight
noon
afternoon
evening
night
nite

The time(function is very lenient about the format you use to enter the
time. It will accept a time without colons, for example 425 pm instead of
4:25 pm. If there is no am or pm the time function will try to make an
intelligent guess. For example, 230 is almost certainly 2:30 pm, not 2:30
am. By default, the time(function assumes that any time from 6:00 to
11:59 is AM, and any time from 12:00 to 5:59 is PM, but you can change
these assumptions with the timedefaults statement (reference page 5858).

The time(function will also convert “named” times: noon, midnight,
morning, afternoon, evening, and night. This function assumes that
morning is 9:00 am, afternoon is 1:00 pm, evening is 6:00 pm, and night is
10:00 pm. These assumptions can be changed with the timedefaults state-
ment (reference page 5858).

timestr(number) Convert a number to text in am/pm time format (for example 9:34 AM).

Function Reference
Page Description

Chapter 1:Formulas Page 115
Simple addition and subtraction does not compensate for time wrapping around midnight. For example, if
you want to calculate the length of a shift that begins at 11 P.M. and ends at 7 A.M., you must add 24 hours to
7AM before subtracting the times. To solve this problem you can use one of the functions described below, or
you can use a SuperDate, which combines time and date into a single number (see “SuperDates (combined
date and time)” on page 118).

Function Reference
Page Description

time24(time) Page 5857

This function takes a time and makes sure it falls within a 24 hour period.
If the time is less than 24 hours, it is unchanged. If the time is greater than
24 hours, it is converted to the equivalent time in a 24 hour period (for
example 30:00:00 is converted to 6:00:00).

The time24(function can help with calculations of an ending time from a
start time and duration. The basic formula for such a calculation is shown
here.

EndTime=StartTime+Duration

This formula works fine unless the interval extends over midnight. The
time24(function adjusts the result to make sure it starts over at zero as it
crosses midnight.

EndTime=time24(StartTime+Duration)

This formula will correctly calculate that 10:30 PM + 4 hours is 2:30 AM.

timedifference(start,end) Page 5859

This function calculates the difference between two times. It works cor-
rectly even if the interval between the two times crosses over midnight.
This function returns a time interval between -12 and +12 hours. See also
the timeinterval(function, which returns a time interval between 0 and 24
hours.

There are two parameters, start and end. Start is a number (number of
seconds) representing the starting point of the time interval. End is a
number (number of seconds) representing the ending point of the time
interval. This function returns the number of seconds between the two
times. For example, if the start time is 9:30 PM and the end time is 2:05
AM, the difference would be 4:35. But if the parameters are reversed and
the start is 2:05 AM and the end is 9:30 PM, the difference is -4:35. If the
result is positive, the end is after the start. But if the result is negative, the
start is after the end.

timeinterval(start,end) Page 5860

This function calculates the time interval between two times. It works
correctly even if the interval between the two times crosses over mid-
night. This function returns a time interval between 0 and 24 hours. See
also the timedifference(function, which returns a time interval between -
12 and +12 hours.

There are two parameters, start and end. Start is a number (number of
seconds) representing the starting point of the time interval. End is a
number (number of seconds) representing the ending point of the time
interval. This function returns the number of seconds between the two
times. For example, if the start tine is 9:30 PM and the end time is 2:05
AM, the interval would be 4:35. But if the parameters are reversed and
the start time is 2:05 AM and the end time is 9:30 PM, the interval is 19:25.

Page 116 Panorama Formulas & Programming
Time Calculations with Text

Unlike the functions in the previous sections, these functions operate with time values in strings. There aren’t
as many functions available as for times expressed as numbers, but if your input and output values will be in
strings using these function saves the intermediate conversion steps.

Calculating Time Intervals Smaller Than One Second

The info("tickcount") function can be used to calculate time intervals down to 1/60th of a second
(0.0165 second). This function returns the number of 1/60th second intervals since the computer was turned
on. Here is an example that uses this function to delay for 1/4 second.

local beginDelay
beginDelay=info("tickcount")
loop

nop
while info("tickcount")<beginDelay+15

This loop will delay for 1/4 second (plus or minus 1/60th second) on any computer, no matter what the pro-
cessor speed.

Function Reference
Page Description

texttimedifference(start,end)

This function calculates the difference between two times. Instead of
being expressed as numbers, the input output times are expressed as text
(for example 12:45 pm). This function works correctly even if the interval
between the two times crosses over midnight. This function returns a
time interval between -12 and +12 hours. See also the timeinterval(func-
tion, which returns a time interval between 0 and 24 hours.

There are two parameters, start and end. Start is a string representing the
starting point of the time interval. End is a string representing the ending
point of the time interval. This function returns the time difference
between the start and end. For example, if the start time is 9:30 PM and
the end time is 2:05 AM, the difference would be 4:35. But if the parame-
ters are reversed and the start is 2:05 AM and the end is 9:30 PM, the dif-
ference is -4:35. If the result is positive, the end is after the start. But if the
result is negative, the start is after the end.

texttimeinterval(start,end)

This function calculates the time interval between two times. It works
correctly even if the interval between the two times crosses over mid-
night. This function returns a time interval between 0 and 24 hours. See
also the timedifference(function, which returns a time interval between -
12 and +12 hours.

There are two parameters, start and end. Start is a string representing the
starting point of the time interval. End is a string representing the ending
point of the time interval. This function returns the time between the start
and end. For example, if the start tine is 9:30 PM and the end time is 2:05
AM, the interval would be 4:35. But if the parameters are reversed and
the start time is 2:05 AM and the end time is 9:30 PM, the interval is 19:25.

Chapter 1:Formulas Page 117
Time Code Calculations (Video/Film)

Panorama user and visual effects supervisor Chris Watts has built an asset management system that he has
used in the production of several major motion pictures, including Pleasantville and 300. In the process
Chris has developed about a dozen Panorama functions that are useful in performing calculations with time-
codes used in video and film, which he has donated so that other Panorama users can take advantage of
them. Here at ProVUE we’re not video/film editing experts, so these functions are provided as-is with Pan-
orama.

x

Function Reference
Page Description

feetandframes(frames) This function takes an integer and returns a feet and frame count for
35mm film.

kcadd(keycode,offset) This function takes a keycode for 35mm film and adds a number of
frames to it and returns a keycode as a string.

kcdiff(in,out) This function calculates the number of frames between two frames of
35mm film, using inclusive counts.

kcframes(feetplusframes) This function returns an integer based on a feet and frames count for
35mm film.

kcoutfromlength(key,offset) This function answers the question "What will the last frame be if I start
my cut at the incode and my shot is some number of frames long"?

outcode(textcode,framerate)
This function adds one frame to a timecode. Works with 24, 25, or 30
frame code. This is useful for making an EDL, when you need the time-
code reflected in the EDL to be one frame after the last frame of picture.

tc24to30(timecode) This function converts 24 frame timecode to 30 frame non-drop timecode.

tc30to24(timecode) This function converts 30 frame non-drop timecode to 24 frame timecode.

tcadd(textcode,offset,framerate) This function accepts a timecode, as a string, and adds some number of
frames, returns a timecode string. Works with 24, 25, and 30fps timecode.

tcdiff(in,out,framerate,edl)

This calculates the number of frames between two timecodes. Use 1 for
outcodetype if you are copying the put code from an EDL, otherwise use
0 if you are using 'inclusive' timecode. If you don't know what I am talk-
ing about, call a film editor!

tcframes(timecode,framerate) This function returns a number of frames from zero of a 24fps, 25fps, or
30fps timecode. This works for non-drop timecode only!

timecode(frames,framerate) This function returns a timecode string corresponding to an integer. This
works for non-drop timecode only..

Page 118 Panorama Formulas & Programming
SuperDates (combined date and time)

SuperDates combine the date and time into a single number…the number of seconds since January 1, 1904.
SuperDates make it easy to calculate time intervals across multiple days. However, SuperDates take up more
storage than regular dates, and are not as easy to work with. In addition, SuperDates are limited to dates
between 1904 and 2040. Panorama has several functions for working with SuperDates.

Function Reference
Page Description

superdate(date,time) Page 5822

This function converts a regular date and a regular time into a superdate.
The date parameter is a regular Panorama date (see “Converting Between
Dates and Text” on page 107). This date must be between 1904 and 2040
A.D. The time parameter is the number of seconds since midnight, usu-
ally computed with the seconds(or time(functions (see “Converting
Between Times and Text” on page 113). The result is a single value that
combines both the date and time into a single number that can be used
for multi-day calculations.

regulardate(number) Page 5643

This function extracts a regular date (number of days from January 1,
4713 B.C.) from a superdate. You can then format this date with the date-
pattern(function (see “Converting Between Dates and Text” on
page 107), as is shown in this example (which assumes that the field or
variable Arrival contains a SuperDate value).

datepattern(regulardate(Arrival),"Month dd, yyyy")

regulartime(number) Page 5644

This function extracts a regular Panorama time (seconds since midnight)
from a SuperDate. You can then format this date with the timepattern(
function (see “Converting Between Times and Text” on page 113), as is
shown in this example (which assumes that the field or variable Arrival
contains a SuperDate value).

timepattern(regulartime(Arrival),"hh:mm am/pm")

superdatepattern(number,
datepattern,timepattern)

Converts a number containing a superdate to text, allowing you to spec-
ify the patterns for both the date and the time portions. For example the
formula superdatepattern(supernow(),"Month ddnth yyyy @ " ,"hh:mm
am/pm") will result in something like July 10th, 2008 @ 1:36 PM.

superdatesecondsstr(number) Converts a number containing a superdate to text in standard format
including (for example 4/20/03 9:56:37 AM).

superdatestr(number) Converts a number containing a superdate to text in standard format (for
example 4/20/03 9:56 AM).

supernow() This function returns the number representing the current date and time
as a superdate.

Chapter 1:Formulas Page 119
Reminders

A reminder is a special data type that holds scheduling information. Reminders are usually used in calendar
database applications. A reminder is a raw binary data item 30 bytes long (stored in a text field or variable)
and contains the following information:

• The reminder type (either appointment or to-do)

• The reminder date, or recurring date information (july 12, every tuesday, etc.)

• The reminder time (3:30pm, 7:20am, etc.)

• Alarm status

• Completion status (to-do only)

• Priority (to-do only)

Notice that the reminder only contains scheduling information. It does not contain any message or other
information about the event. If there is a message associated with a reminder (for example, Lunch with Bob)
it should be stored in a separate field or variable.

Although reminders can be kept in a variable, they are usually kept in a database field. Here’s what reminder
data looks like in the data sheet.

As you can see, reminders don’t look like much in the data sheet. They are usually displayed in a form using
the remindercaption(function (see “Reminder Functions” on page 122).

Reminders can also be displayed in a monthly calendar format. See “Building a Calendar” on page 971 of the
Panorama Handbook for step by step instructions on setting up this format using a Super Matrix object.

reminders

Page 120 Panorama Formulas & Programming
Appointments vs. To-Do’s

There are two different types of reminders: Appointments and To-do’s. Appointment reminders are used for
anything that has a definite, fixed, time: appointments, birthdays, meetings, etc. Once the time has passed the
appointment is no longer relevant. For example, it won’t do much good to be reminded that your spouse‘s
birthday was yesterday!

To-do reminders have a completion status as well as a time and date. For example, suppose you set up a to-
do reminder to order parts on Monday. If you don’t get around to it, you’ll still want it on your to-do list on
Tuesday, and again on Wednesday etc. until you actually do order the parts. To-do reminders remain active
until the task is completed (or at least it is marked as completed!)

Creating and Modifying a Reminder

Although reminders can be in a variable, they are usually kept in a database field. For the following example,
we are going to assume that we have a database that contains fields named Reminder and Message. Both of
these must be text fields.

To create a new reminder, you’ll need to add a new record to the database, then use the buildreminder
statement to allow the user to edit the reminder (see “BUILDREMINDER” on page 5078 of the Panorama Ref-
erence). Here’s a procedure to do that (see “Writing a Procedure from Scratch” on page 216).

addrecord
buildreminder today(),now(),0,Reminder
reminder Reminder,Message

The buildreminder statement creates a new reminder. This statement has four parameters:

buildreminder date,time,type,field

The first parameter, date, is the date for this reminder. Since usually you are going to have the user edit the
reminder right away, this is just a default date to get them started. In the example above we used today’s
date.

The second parameter, time, is the time for this reminder. Again, this is usually just a default until the user
edits the time. In the example above we used the current time.

The third parameter, type, specifies whether this is an appointment (0) or a to-do reminder (1).

The fourth parameter, field, specifies what field the new reminder should be placed into.

Another way to create a new reminder is with the reminder(function (see “REMINDER(” on page 5648 of
the Panorama Reference). This is similar to the buildreminder statement, but with an important difference.
The function has three parameters:

reminder(date,time,type)

The first parameter specifies the date for the new reminder. However, do not use the date data type here. This
function wants to see text that describes the date, for example "2/7/96", "july 3", or "last tuesday".

The second parameter specifies the time for the new reminder. However, do not use a number here. This
function wants to see text that describes the time, for example "5:20 pm".

The third parameter specifies whether this new reminder should be an appointment ("a") or a to-do reminder
("t").

Here is our example rewritten to use the reminder(function:

addrecord
Reminder=reminder("today","12:00 pm","a")
reminder Reminder,Message

Chapter 1:Formulas Page 121
The reminder statement is used to edit reminders. This statement displays a dialog that allows the user to
set up all the reminder information: date, time, message, alarm status, etc. The reminder statement has two
parameters: the field containing the reminder, and the field containing the message.

Any time the user wants to edit a reminder the reminder statement should be used. You may want to set up a
procedure that gets triggered whenever the user double clicks on the reminder display. This procedure only
needs a single line:

reminder Reminder,Message

The reminder dialog has a subdialog for setting up repeating reminders.

Using this subdialog you can set up reminders that repeat every day, every week, every month, every quarter
or once per year.

Page 122 Panorama Formulas & Programming
Reminder Functions

The functions listed below can build and work with reminders.

Function Reference
Page Description

reminder(date,time,type) Page 5645

This function builds a new reminder. There are three parameters: date,
time and type. Date is the date for the new reminder (the function cannot
create recurring reminders). However, you should not use a number here
as you do with most date functions. You should use text that describes
the date, for example "5/25/03" or "next tuesday". Time is the time for the
new reminder. However, you should not use a number here as you do
with most time functions. You should use text that describes the time, for
example "5:22 pm".Type is the type of the new reminder: "a" for appoint-
ments or "t" for to-do’s.

This example adds a new reminder next tuesday at 2pm. The procedure
stores this reminder in a field called Schedule:

addrecord
Schedule=reminder("next tue","2:00 pm","a")

Another way to build a reminder is with the buildreminder statement,
see reference page 5078. You can also edit a reminder with a user friendly
dialog using the reminder statement (reference page 5645). This dialog
allows you to set up recurring reminders (every tuesday, 15th of each
month, etc.) and to configure alarms.

remindercaption(reminder) Page 5649

This function extracts the date from a reminder as formatted text that
describes when the reminder will occur. The table below shows typical
examples of how different reminder frequencies will be formatted by this
function:

Once only reminder: Tuesday, May 16th, 2004
Annual reminder: August 8th of each year
Quarterly reminder: First day of each quarter
Monthly reminder: 5th day of each month
 Last day of each month
 2nd Wed of each month
Weekly reminder: Tue of each week
Daily reminder: Every day

The formula below displays the reminder date in a field called Schedule.
This formula could be used in an auto-wrap text object or a Text Display
SuperObject™.

remindercaption(Schedule)

remindercompare(reminder,date) Page 5650

This function checks to see if a reminder occurs on a specified date.
Reminder is the reminder you want to compare. Date is the date you
want to compare with the reminder. This function returns either true or
false. It will return true if the reminder will occurs on the specified date,
including a repeating reminder that falls on that date.

The example procedure below uses this function to select all reminders
that will occur on next tuesday.

select remindercompare(Schedule,date("next tue"))

Chapter 1:Formulas Page 123
Alarms

If you have the optional Team Alarm extension installed (Mac OS 9 only), you can be notified of your remind-
ers even when Panorama is not currently running. To do this, the Team Alarm extension keeps a separate pri-
vate list of pending alarms. This list is in a special format that cannot be accessed by Panorama. However, this
extra alarms database is updated automatically when a reminder is updated with the reminder statement
(see “REMINDER” on page 5645 of the Panorama Reference). However, if you modify a reminder yourself
without using the reminder statement, you’ll need to make sure the Team Alarm list is also updated. There
are three statements for doing this: alarmedit (see “ALARMEDIT” on page 5023 of the Panorama Reference),
alarmdelete (see “ALARMDELETE” on page 5022 of the Panorama Reference), and alarmreset(see
“ALARMRESET” on page 5024 of the Panorama Reference).

reminderdate(reminder) Page 5651

This function extracts the date from a reminder. If a reminder repeats, the
function will try to come up with the most appropriate single date. The
table below shows how different reminder frequencies will be handled by
this function:

Once only reminder: Actual date
Annual reminder: Next occurence of this reminder
Quarterly reminder: 0
Monthly reminder: 0
Weekly reminder: 0
Daily reminder: 0

reminderpriority(reminder) Page 5652
This function extracts the priority of a to-do reminder (completed/not
completed) from a reminder. The function returns a number from 0 to 3: 0
for the lowest priority to 3 for the highest priority.

remindertime(reminder) Page 5653
This function extracts the time (number of seconds since midnight) from
a reminder. The result of this function can be used with functions like
timepattern((see “Converting Between Times and Text” on page 113).

remindertodo(reminder) Page 5654

This function extracts the status of a to-do reminder (completed/not
completed) from a reminder. The function returns a number: 0 if the to-do
has not been completed (or the reminder is an appointment type), or 1 if
the to-do has been completed.

remindertype(reminder) Page 5655
This function extracts the type (to-do or appointment) from a reminder.
This function returns a number: 0 if the reminder is an appointment type,
or 1 if it is a to-do.

Function Reference
Page Description

Page 124 Panorama Formulas & Programming
True/False Formulas

In Panorama as in most programming languages, control flow decisions are made on the basis of formulas
that are either true or false. The most basic true/false formula compares two values to see if they are equal.

PaymentMethod="C.O.D."

This formula will compare the value in the field PaymentMethod with C.O.D. The result will be true if Pay-
mentMethod is C.O.D., and false if it contains anything else (for example Check, Cash, Visa, etc.).

Comparison Operators

Panorama has about a dozen different operators that can compare two values and produce a true false result.
You can type these operators in yourself (see “Special Characters” on page 57), or you can use the Operator
sub-menu in the Function menu to type in the symbols for you. The table below lists the universal compari-
son operators. These comparison operators will work with any type of data: text, numeric, or date.

All of the above operators require that A and B be the same data type. In other words, you cannot directly
compare numbers to text, or text to dates. If A and B are different types you must convert them to the same
type before comparing them, using the str(, val(, pattern(, date(or datepattern(functions. See “Converting
Between Numbers and Strings” on page 84 and “Converting Between Dates and Text” on page 107 for more
information on these functions.

Panorama also has a number of specialized comparison operators that work only with the text data type.

Each of these operators deserves a more complete explanation, so here they are.

Operator Example True/False Meaning Notes

= A=B is A equal to B?

≠ A≠B is A not equal to B? Not available on PC

<> A<>B is A not equal to B?

> A>B is A greater than B?

≥ A≥B is A greater than or equal to B? Not available on PC

>= A>=B is A greater than or equal to B?

< A<B is A less than B?

≤ A≤B is A less than or equal to B? Not available on PC

<= A<=B is A less than or equal to B?

Operator Example True/False Meaning

beginswith A beginswith B does A begins with B?

endswith A endswith B does A end with B?

contains A contains B does A contain B?

notcontains A notcontains B does A not contain B?

soundslike A soundslike B does A sound like B (phonetically)?

match A match B does A match the wildcard pattern in B
(disregarding upper/lower case)?

matchexact A matchexact B does A exactly match the wildcard pattern in B?

notmatch A notmatch B
does A not match the wildcard pattern in B

(disregarding upper/lower case)?

notmatchexact A notmatch B does A not exactly match the wildcard pattern in B?

Chapter 1:Formulas Page 125
A beginswith B

This operator checks to see if the text in A begins with the characters in B. For example, the formula below
will determine if the Name begins with the letters Dr. .

Name beginswith "Dr."

This formula will be true if the name is Dr. Robert Johnson, and false if the name is Mark Reynolds.

Note: The beginswith operator does not worry about upper or lower case, so DR. ROBERT JOHNSON or dr.
robert johnson will also produce true results. If upper and lower case are important to you use the
matchexact operator.

A endswith B

This operator checks to see if the text in A ends with the characters in B. For example, the formula below will
determine if the Name ends with the letters D.D.S. .

Name endswith "D.D.S."

This formula will be true if the name is Ronald Nelson, D.D.S, and false if the name is Mark Reynolds.

Note: The endswith operator does not worry about upper or lower case, so ronald nelson, d.d.s. would also
produce a true result. If upper and lower case are important to you use the matchexact operator.

A contains B

This operator checks to see if the text in A contains the characters in B. For example, the formula below will
determine if the Address contains the letters box.

Address contains "box"

This formula will be true if the address is P.O. Box 5328, and false if the address is 6389 E. Wilson Blvd.

Note: The contains operator does not worry about upper or lower case, so P.O. BOX 5328 and p.o. box 5328
would also produce true results. If upper and lower case are important to you use the matchexact operator.

A notcontains B

This operator checks to see if the text in A does not contain the characters in B. This is the exact opposite of
the contains operator. For example, the formula below will determine if the Address contains the letters box.

Address notcontains "box"

This formula will be true if the address is 6389 E. Wilson Blvd, and false if the address is P.O. Box 5328.

Note: This same function could also be performed by combining the not operator with the contains operator
in the formula: not (Address contains "box").

A soundslike B

This operator checks to see if the text in A “sounds like” the text in B. For example, the formula below will
determine if the LastName sounds like the name Smith.

LastName soundslike "Smith"

This formula will be true if the name is Smith, Smyth or Smythe, and false if the name is Jones or Williams.

The method Panorama uses to determine whether two values sound alike is called “soundex.” This tech-
nique is not very exact, and often will produce extra matches that you might not think really sound similar.
However, it almost never fails to match on names that do sound similar, so it is a good starting point when
you are not sure of an exact spelling.

The soundex technique does require that the first letter of the two values match. For example even though we
think they sound alike, Christy and Kristy will not match because the first letter is different.

Page 126 Panorama Formulas & Programming
A match B

This operator checks to see if the text in A matches a pattern you specify in B. The pattern allows you to set
up very flexible “wildcard” matches where some characters must match and some don’t have to.

The pattern should combine normal characters, which must match the text in A, and wildcard characters: ?
and *. The ? wildcard character will match any character. The * wildcard character (asterisk) will match a
variable number of characters. The best way to understand wildcard matches is probably to look at a few
examples.

Our first example uses the pattern j*johnson. With this pattern the name must begin with j (or J) and end with
johnson (or Johnson, etc.) The characters in between don’t matter.

Name match "j*johnson"

This formula will produce a true result for names like Jim Johnson, Jack Johnson, Joe Johnson, etc. The for-
mula will also be true for names like J346 Ujohnson or J@#opcjohnson.

The second example uses the pattern 926??. With this pattern the zip code must begin with 926 and must be 5
digits long. (Our example assumes that ZipCode is a text field, not a numeric field.)

ZipCode match "926??"

This formula will produce a true result for zip codes like 92631 or 92685 but a false result for zip codes like
89324 or 92685-0301. Here’s a variation that will work with 5 or 9 digit zip codes. The ?? characters mean that
there must be at least five digits, while the * means that any extra characters are ok.

ZipCode match "926??*"

This formula will produce a true result for zip codes like 92631, 92685 or 92685-0301, but a false result for 926
or 9262.

Don’t forget that a space is a normal character. The example below checks for people with a middle initial.
The pattern looks for any number of characters followed by a space, followed by a single character, followed
by a period, followed by another space, followed by any number of characters.

Name match "* ?. *"

This formula will produce a true result for Robert E. Lee or Winston O. Link, but a false result for Frank Tesh,
Billy Martin, or Sara Jessica Parkman.

The match operator can be used to simulate the beginswith, endswith and contains operators. The table
below shows the equivalent match formulas for each of these operators.

Note: The match operator does not worry about upper or lower case. If upper and lower case are important
to you, use the matchexact operator.

These formulas… are the same as these.

A match B+"*" A beginswith B

A match "*"+B A endswith B

A match "*"+B+"*" A contains B

Chapter 1:Formulas Page 127
A matchexact B

This operator checks to see if the text in A matches a pattern you specify in B. This operator works exactly the
same as the match operator, except that the normal characters must match exactly, including upper and lower
case. For example, the formula below

Name matchexact "J*Johnson"

will produce a true result for Jeff Johnson, but a false result for JEFF JOHNSON. (However, JEFF Johnson
would produce a true result.)

You can use the matchexact operator instead of beginswith, endswith, or contains if you need an exact upper
and lower case match.

A notmatch B

A notmatchexact B

These operators are the exact opposite of match and matchexact.

A like B

This operator checks to see if the text in A matches a pattern you specify in B. This operator is similar to the
matchexact operator, but it uses different wildcard characters: % and _ instead of * and ? Here are some
examples showing both formats:

Name matchexact "J*Johnson"
Name like "J%Johnson"

Zip matchexact "926??*"
Zip like "926__%"

The like operator is included for compatibility with SQL servers. The like operator can be used for selecting a
subset from a SQL master file, the match operator cannot.

Combining Comparisons

The basic comparisons described in the previous section can be combined together for more complicated
decisions. There are four basic operators that can combine or modify decisions: and, or, xor, and not.

A and B

The and operator combines two true/false formulas together so that the result is only true if both formulas
are true. The example procedure below determines if a person is a teenager.

if Age≥13 and Age<20
Status="Teenager"

endif

The result of the formula is only true if the person is 13 or older and less than 20.

Operator Sample Description

and A and B true if both A and B are true

or A or B true if either A or B are true

xor A xor B true if A and B are different

not not A true if A is false

Page 128 Panorama Formulas & Programming
A or B

The or operator combines two true/false formulas together so that the result is true if either one of the two
formulas are true. The example below determines if a transaction is being paid with a credit card.

if PaymentMethod="Visa" or PaymentMethod="MasterCard"
Terms="Credit Card"

endif

The result of the formula is only true if the payment method is Visa or MasterCard.

Notice that each side of the or operator must contain a complete formula. The formula below looks right in
English, but will not work in Panorama. The example below is WRONG:

if PaymentMethod="Visa" or "MasterCard" /* WILL NOT WORK !! */

There must be a comparison on both sides of the or, as shown in the first example.

A xor B

The xor (short for exclusive-or) operator is a bit tricky. Xor combines two true/false formulas together so that
the result is true if one of the two formulas is true, but false if both are true or both are false. Another way to
put it is that the result will be true if A and B are different, but false if they are the same. The example below
determines if two shoes are a pair.

if Shoe1="Left" xor Shoe2="Left"
message "These shoes are a pair"

endif

The result of the formula is only true if one shoe is Left and the other shoe is Right (or to be more precise, not
Left).

not A

The not operator reverses a true-false formula. If the result was true, now it will be false. If it was false, now it
will be true.

if (not (Shoe1="Left" xor Shoe2="Left"))
message "These shoes are not a pair!"

endif

Note: This example shows that if not is used as the very first operator in a formula in a procedure, you must
surround the entire formula with an extra pair of parentheses. If not is in the middle of the formula the extra
parentheses are not necessary. The parentheses are also not necessary if the formula is not in a procedure (in
the Design Sheet or a Formula Fill dialog, for example).

Equals Comparison vs. Assignment

If you have skipped ahead to read about procedures you know that the equals sign is used to assign a value
to a field or variable. The example formula we used earlier to compare two values:

PaymentMethod="C.O.D."

would also be the same formula used to assign the value C.O.D. to the field or variable PaymentMethod. At
first glance this may appear ambiguous…the same formula is used to compare two values and to assign a
value. How do we know when we are assigning and when we are comparing? The answer lies in the context
in which the formula is found.

Chapter 1:Formulas Page 129
In a procedure, an assignment is always by itself, not part of a larger statement. A true-false formula is
always part of another statement, for example if, case, until, while, stoploopif, repeatloopif,
find, select. Here’s an example that shows two formulas that look almost the same, but one is a true-false
formula and one is an assignment.

if PaymentMethod="C.O.D."
ShippingMethod="UPS"

endif

The first formula, PaymentMethod="C.O.D.", is part of the if statement. This formula means: Is the field
(or variable) PaymentMethod equal to C.O.D. (true/false)?

The second formula, ShippingMethod="UPS", is not part of any statement, but stands alone, so this is an
assignment. The statement means: Take the value UPS and copy it into the field or variable named Shipping-
Method.

If an assignment has more than one equals sign, the first equals sign is for the assignment and the rest are for
comparisons. The example assignment below compares B and C. If they are equal (true) the value -1 will be
copied into A. If they are not equal (false) the value 0 will be copied into A.

A=B=C

In other words, A becomes the result of the comparison between B=C, or A = (B=C).

True/False Values

For purposes of calculation, Panorama treats true and false as numbers: true is -1 and false is zero. Panorama
also has two functions that directly generate these values.

Like any other number, you can store a true/false value in a field or variable and then use it later. The exam-
ple below calculates whether a person is a teenager, then uses that information later.

local Teenager
Teenager=Age≥13 and Age<20
...
if Teenager

Price=4.50
else

Price=6.00
endif

Notice that the if statement doesn’t need to compare, it simply uses the result of the comparison that was
calculated earlier. In fact, the if statement (and all other statements that use true/false logic) can use any for-
mula that produces a numeric integer result. The value 0 will be regarded as false, and any non-zero value
will be regarded as true. The example below will be true if the length of the name is non-zero.

if length(Name)
yesno "Is this a home address?"
...

endif

The first line of this example could also have been written if length(Name)≠0. The result is the same
either way.

Function Reference
Page Description

true() This function always returns true (-1).

false() This function always returns false (0).

Page 130 Panorama Formulas & Programming
The ? Function

The ?(function allows a formula to make a decision. Will it be door number 1 or door number 2? The function
uses a true-false value to pick from one of two values. The syntax for this function is like this.

?(decision-value,true-value,false-value)

The first parameter, decision-value, is used to pick which of the two choices will be returned as the final
value, the true-value or the false-value.

For example, the formula below can be used to calculate a 10% discount if the quantity is 100 or more—

?(Qty<100 , Price , Price*0.9)

The decision is based on the comparison Qty<100. If Qty is less than 100, the ? function picks the second
parameter, Price. But if the quantity is 100 or more, the ? function will pick the third parameter,
Price*0.9, for a 10% discount.

If you need to pick from three or more choices you can nest several ? functions together. For example, this for-
mula shows how you can add a third discount level (20% for quantities of 500 or more)—

?(Qty<100 , Price , ?(Qty<500 , Price*0.9 , Price*0.8))

Although these examples have used numeric data, text can also be used for either the true-false logic or the
choices. The formula below, for example, could be used by a movie theater to check if a person is a child or an
adult.

?(Age≤12 , "Child" , "Adult")

Note: The ? function always evaluates all three parameters you give it, even though it really uses only two of
the parameters. This means that you cannot use the ? function to avoid errors (for example divide by zero
errors) because the error will happen before the ? function decides which parameter to use (use the divzero(
function to avoid divide by zero problems).

Converting a Boolean Value to Text

The boolstr(function converts a boolean value to text, either true or false. For example

message boolstr(Qty<100)

will display true if the Qty is less than 100, or false if it is greater or equal to 100.

Chapter 1:Formulas Page 131
Linking With Another Database

Many database applications require multiple database files working together. For example, organizing a
company’s order entry operations usually requires an invoice file, an inventory/price list file, and possibly a
customer file. The primary method for accessing information in other databases is the lookup(function (and
other related functions). This function can search for and retrieve information from any open database. Need
to look up a price or a customer’s credit limit? Chances are the lookup(function is the tool for the job.

When you look up information manually (for example, looking up someone’s number in the phone book),
you are actually performing a multi-step process. You start with one piece of information—a person’s name,
for example. The first step is to locate the correct phone book. Once you’ve located the correct book, you must
search through it to find the name of the person you are looking for. When you find the name, the final step is
to copy down the person’s phone number.

Panorama’s lookup(function follows a similar process when it looks up data. For example, suppose you
want to find out the number of calories in an orange using the database shown here.

Here is the formula for looking up the number of calories in an orange. The parameters to the lookup contain
all the information necessary to locate the information.

The first parameter is called the lookup database. It tells Panorama what database to look in for the informa-
tion, in this case Groceries.

The second and third database tell Panorama how to search for the data you want. In this case Panorama is
being told to “search through the Fruit column until you find Orange.” The field to look in (in this case Fruit)
is called the lookup key field. The data to look for (in this case Orange) is called the lookup data value. By
the way, Panorama is very picky about the lookup data value. It must exactly match the value in the data-
base, or Panorama won’t find a match. In this case only Orange will work — not orange or ORANGE or even
oRaNGe!

At this point we come to a fork in the road. Perhaps Panorama found Orange in the database, perhaps not. If
it did the fourth parameter tells Panorama what to do next. This fourth parameter is called the lookup data
field, and it may be any field in the lookup database. In this case it is Calories, so Panorama will lookup the
value in the Calories field (70) and return it as the result of the function.

lookup database

lookup key field
lookup key value

lookup data field lookup default value

lookup summary level
(almost always zero)

Page 132 Panorama Formulas & Programming
What if Panorama didn’t find Orange in the database? In that case Panorama simply returns the value of the
fifth parameter, the lookup default value. In this case the default value is 0. The default value should match
the data type of the lookup data field. Since Calories is a numeric field, the default is also numeric. If the
lookup data field had been a text field (for instance Serving Size) the default would need to be text (for exam-
ple "").

The sixth and final parameter to the lookup function is the lookup summary level. This is the minimum
summary level to be searched within the lookup database. Usually the lookup summary level is zero so that
the entire lookup database will be searched. If the level is set to 1 through 7, only summary records will be
searched. This is useful if you want to look up summary information (see “3-Step Summarizing” on page 365
of the Panorama Reference) while ignoring the raw data.

In this example the end result of the lookup is the value 70. The lookup(function is often used by itself, but a
more complicated formula can take this value and perform additional computations. If the result of the
lookup is a text value then all of the text functions described earlier in this chapter can be used to modify the
result.

The Lookup Wizard

Since the lookup(function is kind of picky about all of its parameters we’ve provided a “fill-in-the-blanks”
dialog to help build the function. To open this dialog simply pull down the Functions Menu and choose
lookup(…).

Chapter 1:Formulas Page 133
Now the lookup wizard dialog appears.

To create the lookup function, start at the top of the dialog and work your way down. Start by selecting the
database to lookup from (in this case Groceries).

Page 134 Panorama Formulas & Programming
Next, choose the data you want to retrieve (the lookup data field, which will become the fourth parameter to
the lookup function). In this case we want to retrieve the number of Calories.

The next step is to choose the lookup key field, which in this case is Fruit.

Chapter 1:Formulas Page 135
Finally, choose the field containing the lookup key value. If there is no such field (perhaps the value is in a
variable) then just choose any field and adjust the formula once the wizard is finished.

Once you’ve made all of the selections press OK to generate the finished formula. For example, if you were
using the Formula Fill command the formula would look like this:

Type Mismatch Problems

One of the most common problems when setting up a lookup function is type mismatches. With some careful
thought, however, you can avoid these problems.

The first source of type mismatch problems is the lookup key field and the lookup key value. The field and
value must be the same type of data. In other words, if the lookup key field is numeric, the lookup key value
must be numeric also. If necessary, you can convert a text key value into numeric with the val(function, or
you can convert a numeric key value into text with the str(function (see “Converting Between Numbers
and Strings” on page 84 for details on both of these functions).

lookup("Catalog","Part#",val(Item),"Price",0,0)

Page 136 Panorama Formulas & Programming
Another source of type mismatch problems is the lookup data field. This field must have the same type of
data as the field you want to store the result in. For example if you look up a price, the result must be stored
in a numeric field.

If you need to store a numeric value in a text field, use the str(function to convert the value. The str(function
should go outside the entire lookup function, for example

str(lookup("Catalog","Item",Desc,"Price",0,0))

Another source for type mismatch problems is the lookup default value. The default value should be the
same type as the lookup data field. If the lookup data field is numeric, the default should be numeric (for
example 0 or 100). If the lookup data field is text, the default should also be text (for example "" or "n/a").

Lookup Variations

There are actually several different variations of the lookup function. All of the variations have the same six
parameters. The standard lookup function locates the first occurrence of the key (nearest to the beginning of
the file).

Function Reference
Page Description

lookup(Page 5500
This function searches for the first occurrence of the value within the
lookup database. If there is more than one copy of the value in the data-
base this function will find the one closest to the top.

lookuplast(Page 5505

This function searches for the last occurrence of the value within the
lookup database. If there is more than one copy of the value in the data-
base this function will find the one closest to the bottom. However, there
is one exception. If you are looking up within the current database Pan-
orama will skip the current record. If the current record matches the key
value then Panorama will skip backwards to the next matching record.

lookupselected(Page 5513

This function searches for the first occurrence of the value within the
selected records in the lookup database. Unselected (invisible) records are
ignored. If there is more than one copy of the value within the selected
records this function will find the one closest to the top.

lookuplastselected(Page 5507

This function searches for the last occurrence of the value within the
selected records in the lookup database. Unselected (invisible) records are
ignored. If there is more than one copy of the value within the selected
records this function will find the one closest to the bottom.

table(Page 5827

The table function allows you to lookup data by an approximate match
instead of exact match. If the table function does not find an exact match,
it uses the next lower value. A common example is a shipping rate table.
Rate tables do not have an entry for every possible weight. Instead, the
table only lists weights where the shipping rate changes. For example,
suppose a rate table contains entries for 100 pounds and 250 pounds, and
you have a 158 pound package. The table function will return the rate for
the next lower value, in this case the 100 pound rate.

Chapter 1:Formulas Page 137
Looking Up Rates in a Rate Table

The table(function is designed for looking up rates from a table. For example, this function can be used to
look up shipping rates, tax rates, discount rates, or any kind of stepped rate where the rate changes according
to a sliding scale. To illustrate this function, consider this shipping rate database.

For packages from 0 to 49.99 pounds the rate is 2.50 per pound. For packages from 50 to 99.99 pounds the rate
is 2.35 per pound, from 100 to 249.99 the rate is 2.25 etc. Suppose we use a regular lookup function to look up
the weight, like this.

lookup("Shipping Rates",Weight,PackageWeight,«Rate Per Pound»,0,0)

This formula will work fine for weights that appear in the table like 50, 100 and 250. But for other weights like
47 or 182 the formula will return the default value, zero. To fix this, use the table function instead of the
lookup function.

table("Shipping Rates",Weight,PackageWeight,«Rate Per Pound»,0,0)

The table function will return the closest lower match. This means that if the PackageWeight is 3, 17 or 42 the
formula will return 2.50. If the PackageWeight is 110 or 246 the formula will return 2.25, etc. Here is a com-
plete formula that calculates the shipping cost for any package.

PackageWeight*table("Shipping Rates",Weight,PackageWeight,«Rate Per Pound»,0,0)

The formula looks up the rate per pound and then multiplies that rate by the package weight.

Looking Up Multiple Fields From One Record

Sometimes you may need to lookup several fields in the same record. For example, when you lookup some-
one’s address you may also want to lookup their city, state, zip code, phone number and recent purchasing
history. In a procedure one way to do this is with multiple lookup(functions, like this.

Address=lookup("Customers",Company,Company,Address,"",0)
City=lookup("Customers",Company,Company,City,"",0)
State=lookup("Customers",Company,Company,State,"",0)
Zip=lookup("Customers",Company,Company,ZipCode,"",0)
Phone=lookup("Customers",Company,Company,"Phone#","",0)

When a procedure contains several lookup(in a row for the same thing like this Panorama doesn’t actually
search the database over and over again. Instead it notices that it is searching for the same item and simply
grabs the data from the record it has already found.

Page 138 Panorama Formulas & Programming
To make multiple field lookups even faster you can use the speedcopy statement (see “SPEEDCOPY” on
page 5784 of the Panorama Handbook). (Remember, since this is a statement it can only be used within a proce-
dure, see “Procedures” on page 203). The speedcopy statement can transfer many fields at once, but only if
the fields to be copied in the two databases match exactly. The fields to be copied must appear in exactly the
same order in both databases, and the fields must have the same data types. With all these restrictions, you
may be surprised to find out that the fields do not have to have the same names!

Here’s how speedcopy works. Before you use speedcopy, you must perform an assignment with a
lookup(function (or a variation of the lookup(function: lookuplast(, lookupselected(, etc., see
“Lookup Variations” on page 136). The lookup(function locates the record containing the information to be
copied. Once the record has been located the speedcopy statement can be used to copy the additional data.

The speedcopy statement has three parameters.

speedcopy FirstAssignField,LastAssignField,FirstTargetField

The first two parameters are fields in the current database. The last parameter is a field in the target database.
All of these field names should be surrounded by quotes (for example "Name", not Name). Speedcopy starts
by converting these field names into field numbers. For example, if a field would be the third column in the
data sheet, it is field #3.

Once speedcopy has converted the field names into numbers, it starts copying data. Suppose the
FirstAssignField was field number 3, and the FirstTargetField was field number 8. Speedcopy will start by
copying field #8 in the target database into field #3 in the current database. Then it will copy field #9 in the
target database into field #4 in the current database. It will continue copying fields until it has copied some-
thing into the LastAssignField.

To show a specific example, suppose we have two databases, Organizer and Customers, with the fields listed
below:

The procedure below will quickly copy the Address, City, State, Zip and Phone fields from the Customers
database to the Organizer database.

Address=lookup("Customers",Company,Company,Address,"",0)
if Address<>""

speedcopy "City","Phone","City"
endif

Let’s take a close look at how this procedure works. The first line attempts to lookup the Address from the
Customer database. If this lookup fails, the procedure is finished. However, if the lookup succeeds the proce-
dure continues with the speedcopy statement.

The first parameter of the speedcopy statement is City, which is field #5 in the current database (Organizer).
The second parameter is Phone, which is field #8 in the current database. The final parameter is City, which is
field #3 in the target database (Customers).

Organizer Customers

1 Name Company

2 Title Address

3 Company City

4 Address State

5 City ZipCode

6 State Phone#

7 Zip Fax#

8 Phone Cust#

Chapter 1:Formulas Page 139
In this example speedcopy will copy 4 fields from Customers into Organizer, as shown by the blue arrows
in this table. The green arrow represents the original lookup(.

As speedcopy moves data from one database to another, it doesn’t make any kind of checks on the data. If
the fields aren’t really in the same order, speedcopy will cheerfully copy them in the wrong order. Even
worse, if you try to copy a numeric field into a text field or a text field into a numeric field, speedcopy will
not object, but will speedily turn your current database into swiss cheese. The moral of the story is to use the
speedcopy statement very carefully. Like any sharp instrument you want to make sure it is pointed in the
right direction before you use it.

The GrabData Function

The grabdata(function (reference page 5327) grabs the contents of a field in the current record of any open
database. You can grab data from the current database, or from another database. The function has two
parameters — the name of the database to grab from and the name of the field within that database. For
example here is the formula to look up the number of calories of the currently selected fruit.

grabdata("Groceries",Calories)

The value returned by this function will change depending on what record is active in the Groceries database.

Looking Up Multiple Values at Once

The normal lookup functions return only a single value even if many records in the lookup database match
the key value. The lookupall(function (reference page 5502) builds a text array containing one item for every
record in the target database that matches. The function has five parameters. The first four parameters are the
same as the other lookups with one slight difference: lookup database, lookup key field, lookup key value
and data field (see “Linking With Another Database” on page 131). The difference is that the lookup key field

Organizer Customers

1 Name Company

2 Title Address

3 Company City

4 Address State

5 City ZipCode

6 State Phone#

7 Zip Fax#

8 Phone Cust#

Page 140 Panorama Formulas & Programming
must be a text field — you cannot use a numeric or date field for the key. The fifth parameter is the separator
character for the array that is constructed (see “Text Arrays” on page 93). Unlike most text array functions,
the lookupall(function allows the separator to have more than one character. For example, you could use
", " to place a comma and space between each item. To illustrate this function, consider this database of hotels.

Using the lookupall(function we can create a procedure that lists all of the hotels in Winter Park.

When you run this procedure it displays a list of all of the hotels in Winter Park, like this.

Of course you might want to list cities other than Winter Park. Here’s a modified version of this formula that
lists the hotels in whatever the current city is.

lookupall("Colorado Hotels",City,City,Hotel,", ")

Of course you could also display the list of hotels in an auto-wrap text object or Text Display SuperObject.
The list would update automatically as you moved from record to record.

lookup database

lookup key field
lookup key value

lookup data field array separator

Chapter 1:Formulas Page 141
In our hotel example the lookup data field is a text field (Hotel). However, the lookupall(function will also
work with numeric and date data fields. If the field is numeric or date it will be converted to text before it is
added to the array. In this illustration three different lookupall(functions are used to display the hotel name,
phone number, and rate.

When switched to Data Access mode you can see that all of the rates have been converted to text and
appended together, one per line.

As you switch to a different record the form updates automatically.

In this case the lookup is from the current database, but any open database can be used.

Page 142 Panorama Formulas & Programming
Panorama also includes seven additional variations on the lookupall(function that lookup from two to eight
fields from the target database, instead of just one. Each of these functions includes a parameter for control-
ling the separator between records and the separator between each fields.

Linking Clairvoyance to the Lookup Key Field

Panorama’s Clairvoyance feature anticipates what you are about to type by scanning the entries you have
already made in the same database. When you are working with multiple files, you can configure Clairvoy-
ance so that it scans the entries in another database instead (see “Clairvoyance® Across Multiple Files” on
page 286 of the Panorama Handbook). This is called linking clairvoyance to another field.

There are two reasons for linking clairvoyance to another field. Clairvoyance cannot anticipate values until
they have been typed in at least once. If all the possible values have already been entered into another data-
base, Clairvoyance can start working immediately by looking into the other database.

Another advantage is speed. If your price list contains 200 records and your invoice database contains 2000
records, Clairvoyance can scan the price list 10 times faster. As your database gets larger, this speed difference
may become noticeable.

Function Reference
Page Description

lookupalldouble(thedb,
keyfield,keyvalue,datafield1,
datafield2,mainsep,subsep)

This function does a lookupall for two fields (double). The lookup is of all
records in thedb where the keyfield matches the supplied keyvalue. For
each record datafield1 and datafield2 are joined together with the subsep
separator (which may be more than one character) and each record is
joined together with the mainsep characters.

lookupalltriple(thedb,
keyfield,keyvalue,datafield1,

datafield2,datafield3,
mainsep,subsep)

This function does a lookupall for three fields (triple). The lookup is of all
records in thedb where the keyfield matches the supplied keyvalue. For
each record datafield1 through datafield3 are joined together with the
subsep separator (which may be more than one character) and each
record is joined together with the mainsep characters.

lookupallquadruple(thedb,
keyfield,keyvalue,datafield1,

datafield2,datafield3,datafield4,
mainsep,subsep)

This function does a lookupall for four fields (quadruple). The lookup is
of all records in thedb where the keyfield matches the supplied keyvalue.
For each record datafield1 through datafield4 are joined together with the
subsep separator (which may be more than one character) and each
record is joined together with the mainsep characters.

lookupallquintuplet(thedb,
keyfield,keyvalue,datafield1,

datafield2,datafield3,datafield4,
datafield5,mainsep,subsep)

This function does a lookupall for five fields (quintuplet). The lookup is
of all records in thedb where the keyfield matches the supplied keyvalue.
For each record datafield1 through datafield5 are joined together with the
subsep separator (which may be more than one character) and each
record is joined together with the mainsep characters.

lookupallsextet(thedb,keyfield,
keyvalue,datafield1,

datafield2,datafield3,datafield4,
datafield5,datafield6,

mainsep,subsep)

This function does a lookupall for six fields (sextet). The lookup is of all
records in thedb where the keyfield matches the supplied keyvalue. For
each record datafield1 through datafield6 are joined together with the
subsep separator (which may be more than one character) and each
record is joined together with the mainsep characters.

lookupallseptuplet(thedb,keyfield,
keyvalue,datafield1,

datafield2,datafield3,datafield4,
datafield5,datafield6,datafield7,

mainsep,subsep)

This function does a lookupall for seven fields (septuplet). The lookup is
of all records in thedb where the keyfield matches the supplied keyvalue.
For each record datafield1 through datafield7 are joined together with the
subsep separator (which may be more than one character) and each
record is joined together with the mainsep characters.

lookupalloctet(thedb,keyfield,
keyvalue,datafield1,

datafield2,datafield3,datafield4,
datafield5,datafield6,datafield7,

datafield8,mainsep,subsep)

This function does a lookupall for eight fields (octet). The lookup is of all
records in thedb where the keyfield matches the supplied keyvalue. For
each record datafield1 through datafield8 are joined together with the
subsep separator (which may be more than one character) and each
record is joined together with the mainsep characters.

Chapter 1:Formulas Page 143
To set up a clairvoyance link to another field, use the design sheet. Click on the name of the field you want to
set up. Then choose Set Up Link from the Special Menu. Choose the database you want to link to, and the
field within that database.

Press OK to enter the link into the design sheet. Like all other design sheet options, the link does not actually
take effect until you tell Panorama to create a new generation. In the design sheet shown below five fields
have been linked to the Fruit field in the Groceries database.

When you are editing data within a field that has a clairvoyance link set up, clairvoyance checks the charac-
ters you type against the data in the second database. When it finds a possible match, it enters the rest of the
value for you.

Page 144 Panorama Formulas & Programming
Looking Up Data in the Current File

You can use the lookuplast(function to look up the previous entry, with the same value, in the same database.
For example, in a checkbook database you can automate repetitive payments by looking up the previous pay-
ment to the same company. By using the info("database") function to look up the database name you can
make sure that the formula will continue to work even if the database is renamed.

lookuplast(info("database"),PayTo,PayTo,Amount,0,0)

Suppose that your last check to Pacific Mutual was $178.34. Using the formula above you could automati-
cally enter this value the next time you write a check to this company.

Another application for looking up data in the current file is locating summary information further down in
the database. To do this, set the lookup summary level to a non-zero value so that only summary records will
be located.

The Assign Function

The assign(function is so different from every other Panorama V function that we gave it its own section,
all by itself. Instead of calculating a new value based on its parameters, the assign(function allows you to
assign the result of a partial formula to a field or variable. This is called a "side effect" because this assignment
is in addition to the normal operation of the formula that contains the assign(function (or multiple assign(
functions).

The assign(function has two parameters: value and destination. The value parameter is simply any formula
that calculates a value. The calculated value may be either numeric or a text value.

The destination parameter is the name of the field or variable to store the value into. If the destination is a
field, the field must have the same data type as the calculated value (in other words, numeric values must be
stored in numeric fields, text values in text fields. If the destination is a variable, the variable must already
have been created with a local, global, fileglobal, permanent or windowglobal statement.

Let's look at some examples to illustrate the operation of this function. For example, consider the equation
below, which might be part of a procedure. In this example, both A and B will be assigned the value X+Y.

B=assign(X+Y,"A")

When using the assign(function it's important to keep in mind that this function also produces a value - the
value calculated by the value parameter. For example, in the example above B is also assigned the value X+Y.
If you forget that the assign(function produces a value you may encounter unexpected error messages or
even accidentally overwrite data.

The previous example illustrated the operation of the assign(function, but it wasn't really very useful. Here is
a more interesting example. This example quickly scans a field and finds the largest value. The output of the
arraybuild (the variable x), is simply ignored. The real result is the variable biggest, which is calculated as a
side effect. At the end of the procedure this variable will contain the largest value in the current field.

local biggest,x
biggest=«»
arraybuild x,¶,"",assign(?(biggest>«»,biggest,«»),"biggest")
message biggest

Chapter 1:Formulas Page 145
The assign(function is very useful for formulas in forms, for example TextDisplay or auto-wrap text objects.
In these objects the assign(function can be used for intermediate values that need to be used over and over.
Of course when you use the assign(function this way you have to keep in mind the order of expression eval-
uation. You must make sure that the assign(function is evaluated before the destination is used. Here is an
example where the customer name is assigned to a variable named tempCustomerName (which must be cre-
ated with a global or fileglobal statement before this formula is displayed), then used in several locations in
the text.

"Dear "+
assign(lookup("CustomerFile","CustomerNumber",custID,"Name","",0),"tempCustomerName")+","+
¶+tempCustomerName+", you are invited to particpate blah blah blah. "+tempCustomerName",
you won't want to miss out on this blah blah blah"

If you use the ?(function in combination with the assign(function be careful because the assign(function will
always be evaluated. It doesn't matter whether the assign(function is in the true or false part of the ?(func-
tion.

When the assign(function is used with a field, the field display will not be updated automatically. You'll need
to do that separately with showfields, showcolums, etc. (depending on what operation you have done).

Note: Assigning a value to a field in a formulafill (or select) in a multi-user Partner/Server database
doesn’t work properly. The field on the local client will change, but the server will not be updated. There's no
warning or error message, so you should avoid using this function with fields in a Partner/Server database.

Zip Code Lookup

If you have purchased Panorama’s optional zip code dictionary you can lookup the city, county and state of a
zip code using the functions listed in the table below.

For more information about purchasing this optional package please visit our web site, www.provue.com.

Note: If you have purchased Panorama’s optional spelling dictionary, you can lookup a list of words using
the wordlist statement in a procedure. See “WORDLIST” on page 5907 of the Panorama Handbook for
details.

Function Reference
Page Description

city(zip) Page 5101

This function looks up a zip code and returns the name of the city for that
zip code. The zip code may be either a number or text. For example the
formula city(92831) will return the city name Fullerton, while the for-
mula city("92648") will return Huntington Beach. If there is more
than one possible name, the function returns the primary zip code name
as defined by the US Post Office. If the zip code is not a valid zip code the
function will return an empty string (""). If the zip code dictionary has not
been installed the function will return --.

county(zip) Page 5132

This function looks up a zip code and returns the name of the county for
that zip code. The zip code may be either a number or text. For example
the formula city(92831) will return the county name Orange, while
the formula county("95234") will return San Joaquin. If the zip code
is not a valid zip code the function will return an empty string (""). If the
zip code dictionary has not been installed the function will return --.

state(zip) Page 5793

This function looks up a zip code and returns the two letter abbreviation
for the name of the state the zip code is in. The zip code may be either a
number or text. For example the formula state(92831) will return the
state abbreviation CA, while the formula state("15234") will return
PA. If the zip code dictionary has not been installed the function will
return --.

Page 146 Panorama Formulas & Programming
US Post Office Abbreviation Functions

These functions return text arrays that contain lists of official US Post Office abbreviations. These functions
are designed to be used with the arraylookup(and arrayreverselookup(functions.

Graphic Co-Ordinates

Many Panorama operations refer to locations on the screen, within a window, or within a form. The Macin-
tosh uses an X-Y co-ordinate system to define locations. This X-Y system divides any area into an invisible
grid of criss-crossing lines. There are 72 lines per inch. Each point where the lines intersect is identified by
two numbers, the vertical and the horizontal position. The numbers increase as you move down and to the
right. The illustration below shows a greatly expanded view of the X-Y coordinate system with several sam-
ple points.

See “GRAPHIC COORDINATES” on page 5330 of the Panorama Handbook for more information about co-
ordinates.

Function Reference
Page Description

stateabbreviations()
This function returns a list of state abbreviations in this format: AL:ALA-
BAMA;AK:ALASKA; ... This table is designed to be used with the array-
lookup(and arraylookupreverse(functions.

statelookup(state)
This function looks up the name of a state from the state abbreviation (for
example CALIFORNIA from CA). If the parameter does not match any
state then the original value is returned.

uspssecondaryunits()

This function returns a list of USPS secondary suffix designation abbrevi-
ations in this format: APT:APARTMENT;RM:ROOM; ... This table is
designed to be used with the arraylookup(and arraylookupreverse(func-
tions.

uspsstreetsuffixes()
This function returns a list of USPS street suffix abbreviations in this for-
mat: ALY:ALLEY;AVE:AVENUE; ... This table is designed to be used with
the arraylookup(and arraylookupreverse(functions.

Chapter 1:Formulas Page 147
Points

A point is a spot on the X-Y grid. A point has two elements, the vertical position and the horizontal position.
Each position is a number (integer) between -32,767 and +32,767. A point combines these two numbers into a
single number. Functions that work with points are listed in the table below.

Function Reference
Page Description

point(v,h) Page 5606

This function combines vertical and horizontal co-ordinates into a single
number that describes the position of a point. V is the vertical position of
the point. This must be a number between -32,768 and +32,767. (Unlike
standard cartesian co-ordinates, positive is down and negative is up.) H
is the horizontal position of the point. This must be a number between -
32,768 and +32,767. (Like standard cartesian co-ordinates, positive is right
and negative is left.) All dimensions are in pixels (1 pixel=1/72 inch).

The function returns a number (an integer) that describes the location of
the point. You can use this number in any function or statement that
accepts a point as a parameter.

 The greatly magnified illustration below shows several sample points
and the functions used to create them. Note that the actual point “hangs”
down and to the right of the co-ordinate grid lines.

h(point) Page 5338

This function extracts the horizontal position from a point. The result is a
number (an integer) that describes the horizontal position of the point.
This number will be between -32,768 and +32,767. (Like standard carte-
sian co-ordinates, positive is right and negative is left.)

Page 148 Panorama Formulas & Programming
v(point) Page 5885

This function extracts the vertical position from a point. The result is a
number (an integer) that describes the vertical position of the point. This
number will be between -32,768 and +32,767. (Unlike standard cartesian
co-ordinates, positive is down and negative is up.)

info("click") Page 5364 This function returns the location of the last mouse click in screen relative
co-ordinates.

info("mouse") Page 5398 This function returns the current location of the mouse in screen relative
co-ordinates.

pointstr(point) This function converts a point value into text in the format V,H (for exam-
ple 34,56).

xytoxy(point,from,to) Page 5910

This function converts a point or rectangle from one co-ordinate system
to another. There are three possible co-ordinate systems: Screen Relative,
Window Relative, and Form Relative (see “GRAPHIC COORDINATES”
on page 5330 of the Panorama Handbook for illustrations of these three sys-
tems).

The function has three parameters: point, from and to. Point is the point
or rectangle that you want to convert to another co-ordinate system.
From is the current co-ordinate system for the point, while to is the new
co-ordinate system. The three options for these parameters are:

"Screen" (may be abbreviated "S" or "s")
"Window" (may be abbreviated "W" or "w")
"Form" (may be abbreviated "F" or "f")

This function returns a new, translated point that has been converted to a
different co-ordinate system (for example screen relative to window rela-
tive). (Note: This function can work with rectangles as well as points —
see the next section.)

Function Reference
Page Description

Chapter 1:Formulas Page 149
Rectangles

A rectangle is a simply box laid out on the X-Y grid. A rectangle is defined by four co-ordinates: top, left, bot-
tom, right. The rectangle data type stores these four co-ordinates as raw binary data in an 8 byte text data
item (see “Raw Binary Data” on page 156).

Don’t confuse the rectangles described in this section with rectangles that are graphic objects in a form. The
rectangle data type merely describes an imaginary rectangle on the X-Y grid. This may correspond to a rect-
angle that is actually visible, but not necessarily.

Function Reference
Page Description

rectangle(top,left,bottom,right) Page 5631

This function defines a rectangle from four dimensions: top, left, bottom
and right. These parameters specify the location of the edges of the rect-
angle. All measurements are in pixels (1 pixel = 1/72 inch). The formula
below creates a rectangle that is 4 pixels high and 6 pixels wide.

rectangle(7,6,11,12)

Here is a magnified view of this rectangle.

rectanglesize(top,left,height,width) Page 5636

This function defines a rectangle from four dimensions: top, left, height
and width. All measurements are in pixels (1 pixel = 1/72 inch). The
height and width must be numbers between 0 and +32,767. The formula
below creates a rectangle that is 4 pixels high and 6 pixels wide.

rectanglesize(7,6,4,6)

Here is a magnified view of this rectangle.

Page 150 Panorama Formulas & Programming
rtop(rectangle) Page 5685
This function extracts the position of the top edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the top edge of the rectangle (in pixels).

rleft(rectangle) Page 5680
This function extracts the position of the left edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the left edge of the rectangle (in pixels).

rbottom(rectangle) Page 5630
This function extracts the position of the bottom edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the bottom edge of the rectangle (in pixels).

rright(rectangle) Page 5683
This function extracts the position of the right edge of a rectangle. The
function returns a number between -32,768 and 32768. This is the position
of the right edge of the rectangle (in pixels).

rheight(rectangle) Page 5678
This function computes the height of a rectangle. The function returns a
number between 0 and 65535. This value is the height of the rectangle (in
pixels).

rwidth(rectangle) Page 5688
This function computes the width of a rectangle. The function returns a
number between 0 and 65535. This value is the width of the rectangle (in
pixels).

xytoxy(rect,from,to) Page 5910

This function converts a point or rectangle from one co-ordinate system
to another. There are three possible co-ordinate systems: Screen Relative,
Window Relative, and Form Relative (see “GRAPHIC COORDINATES”
on page 5330 of the Panorama Reference for illustrations of these three sys-
tems).

The function has three parameters: rect, from and to. Rect is the point or
rectangle that you want to convert to another co-ordinate system. From is
the current co-ordinate system for the point, while to is the new co-ordi-
nate system. The three options for these parameters are:

"Screen" (may be abbreviated "S" or "s")
"Window" (may be abbreviated "W" or "w")
"Form" (may be abbreviated "F" or "f")

This function returns a new, translated rectangle that has been converted
to a different co-ordinate system (for example screen relative to window
relative). (Note: This function can work with points as well as rectangles
— see the previous section.)

unionrectangle(rect1,rect2) Page 5868

This function defines a rectangle by combining two rectangles. The new
rectangle is large enough to exactly cover both of the input rectangles.
The illustration below shows how this function combines two rectangles,
defining a third rectangle that covers the original two rectangles.

Function Reference
Page Description

Chapter 1:Formulas Page 151
intersectionrectangle(rect1,rect2) Page 5459

This function defines a rectangle by combining two rectangles. The new
rectangle is the area where the two rectangles overlap (if any). If the two
rectangles do not touch each other the function will return an empty rect-
angle (same as rectangle(0,0,0,0)).

The illustration below shows how this function combines two rectangles,
creating a third rectangle where the original two rectangles overlap:

inrectangle(point,rectangle) Page 5453

This function checks to see if a point is inside a rectangle. There are two
parameters: point and rectangle. The result is true or false. If the point is
inside the rectangle, the function returns true (-1). If the point is not
inside the rectangle, the function returns false (0). You can use this func-
tion with the if statement (see “IF Statements” on page 257) and the ?(
function (see “The ? Function” on page 130).

The illustration below shows a rectangle and several points. Green points
are inside the rectangle, purple points are not. Notice that points on the
top and left edge of the rectangle are considered inside. Points on the bot-
tom and right edge are considered outside.

Function Reference
Page Description

Page 152 Panorama Formulas & Programming
rectanglecenter(largrect,smallrect) Page 5635

This function adjusts a small rectangle so that it is centered inside of a
larger rectangle. Largerect is a large rectangle. How large is large? Well, it
should at least be larger than the smallrect rectangle. Smallrect is a small
rectangle. How small is small? Well, it should at least be small enough to
fit inside the largerect rectangle, although the function will do its best to
center it even if it does not fit.

The formula below creates a 1 inch square rectangle that is centered
within the current screen dimensions.

rectanglecenter(
 info("screenrectangle"),
 rectanglesize(0,0,72,72))

bestfitrectangle(lborder,rect)

This function fits a rectangle inside a border. The original rectangle is
enlarged or reduced as necessary to produce the best fit without chang-
ing the proportions. This function is useful for fitting an image (picture)
inside a fixed size border.

rectangleadjust(
rect,
∆top,
∆left,

∆bottom,
∆right)

Page 5633

This function adjusts all four edges of a rectangle independently. There
are five parameters: rect,∆top, ∆left, ∆bottom and ∆right. Rect is the origi-
nal rectangle. The other four parameters are the distance each edge
should be moved, which should be a number between -32,768 and
+32,767.

The formula below creates a rectangle that is inset 20 pixels from all four
edges of the screen.

rectangleadjust(
 info("screenrectangle"),20,20,-20,-20)

 The formula below creates a rectangle that is the same size as the button
rectangle but shifted 1 inch (72 pixels) to the right.

rectangleadjust(
 info("buttonrectangle") ,0,72,0,72)

adjustxy(

rectangle,

boundary,

deltav,

deltah)

Page 5020

This function adjusts the four corners of a rectangle. However, only cor-
ners that are inside a boundary are adjusted. Corners outside the bound-
ary are left alone.

There are four parameters: rectangle, boundary, deltav and deltah.
Rectangle is the rectangle that is being adjusted. Boundary is a rectangle
describing the area to be adjusted. Only points inside this rectangle will
be adjusted. Deltav is the vertical distance each corner inside the bound-
ary should be adjusted. Deltah is the horizontal distance each corner
inside the boundary should be adjusted.

Function Reference
Page Description

Chapter 1:Formulas Page 153
rectanglealign(lborder,rect)

This function aligns a small rectangle inside of a larger rectangle. The
small rectangle can be aligned in one of nine positions: top left, top center,
top right, left center, center, right center, bottom left, bottom center, bot-
tom right. If an alignment axis is not specified it is assumed to be center,
for example top is the same as top center. The order of the options does
not matter, for example top left and left top are the same. If two conflict-
ing specifications are made left will override right and top will override
bottom.

Here is an example that moves the current window to a top centered
position on the main screen.

zoomwindowrectangle rectanglealign(
 info("screenrectangle"),
 info("windowrectangle"),
 "top center")

.

rectanglesizestr(rect) This function converts a rectangle into text in the format
TOP,LEFT,HEIGHT,WIDTH (for example 100,20,80,30).

rectanglestr(rect) Converts a rectangle into text in the format TOP,LEFT,BOTTOM,RIGHT
(for example 100,20,180,50).

info("buttonrectangle") Page 5361

This function returns a rectangle defining the edges of the button that
was clicked on (needless to say, this function should be used in a proce-
dure that is triggered by a button). The rectangle is in screen relative coor-
dinates (use the xytoxy(function to convert to window or form relative
co-ordinates).

info("cursorrectangle") Page 5365
This function returns a rectangle defining the edges of the current data
cell (if any). The rectangle is in screen relative coordinates (use the
xytoxy(function to convert to window or form relative co-ordinates).

info("screenrectangle") Page 5414
This function returns a rectangle defining the edges of the main screen
(the screen that contains the menu bar). The rectangle is in screen relative
coordinates.

info("windowrectangle") Page 5446 This function returns a rectangle defining the edges of the current win-
dow. The rectangle is in screen relative coordinates.

Function Reference
Page Description

Page 154 Panorama Formulas & Programming
Colors

We think of colors as the spectrum of the rainbow, but the computer builds up all colors from just three: red,
green, and blue. By varying the relative intensity of these three colors the computer can generate all the colors
of the rainbow. A Panorama color data item combines red, green and blue intensity values into a single data
item. Color intensity is measured on a scale from 0 (completely dark) to 65,535 (full brightness). Values in
between denote intermediate intensity. The table below shows a small sample of the colors that are possible.

Another way to specify a color is the HSB, or Hue, Saturation, Brightness system. Like the RGB system, the
HSB system uses three numbers from 0 to 65,535 to describe a color. However, the three components have dif-
ferent meanings in this system.

The Hue component specifies where this color falls in the spectrum. If you are familiar with the standard
Apple color picker, the Hue would specify the angle of the color from the center of the wheel.

The Saturation component refers to how intense this color is. Is it a very intense deep color, or is it a soft pas-
tel color, or somewhere in between? Again using the standard Apple color picker, the Saturation would spec-
ify the distance of the color from the center of the wheel.

RED GREEN BLUE COLOR SAMPLE

0 0 0 Black

65535 65535 65535 White

15000 15000 15000 Dark Gray

45000 45000 45000 Light Gray

65535 0 0 Pure Red

0 65535 0 Pure Green

0 0 65535 Pure Blue

65535 0 65535 Purple

65535 65535 0 Yellow

0 65535 65535 Cyan

3441 4276 32336 Dark Blue

39235 30211 30211 Brown

24367 23356 31931 Light Green

65535 23356 2936 Orange

Chapter 1:Formulas Page 155
The Brightness component refers to how light or dark the color is. Is the color very bright, or is it almost
black? This sounds similar to Saturation, but it isn’t. Imagine a blue ball under a white light. As the light gets
dimmer, the Hue and Saturation of the color don’t change, but the Brightness does.

A color in a field or variable is just a piece of data that describes a color…you can’t actually see the color.
However, some SuperObjects allow you to control their color using a color data item, and you can look at or
modify the color of any graphic object in a form using the functions and statements listed below.

Function Reference
Page Description

rgb(red,blue,green) Page 5677

This function creates a color by combining red, green, and blue primary
colors. Red is the intensity of the red component of this color. This must
be a number from 0 (black) to 65535 (full intensity). Green is the intensity
of the green component of this color. This must be a number from 0
(black) to 65535 (full intensity). Blue is the intensity of the blue compo-
nent of this color. This must be a number from 0 (black) to 65535 (full
intensity).

hsb(hue,saturation,brightness) Page 5347

This function creates a color by combining hue, saturation, and bright-
ness components. Hue specifies where this color falls in the spectrum.
This must be a number from 0 to 65535. Saturation specifies how intense
this color is. Is it a very intense deep color, or is it a soft pastel color, or
somewhere in between? This must be a number from 0 (black) to 65535
(full intensity). Brightness specifies how light or dark the color is. Is the
color very bright, or is it almost black? This sounds similar to Saturation,
but it isn’t. Imagine a blue ball under a white light. As the light gets dim-
mer, the Hue and Saturation of the color don’t change, but the Brightness
does. This must be a number from 0 (black) to 65535 (full intensity).

getwebcolor(webcolor,default)

This function will calculate an RGB color from a Netscape style web color.
The first parameter specifies an HTML color, either in RRGGBB format
(or #RRGGBB) or a named color (see list below). The second parameter
allows you to specify what color to use if the first parameter is not recog-
nized (for example a named color not on the list.

List of named web colors: aliceblue, antiquewhite, aqua, aquamarine,
azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown,
burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, corn-
silk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, dark-
green, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid,
darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, dark-
turquoise, darkviolet, deeppink, deepskyblue, dimgray, dodgerblue, fire-
brick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold,
goldenrod, gray, green, greenyellow, honeydew, hotpink, indianred,
indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon,
lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgreen, light-
grey, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray,
lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon,
mediumaquamarine, mediumblue, mediumorchid, mediumpurple,
mediumseagreen, mediumslateblue, mediumspringgreen, mediumtur-
quoise, mediumvioletred, midnightblue, mintcream, mistyrose, mocca-
sin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered,
orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papa-
yawhip, peachpuff, peru, pink, plum, powderblue, purple, red,
rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, sea-
shell, sienna, silver, skyblue, slateblue, slategray, snow, springgreen,
steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, white-
smoke, yellow, yellowgreen

red(color) Page 5638

This function extracts the red intensity from a color. This intensity is a
number between 0 (black) and 65535 (full intensity). The example below
calculates the red intensity of the color (in percent, from 0 to 100%).

red(HighlightColor)*100/65535

Page 156 Panorama Formulas & Programming
If you are writing a procedure there are also two procedure statements that deal with color. The colorwheel
statement (see “COLORWHEEL” on page 5119 of the Panorama Reference) opens a dialog for picking a color.
The formcolor statement (see “FORMCOLOR” on page 5262 of the Panorama Reference) changes the back-
ground color of the current form.

Raw Binary Data

At the core, computers work with 1’s and 0’s, on and off, true and false. This is called binary data, because
there are only two options. Fortunately, Panorama users don’t ever have to deal with raw binary data. The
programmers take the 1’s and 0’s and give them structure to create text, numbers, pictures, and other com-
plex elements.

green(color) Page 5333

This function extracts the green intensity from a color. This intensity is a
number between 0 (black) and 65535 (full intensity). The example below
calculates the green intensity of the color (in percent, from 0 to 100%).

green(HighlightColor)*100/65535

blue(color) Page 5076

This function extracts the blue intensity from a color. This intensity is a
number between 0 (black) and 65535 (full intensity). The example below
calculates the blue intensity of the color (in percent, from 0 to 100%).

blue(HighlightColor)*100/65535

hue(color) Page 5347 This function extracts the hue value from a color. Hue specifies where this
color falls in the spectrum. This is a number from 0 to 65535.

saturation(color) Page 5691

This function extracts the saturation intensity from a color. Saturation
specifies how intense this color is. Is it a very intense deep color, or is it a
soft pastel color, or somewhere in between? This is a number from 0
(black) to 65535 (full saturation).

brightness(color) Page 5077

This function extracts the brightness of a color. Brightness specifies how
light or dark the color is. Is the color very bright, or is it almost black?
This sounds similar to Saturation, but it isn’t. Imagine a blue ball under a
white light. As the light gets dimmer, the Hue and Saturation of the color
don’t change, but the Brightness does. The brightness value is a number
from 0 (black) to 65535 (full brightness).

info("formcolor") Page 5378
This function returns the background color of the current form. If the cur-
rent window does not contain a form, the function will return empty text
("").

black() This function returns black (it is equivalent to rgb(0,0,0)).

gray(saturation) This function returns a gray color. The saturation value is between 0
(white) and 100 (black).

htmlrgb(string) This function converts text formatted as an HTML color (for example
FFFFFF for white or FF0000 for red) into a Panorama color value.

htmlrgbstr(color) This function converts a Panorama color value into text formatted as an
HTML color (for example BB4DFD).

white() This function returns white (it is equivalent to rgb(65535,65535,65535)).

Function Reference
Page Description

Chapter 1:Formulas Page 157
It’s not much fun, and it’s rarely necessary, but Panorama does allow a programmer to work with raw,
unstructured, binary data: 1’s and 0’s. When you work with raw binary data it will always be in a text field or
variable. Panorama normally interprets text as a series of characters. The functions listed in this section, how-
ever, do not interpret the binary data as characters. Instead, they allow you to directly access and manipulate
the 1’s and 0’s. Panorama uses the text data type to hold raw binary data because text may be of any length
and places no restrictions on the binary information that is placed in it. (However, the text may look very
strange if you display it in the data sheet or on a form.)

Note: Panorama never requires you to use raw binary data. However, raw binary data may be useful for
working with data from the operating system or with data generated by another program (or to generate
data for another program). If you don’t already know you need to use raw binary data, you can probably skip
this section (unless you are curious). If you are a C, Java or Pascal programmer, these functions let you work
with virtually any data structure you can cook up.

The functions that work with binary data are listed in the table below.

Function Reference
Page Description

byte(number) Page 5079

This function converts a number into a single byte of binary data. (Note:
the byte(function is basically the same as the chr(function.) The number
parameter must be between 0 and 255. This function converts the number
into a single byte of binary data (8 bits).

word(number) Page 5906

This function converts a number into a single word (2 bytes) of binary
data. Number is the value that you want to convert into a binary number.
This value must be between 0 and 65,535. This function converts the
number into a two bytes of binary data (16 bits).

longword(number) Page 5499

This function converts a number into a single longword (4 bytes) of
binary data. Number is the value that you want to convert into a binary
number. This value must be an integer. This function converts the num-
ber into a four bytes of binary data (32 bits).

binaryvalue(data) Page 5075

This function converts binary data (a byte, word, or longword) into a
number. Data is the binary value that you want to convert into a number.
This value must be a byte, a word (2 bytes) or a longword (4 bytes). The
result is an integer.

Page 158 Panorama Formulas & Programming
textstuff(text,new,position) Page 5853

This function replaces one or more characters in the middle of a piece of
text. Text is the original text data item that contains one or more charac-
ters you want to replace. New is the new text that you want to use to
replace characters in the original text data item. Position is the location
within the original text where you want to replace text. The position is a
number starting with zero. The function returns a copy of the original
text item with one or more characters replaced.

This example replaces two characters in a 24 character text item.

 textstuff("Temperature: 87 degrees"," 92",13)

The operation of this formula is shown in the table below.

 Original Text: Temperature: 87 degrees

 New Text: 92
 Position: 13

 Result (TEMP): Temperature: 92 degrees

If the new text is positioned beyond the end of the original text, the char-
acters in between are undefined.

textstuff("Temp:"," 92",13)

The operation of this formula is shown in the table below.

 Original Text: Temp:

 New Text: 92
 Position: 13

 -----------------------------x--------
 Result (TEMP): Temp: \#ø•º¢∏ƒ92

 The characters in between (in orange) may be anything. (Of course you
could use another textstuff(function to fill them in, or you could add
characters to the original text before using textstuff(in the first place.)

string255(text,space) Page 5800

This function converts text into a Pascal string. A Pascal String is a special
text format that is sometimes used by the Macintosh ROM's (also called a
String255 or Str255 because the text is limited to a maximum length of 255
characters). (Pascal is the name of a computer language, which in turn is
named after a famous mathematician.)

The function has two parameters: text and space. Text is the text that you
want to convert into a Pascal string. This text should be less than 255
characters long. Space is a number defining the amount of space taken up
by the Pascal string. If space is zero, the string may be up to 255 charac-
ters, and is not padded. If space is from 1 to 255, the string255(function
makes sure that the string takes up exactly this amount of space. If the
string is too long, it will be cut off. If the string is too short, it will be pad-
ded with nulls (bytes containing zeroes).

The function returns a text data item containing a Pascal string.

Function Reference
Page Description

Chapter 1:Formulas Page 159
text255(data) Page 5851

This function converts binary data containing a Pascal String into regular
text. A Pascal String is a special text format that is sometimes used by the
Macintosh ROM's (also called a String255 or Str255 because the text is
limited to a maximum length of 255 characters). (Pascal is the name of a
computer language, which in turn is named after a famous mathemati-
cian.) The function returns the text equivalent of the Pascal String passed
to it.

radix(radix,text) Page 5626

This function converts a text item containing a hex, octal, or binary num-
ber into a standard Panorama number (decimal). See “NON DECIMAL
NUMBERS” on page 5543 of the Panorama Reference for background infor-
mation on hex, octal and binary numbers. Radix is the base for the num-
bering system you are converting from. Legal radix values are 2, 4, 8, 16
or 32. Or you can specify the radix as "binary" (same as 2), "octal" (same
as 8) or "hex" (short for hexadecimal, same as 16). Text is a text item that
contains the non-decimal number you want to convert. This function nor-
mally returns an integer that contains the decimal (base 10) number cor-
responding to the hex, octal, or binary number input to the function.

 If the radix is hex and there are more than 8 digits in the input text, or if
the radix is binary and there are more than 32 digits, this function will
return a raw binary value instead of a number. This binary value may be
of unlimited length. Like all binary values, it cannot be calculated with,
but should be handled as a text item.

radixstr(radix,number) Page 5628

This function converts a number into a text item containing the equiva-
lent hex, octal, or binary number. See “NON DECIMAL NUMBERS” on
page 5543 of the Panorama Reference for background information on hex,
octal and binary numbers. Radix is the base for the numbering system
you are converting from. Legal radix values are 2, 4, 8, 16 or 32. Or you
can specify the radix as "binary" (same as 2), "octal" (same as 8) or "hex"
(short for hexadecimal, same as 16). Number is the number you want to
convert to hex, octal, or binary. If the radix is 2, 16, "binary", or "hex" the
number can be a raw binary data (text) value. This function returns a text
item that contains the hex, octal, or binary number equivalent to the num-
ber (or binary data) passed to the function. The first example converts the
decimal value 256 to hexadecimal.

radixstr(16,256)

This function will calculate that 25610 is 100 hex.

Here is another example:

radixstr("binary",5)

This will calculate that 5 10 is 00000000000000000000000000000101 binary.

bit(number) This function converts a bit number (1 to 32) into a number (1, 2, 4, 8, 16,
etc.)

bytearray(data,index)
This function extracts a value from an array of bytes. This is not a Pan-
orama style delimited array but a C style array of 8 bit values. The result
is an integer.

chararray(data,index)
This function extracts a characters from an array of characters. This is not
a Panorama style delimited array but a C style array of ASCII characters.
The result is an single characters.

chunkarray(data,index,
chunklength)

This function extracts a binary chunk from an array of chunks. This is not
a Panorama style delimited array but a C style array of binary chunks.
The result is a binary value (text).

Function Reference
Page Description

Page 160 Panorama Formulas & Programming
getbit(number,bitnumber)
This function returns a true or false value by testing a bit. The bit number
may be from 1 to 32. If the bit is set, the value will be true, if it is not set,
the value will be false.

hex(string) Converts text with hex characters into a number. For example the value
of hex("0C2") is 194.

hexstr(number) Converts a number into text in hex format. For example the value of hex-
str(‘194) is "000000C2".

hexbyte(number) Converts a 8-bit number into text in hex format. For example the value of
hexstr(‘194) is "C2".

hexlong(number) Converts a 32-bit number into text in hex format. For example the value
of hexstr(‘194) is "000000C2".

hexword(number) Converts a 16 bit number into text in hex format. For example the value
of hexstr(‘194) is "00C2".

longwordarray(data,index)
This function extracts a value from an array of longwords. This is not a
Panorama style delimited array but a C style array of 32 bit values. The
result is an integer.

onescomplement(number) This function returns the one's complement of a 32 bit number (all bits are
reversed)

setbit(number,bitnumber,truefalse)
This function sets one bit within a number, without disturbing any of the
other bits. The bit number may be from 1 to 32. The bit will be set based
on the true/false parameter - set if true, cleared if false.

wordarray(data,index)
This function extracts a value from an array of words. This is not a Pan-
orama style delimited array but a C style array of 16 bit values. The result
is an integer.

encodebase64(data,linelength)

This function encodes text using the Base64 algorithm. Base64 encoding
is widely used on the web and in e-mail for encoding binary data and
allowing it to be transmitted as plain text. For more information on
Base64 encoding see http://en.wikipedia.org/wiki/Base64. The data
parameter is the data to be encoded. LineLength is the maximum line
length of the encoded text. A common value is around 70 characters per
line.

decodebase64(data)
This function decodes text that has been encoded using Base64 encoding.
It is the reverse of the encodebase64(function above. If you first use
encodebase64(then decodebase64(you will get back the original data..

Function Reference
Page Description

Chapter 1:Formulas Page 161
The RPN Programmer’s Calculator

Panorama includes a built in calculator that can perform calculations in decimal (base 10), hexadecimal (base
16), octal (base 8) and binary (base 2). To open this calculator choose the RPN Programmer’s Calculator from
the Wizard menu.

Converting Between Different Bases

The calculator can be used to convert numbers from decimal to hex, hex to decimal, or in fact from any of the
four supported bases into any other. For example, suppose you want to convert the number 489 (decimal)
into hex. Start by pressing the dec (for decimal) button, then enter 489, then press the hex button. The result is
1E9 (remember, hexadecimal numbers may include the digits A-F in addition to 0-9). If you wanted to see the
same number in binary you would press the bin button You can change the number base at any time.

Press the dec button Enter 489 Press the hex button Press the bin button

Page 162 Panorama Formulas & Programming
Calculations with Reverse Polish Notation

RPN is a variation on a parentheses-free mathematical logic known as "Polish Notation," developed by the
Polish logician Jan Lukasiewicz (1878-1956). Over the years the most popular calculators in business and sci-
ence have been HP calculators. These feature Reverse Polish Notation, especially the HP-12C business calcu-
lators and the HP-41 series. Texas Instruments was the other big player in calculators, and their machines
used algebraic notation. You were either an RPN supporter, walking around with the motto ENTER > = (RPN
is greater than Algebraic) emblazoned on T-shirts, or you were a TI algebraic "heretic." Here at ProVUE we
were weaned on the original HP-35 scientific calculator in the late 70’s, so our programmer’s calculator uses
Reverse Polish Notation.

With RPN, numbers are entered or "stacked" in the register. RPN is implemented by means of a numeric
stack, the enter key, and the convention of "postfix operators." Postfix operators simply means that the user
specifies the operation to be performed after the entry of numbers, instead of in the middle. For example,
suppose you wanted to add 489+372. Here’s how you do this with the RPN calculator.

According to HP, “RPN is an effective way to deal with arithmetic expressions in programming. RPN makes
it possible to perform compound calculations with a minimum of special symbols and no punctuation. Num-
bers are stored in the register. With the elimination of parentheses and the consistency of the entry method,
the calculator accepts more of the problem-solving burden, reducing the user's time and effort.”

Enter 489 Press the enter button Enter 372 Press the + button

Chapter 1:Formulas Page 163
The RPN system eliminates the need for parentheses. Here’s how you would calculate (6+3)*(5+2).

Performing this calculation in RPN requires only 9 keystrokes, vs. 11 using conventional algebraic notation.
Ok, so it’s a religious issue. So sue me (and all my RPN loving cronies)!

The purple area shows the numeric stack, where intermediate results are stored. You can expand the calcula-
tor window to see more entries in this numeric stack.

Enter 6 and press enter Enter 3 Press the + button Enter 5 and press enter

Enter 2 Press the + button Press the * button

Page 164 Panorama Formulas & Programming
Boolean Operators

The four buttons on the right (mod, xor, or and and) are the boolean functions. These combine two numbers
on a bit by bit basis. The table below explains each of these functions. The example numbers (A, B and Result)
are in binary, but these operators will work in any number base..

This example shows how to calculate the remainder when dividing 63 by 8.

The remainder is 7.

Operator Description A B Result

and For each bit in A and B, the result will be 1 if both A
and B are 1. It will be 0 if either A or B are zero. 10110 00101 00100

or For each bit in A and B, the result will be 1 if either A
or B is 1. It will be 0 if both A and B are zero. 10110 00101 10111

xor For each bit in A and B, the result will be 1 if A and B
are different. It will be 0 if both A and B are the same. 10110 00101 10011

mod This operator computes the remainder when dividing
A by B 10110 00101 10

Enter 63 and press enter Enter 8 Press the mod button

Chapter 1:Formulas Page 165
Disk Files and Folders

Panorama formulas can directly access files and directories on the disk. The functions below read informa-
tion from the disk. For a more detailed discussion of file i/o, including writing to files, see “Directly Reading
and Writing Disk Files” on page 421.

Function Reference
Page Description

folder(path) Page 5259

This function creates a binary data item that unambiguously describes
the location of a folder on the hard disk. This pathid can be used in other
functions and statements. Path is a complete description of the path to
this folder. On the Macintosh a path looks like this:

My Disk:System Folder:Extensions:

On a Windows computer a path looks like this:

C:\Windows\Temporary

This function returns a 6 byte binary data item that unambiguously
describes the location of the folder. However, if the folder does not exist
the function returns an empty binary data item ("").

folderpath(pathid) Page 5260

This function takes a six byte pathid (see the folder(function above) and
converts it to a textual description of the path to that folder. A pathid is a
binary data item that unambiguously describes the location of a folder on
the hard disk. Pathid’s are created by the folder(and dbinfo(functions,
and the openfiledialog and savefiledialog statements.

The function returns complete a description of the path to this folder. On
the Macintosh a path looks like this:

My Disk:System Folder:Extensions:

On a Windows computer a path looks like this:

C:\Windows\Temporary

filefolder(text)
This function returns the folder ID from a combined path and filename.
For example the function filefolder("Alaska:Denali:Image45.jpg") would
return the folder id for the path "Alaska:Denali:".

Page 166 Panorama Formulas & Programming
fileload(folder,file) Page 5231

This function reads the entire contents of any file on disk. It is especially
useful for reading text files. Folder is a pathid that unambiguously
describes the location of the folder. A pathid is a binary data item that
unambiguously describes the location of a folder on the hard disk.
pathid’s are created by the folder(and dbinfo(functions, and the open-
filedialog and savefiledialog statements. If this parameter is empty text
("") the folder containing the current database is assumed. File is the
name of the file that is to be read.

This function returns the entire contents of the file as an item of text.
(Technical note: Macintosh files may be split up into two components,
called the “data fork” and the “resource fork.” The fileload(function
reads the data fork, but not the resource fork. You can read the resource
fork by using a special statement, see “Reading and Writing Resource
Forks” on page 428.)

This example reads a file named Report.txt. This file must be in the same
folder as the current database.

fileload("","Report.txt")

The example below reads the contents of the Macintosh notebook file.

fileload(info("systemfolder"),"Note Pad File")

For very large files you may need to read in only a portion at a time using
the fileloadpartial(function (see below).

fileloadpartial(folder,file,start,len) Page 5233

This function reads a portion of the contents of any file on disk. It is espe-
cially useful for reading text files. Folder is a pathid that unambiguously
describes the location of the folder. A pathid is a binary data item that
unambiguously describes the location of a folder on the hard disk.
pathid’s are created by the folder(and dbinfo(functions, and the open-
filedialog and savefiledialog statements. If this parameter is empty text
("") the folder containing the current database is assumed. File is the
name of the file that is to be read. Start is the first byte (character) of the
file that should be read. This function assumes bytes in the file are num-
bered starting from 0. Len is the number of bytes that should be read.

The function returns a portion of the contents of the file as an item of text.
(Technical note: Macintosh files may be split up into two components,
called the “data fork” and the “resource fork.” The fileloadpartial(func-
tion reads the data fork, but not the resource fork. You can read the
resource fork by using a special statement, see “Reading and Writing
Resource Forks” on page 428.)

filesize(folder,file) Page 5238

This function determines the size of any file on disk. Folder is a pathid
that unambiguously describes the location of the folder. A pathid is a
binary data item that unambiguously describes the location of a folder on
the hard disk. pathid’s are created by the folder(and dbinfo(functions,
and the openfiledialog and savefiledialog statements. If this parameter is
empty text ("") the folder containing the current database is assumed. File
is the name of the file that is to be measured.

 This function returns a number—the size of the entire contents of the file.
(Technical note: Macintosh files may be split up into two components,
called the “data fork” and the “resource fork.” The filesize(function reads
the size of the data fork, but not the resource fork.)

The example below determines the size of the Macintosh notebook file.

filesize(info("systemfolder"),"Note Pad File")

Function Reference
Page Description

Chapter 1:Formulas Page 167
fileinfo(folder,file) Page 5229

This function gets information about a file (or folder) on the disk, includ-
ing the size, creation and modification date and time, type, creator and
lock status. Folder is a pathid that unambiguously describes the location
of the folder. A pathid is a binary data item that unambiguously
describes the location of a folder on the hard disk. pathid’s are created by
the folder(and dbinfo(functions, and the openfiledialog and savefiledia-
log statements. If this parameter is empty text ("") the folder containing
the current database is assumed. File is the name of the file that you are
requesting information about.

This function returns a text array with 8 elements separated by carriage
returns. (However, if the specified file does not exist it returns empty text
("")). The eight elements are:

1) Type of item. This is either "File" or "Folder"

2) Type (4 bytes) and Creator (4 bytes). Here are some typical Type/Cre-
ator values.

ZEPDKASX Panorama database
KSETKASX Panorama file set
APPLKASX Panorama application
CWWPBOBO ClarisWorks word processing file
STAKWILD Hypercard Stack
TIFF8BIM TIFF file (Photoshop)
EPSFART3 Adobe Illustrator (version 3)

This is only a small sample of the types and creators you will find on your
hard disk.

3) Creation Date in internal Panorama format. Although this is a number,
it has been converted to text. If you convert the number back to text you
can format the date with datepattern(.

4) Creation Time in seconds since midnight. Although this is a number, it
has been converted to text. If you convert the number back to text you
can format the time with timepattern(.

5) Modification Date in internal Panorama format. Although this is a
number, it has been converted to text. If you convert the number back to
text you can format the date with datepattern(.

6) Modification Time in seconds since midnight. Although this is a num-
ber, it has been converted to text. If you convert the number back to text
you can format the time with timepattern(.

7) File size in bytes. (Or if the specified file is actually a directory, this is
the number of files in directory

8) File status: This is either "Locked" or "Unlocked".

filesuperdate(folder,file)
This function returns the modification date and time of a file as a super-
date. For example this can be handy for comparing to see which of two
files is newer.

Function Reference
Page Description

Page 168 Panorama Formulas & Programming
listfiles(folder,filter) Page 5476

This function builds a text array listing the files in a folder. Folder is a
pathid that unambiguously describes the location of the folder. A pathid
is a binary data item that unambiguously describes the location of a
folder on the hard disk. pathid’s are created by the folder(and dbinfo(
functions, and the openfiledialog and savefiledialog statements. If this
parameter is empty text ("") the folder containing the current database is
assumed. Filter is a text item that specifies what type (or types) of files
(and folders) to list. If this is an empty text item ("") all files will be listed.
Otherwise the type parameter should be a series of one or more 8 charac-
ter sections. The first four characters are the file type, the second four are
the file creator. You can also use the ? character if you do not care what a
character is. Here are some useful file types:

TEXT???? list all text files
APPL???? list all applications
????KASX list all Panorama database files

 You can combine more than one specification into a filter, for example
TEXT????????KASX to list all text files and Panorama database files.

The listfiles(function normally does not list folders. However, if you pre-
cede the filter specification with the ƒ (option-F) character the function
will list folders as well as files. For example:

ƒTEXT????
 list all text files and folders
ƒ????KASXTEXT????
 list databases, text files, and folders

If the filter is empty ("") then ALL files and folders will be included.

The function returns a carriage return separated text array. Each item con-
tains a single file name.

info("foldersepchar") Returns the folder separator character for the current platform (: or \).

info("lineseparator")
This function returns the line separator character on the current platform.
On Macintosh systems this is a carriage return. On Windows PC systems
this is a carriage return followed by a linefeed (CR-LF).

info("systemfolder") Page 5429
This function returns a pathid that unambiguously describes the location
of the system folder. This pathid can be used in other functions and state-
ments.

info("panoramafolder") Page 5405
This function returns a pathid that unambiguously describes the location
of the folder containing the Panorama application. This pathid can be
used in other functions and statements.

filedate(folder,file) Returns the creation date of the specified file.

fileexists(folder,file) Checks to see if a file exists. Returns true or false.

fileexists(path) Checks to see if a file exists. Returns true or false.

fileextension(text)
This function extracts the extension (if any) from a complete path and
filename. For example the function
fileextension("Alaska:Denali:Image45.jpg") would return .jpg.

filename(text)
This function extracts the filename from a complete path and filename.
For example the function filename("Alaska:Denali:Image45.jpg") would
return Image45.jpg.

filepath(text)
This function extracts the path from a combined path and filename. For
example the function filepath("Alaska:Denali:Image45.jpg") would return
the text "Alaska:Denali:".

filetime(folder,file) Returns the creation time of the current file.

Function Reference
Page Description

Chapter 1:Formulas Page 169
filetypecreator(folder,file) Returns 8 characters - 4 characters with the file type and 4 characters with
the creator code (for example TEXTR*ch for BBEdit text files).

folderexists(folder,foldnername) Checks to see if a folder exists. Returns true or false.

foldersepchar() Returns the folder separator character for the current platform (: or \).

foldercontains(path,file) Checks to see if a file exists inside the specified folder. Returns true or
false.

foldercontents(path) This function returns a list of all of the contents in a folder (both folders
and files).

foldercount(path) This function returns the total number of files within a folder.

foldersize(path) This function returns the total size of all of the files within a folder.

fullpath(path) This function converts a filename or relative path (starting with the : or /
symbol) into a full path, including the disk name.

listpatnoramafiles(folder) Returns a list of Panorama database files in the specified folder (carriage
return separated).

listtextfiles(folder) Returns a list of text files in the specified folder (carriage return sepa-
rated).

panoramafolder()
This function returns a folderid that unambiguously describes the loca-
tion of the folder containing the Panorama application. This folderid can
be used in other functions and statements.

posixpath(path)

This function converts a MacOS format path and filename into a POSIX
path that can be used as a parameter to a shell command. The input
parameter must be a FULL path, including the disk name. Relative path-
names are not allowed.

panoramasubfolder(subpath)
This function makes it easy to reference any subfolder of the Panorama
folder. Or you can leave it blank ("") to reference the main Panorama
folder.

pathcontains(path,file) Checks to see if a file exists inside the specified folder. Returns true or
false.

pathcontents(path) This function returns a list of all of the contents in a folder (both folders
and files).

pathexists(path) Checks to see if a path exists. Returns true or false.

posixpath(path)

This function converts a MacOS format path and filename into a POSIX
path that can be used as a parameter to a shell command. The input
parameter must be a FULL path, including the disk name. Relative path-
names are not allowed.

subfolder(folder,subfolder)
This function returns the folder ID of a subfolder of a specified folder. For
example the function subfolder(info("systemfolder"),"Extensions")
returns the folder ID of the Extensions folder within the System folder.

subpath(folder,subfolder)
This function returns the path of a subfolder of a specified folder. For
example the function subpath(info("systemfolder"),"Extensions") returns
the path of the Extensions folder within the System folder.

urlfilename(url) This function extracts the filename from a complete url.

urlpath(url) This function extracts the path from a url.

Function Reference
Page Description

Page 170 Panorama Formulas & Programming
Resource Files

The Macintosh has a special kind of file, called a resource file, for storing multiple chunks of information in a
single file. Each chunk of information is called a resource. Each resource may be anything from a single char-
acter to tens of thousands of bytes of information. (By the way, Panorama has a special facility to allow
resource files to be used even on Windows systems. On Windows these files have the extension .RSR).

Each resource is identified by its type and ID. The type is a four letter designation that identifies what type of
data is stored in that resource. There are hundreds of different types of resources, with more new types being
created all the time. However, the most common types were defined by Apple in 1984 and are still in use
today. This table describes some of the most common types.

The resource ID is simply a number between 0 and 65535.

Just as a file is identified by its folder and file name, a resource is identified by its type and ID. For example,
you may refer to a resource as MENU 97 or ICON 2544.

In addition to a type and ID, a resource may also have a name. However, the name is completely optional. If
a resource does have a name, you can identify the resource by its type and name as well as by its type and ID.
For example you may refer to a resource as ICON 2544 or as ICON Empty Trash Can.

Type Description

MENU List of the items in a menu

DLOG Description of a dialog

DITL Description of the items within a
dialog

STR Single item of text

STR# Multiple items of text

PICT Picture

ICON Icon

ICN# Multiple icons

cicn Color icon

CURS Cursor (mouse pointer)

Chapter 1:Formulas Page 171
Before the data in a resource file can be accessed the file must be opened with the openresource statement
(see “OPENRESOURCE” on page 5580 of the Panorama Reference). To learn more about how to create, modify
and use resources see “Working with Resources” on page 433. The functions that allow you to work with
resources are described in the table below.

Function Reference
Page Description

resourcetypes() Page 5670

This function creates a text array containing a list of the resource types in
all currently open resource files. The result of this function is a carriage
return delimited text array. Each element in the array contains a resource
type. Each resource type is a four letter text item, for example "STR " (Pas-
cal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dialog
items), "MENU" (menu).

You can use this function to check if a particular resource type exists, or
you can use the function with a pop-up menu or List SuperObject™ to
allow the user to select a type of resource for any reason. The formula
below will create a text array with resource types.

resourcetypes()

The result of this formula will be a list of resource types something like
this:

 CNTL
 CURS
 INIT
 KCHR
 LDEF
 MACA
 TPLT
 SIZE
 dctb
 TEXT
 STR#
 PICT
 PAT#
 MENU

 As you can see, the resource types are not listed in any particular order.

resources(type) Page 5669

This function creates a text array containing a list of resources of a partic-
ular type. Type is the resource type. This must be a four letter text item.
Standard resource types include "STR " (Pascal String), "STR#" (multiple
strings), "DLOG" (dialog), "DITL" (dialog items), "MENU" (menu).

This function returns a text array containing a carriage return delimited
list of all the resources of the specified type. Each element of this list is
itself a tab delimited array. The first item is the resource item number. The
second item is the resource name (if any).

This example builds a list of the TEXT resources in the currently open
resource files. (The currently open resource files include Panorama itself
and the Macintosh system file, as well as any resource files you have
opened with the openresource statement.)

resources("TEXT")

 The result will be an array like this.

 2001 Error Messages
 2002 Command List
 2003 Conversion Options

Page 172 Panorama Formulas & Programming
getresource(type,id) Page 5311

This function gets a resource from an open resource file and copies it into
a variable. Type is the resource type. This must be a four letter text item.
Standard resource types include "STR " (Pascal String), "STR#" (multiple
strings), "DLOG" (dialog), "DITL" (dialog items), "MENU" (menu). ID is
the identification for the resource. The resource id can be a number (from
0 to 65,535) or a name (a text item).

The function returns whatever binary data is in the specified resource.

 This example procedure loads the contents of TEXT resource # 415 into
the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT",415)

All resource have numbers, but they do not all have names. If the
resource does have a name, you can use the name for the ID. This exam-
ple loads the contents of the TEXT resource named Thank You #2 into the
field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT","Thank You #2")

getstring(type,id) Page 5314

This function gets a text resource from an open resource file and copies it
into a variable. Type is the resource type. This must be a four letter text
item. You can specify any resource type you like here, but strings are usu-
ally stored in resources of type "STR " (Pascal String). (If you specify "" for
the type, Panorama will assume "STR ".) ID is the identification for the
resource. The resource id can be a number (from 0 to 65,535) or a name (a
text item).

The function returns whatever text is in the specified resource.

This example procedure displays the contents of STR resource # 1296.

openresource "Accounting Messages"
message getstring("",1296)

All resource have numbers, but they do not all have names. If the
resource does have a name, you can use the name for the ID. This exam-
ple displays the text in the Overflow Error resource.

openresource "Accounting Messages"
message getstring("","Overflow Error")

Function Reference
Page Description

Chapter 1:Formulas Page 173
getnstring(type,id,number) Page 5307

This function gets a text resource from an open resource file and copies it
into a variable. The string is extracted from a STR# resource, which holds
a collection of multiple strings in each resource. Type is the resource type.
This must be a four letter text item. You can specify any resource type you
like here, but strings are usually stored in resources of type "STR#" (mul-
tiple Pascal Strings). (If you specify "" for the type, Panorama will assume
"STR#".) ID is the identification for the resource. The resource id can be a
number (from 0 to 65,535) or a name (a text item). Number is the number
of the string item within the collection. For example, if the collection con-
tains 6 strings they will be numbered 0, 1, 2, 3, 4, and 5.

This function returns whatever text is in the specified item within the
specified resource collection.

This example procedure displays the contents of STR# resource # 693
item 12.

openresource "Accounting Messages"
message getnstring("",1296,11)

All resource have numbers, but they do not all have names. If the
resource does have a name, you can use the name for the ID. This exam-
ple displays the 12th item in the Errors collection.

openresource "Accounting Messages"
message getnstring("","Errors",11)

getstringmatch(type,id,text) Page 5315

This function searches through a collection of multiple strings in a STR#
resource. If it finds a match with the text you supply, it returns the num-
ber of the text item within the collection. Type is the resource type. This
must be a four letter text item. You can specify any resource type you like
here, but strings are usually stored in resources of type "STR#" (multiple
Pascal Strings). (If you specify "" for the type, Panorama will assume
"STR#".) ID is the identification for the resource. The resource id can be a
number (from 0 to 65,535) or a name (a text item). Text is the text you
want to search for. For a match, this text must be exactly the same as one
of the text items in the STR# collection.

This function returns a number. If the text does not match any of the text
items in the STR# collection, the function will return 0. If there is a match,
the function will return the number of the item that matched, starting
with 1 for the first item. (Notice that this numbering system is different
than the getnstring(function, which starts with 0 for the first item.)

Function Reference
Page Description

Page 174 Panorama Formulas & Programming
Import/Export Functions

These functions may be used to customize the import and export of data.

Function Reference
Page Description

import() Page 5352

This function returns a line of imported data. This function only works in
conjunction with the importusing (see “IMPORTUSING” on page 5355
of the Panorama Reference) and arrayfilter statements (see “ARRAY-
FILTER” on page 5045 of the Panorama Reference).

The import(function returns a line of text. When it is used with the
importusing statement, the import() function returns the contents of
the line that is currently being imported. Using this function you can pro-
cess and re-arrange the data as it is being imported.

When it is used with the arrayfilter statement, the import() function
returns the individual array element currently being processed. Using
this function you can process the data in each array element.

When it is used at any other time, the import() function returns empty
text.

importcell(colNumber) Page 5353

This function returns one cell of imported data. This function only works
in conjunction with the importusing statement (see “IMPORTUSING”
on page 5355 of the Panorama Reference). ColNumber is the column of
data from the imported text that you want to return. The text being
imported is separated into columns by either tabs or commas. The first
column is column 0, the next is column 1, etc.

The importcell(function always returns text. When it is used with the
importusing statement, the importcell(function returns the contents of
the specified column from the line that is currently being imported. If the
text being imported is comma delimited, the importcell(function will
strip off any quotes around the data before returning it. Using this func-
tion you can process and re-arrange the data as it is being imported.

When it is used at any other time, the importcell(function returns empty
text. It will also return empty text if you specify a column number that
does not exist in the text being imported.

exportline() Page 5210

This function generates a tab delimited line of data containing all the
fields in the current record. This function is designed to be used with the
export (see “EXPORT” on page 5207 of the Panorama Reference) and
arraybuild (see “ARRAYBUILD” on page 5038 of the Panorama Refer-
ence) statements, but may actually be used anywhere.

The function returns a a tab delimited line of data containing all the fields
in the current record. Any non-text fields (numeric, date) will be con-
verted to text as they are placed into the tab delimited line. The tab delim-
ited line does NOT include a carriage return on the end.

exportcell(field) Page 5209

This function takes any database field and converts it to text, using the
appropriate pattern if one has been defined in the design sheet. Field is
the name of the field to be converted to text.

The function always returns a text type data item. The power of the
exportcell(function is that it does not require you to know what type of
data you are exporting. It simply takes whatever kind of data is in the
field (text, number, date, whatever) and converts it into text.

Chapter 1:Formulas Page 175
System and Database Information Functions

The functions described in this section allow a formula to access information about the computer system and
about the current database.

System Information

These functions return information about the computer system — the keyboard, mouse, memory, clipboard
and Panorama itself.

Function Reference
Page Description

callingdatabase()

This function returns the name of the database that contained the proce-
dure that called this procedure as a subroutine (if any). If a procedure was
called as a subroutine by another procedure this function will return the
name of the database that contains the calling procedure.

callingprocedure()

This function returns the name of the procedure that called this proce-
dure as a subroutine (if any). If a procedure was called as a subroutine by
another procedure this function will return the name of the calling proce-
dure.

callwithindatabase()

This function returns returns true if the current procedure was called by
another procedure in the same database, false if it was called by a proce-
dure in another database or called as a standalone procedure (for exam-
ple with a button or the Action menu.

clipboard() Page 5107 This function returns whatever text or value is currently on the clipboard.

currentprinter() This function returns the name of the current printer (OS X only).

growlrunning() This function This routing checks to see if Growl is running, and returns
true if it is (otherwise false). (Mac OS X only).

homefolder(subpath) This function returns the folder ID of a subfolder of the current users
Home folder. (Mac OS X only).

homepath(subpath) This function returns the path of a subfolder of the current users Home
folder. (Mac OS X only).

info("abort") Page 5357

The info("abort") function returns true if the user has pressed Command-
Period (Macintosh) or Control-Period (Windows). You should use this
procedure if you have used the disableabort statement and want to check
for Command/Control-Period yourself.

info("availablescreenrectangle")

This function returns a rectangle defining the edges of the main screen
(the screen that contains the menu bar). Any area of the screen that is
reserved for the operating system (for example the dock in OS X) is
excluded from the rectangle. The rectangle is in screen relative coordi-
nates

info("click") Page 5364 This function returns the location of the last mouse click in screen relative
co-ordinates.

info("computername") This function returns the short name of the computer (OS X only). This is
the computer name that needs to be used in terminal sessions.

info("dialogtrigger") Page 5370
This function returns the name of the last button pressed in a dialog.
(Note: This function does not work with standard system dialogs like the
Open and Save As dialogs.)

info("error") Page 5373
This function can be used after an if error statement. It returns the
error message that would have been displayed if the error had not been
trapped by if error.

info("files") Page 5376 This function builds a carriage return separated text array containing a
list of all the currently open database files.

Page 176 Panorama Formulas & Programming
info("fonts")

This function returns a carriage return delimited array of all available
fonts. This list is created when Panorama launches, and is not updated to
include any new fonts that may have been added to the system since
then.

info("freememory") Page 5382 This function calculates how much free database memory is available
(this does not include scratch memory).

info("keyboard") Page 5385 This function returns the last key that was pressed.

info("keycode") Page 5386

This function returns a special numeric code that represents last key that
was pressed. This code is unique for every key in the keyboard. For
example, the info("keycode") will return a different value for the 1 key on
the numeric keypad and the 1 key above the Q key. See the reference page
for a complete list of the numeric codes.

info("modifiers") Page 5397

This function returns the status of the modifier keys. The five different
possible modifier keys are.

"shift"
"capslock"
"option" (returned when ALT key pressed on PC)
"command" (returned when Control key pressed on PC)
"control" (returned when Right Mouse button clicked
 on PC)

The info("modifiers) function also returns the status of the last mouse
click. If the last mouse click was a double click, info("modifiers") will
return "doubleclick". If the last mouse click was a triple click, info("modi-
fiers") will return "tripleclick".

If more than one modifier key is active the function will return all of them
strung together like this:

 "shift option"

You should check for a specific modifier with the contains operator.

This example opens the Status form if the user double clicks on a button.

if info("modifiers") contains "double"
 openform "Status"
endif

info("mouse") Page 5398 This function returns the current location of the mouse in screen relative
co-ordinates.

info("mousedown") Page 5399 This function returns true or false depending on whether or not the
mouse is currently down.

info("mousestilldown") Page 5400
This function returns true or false depending on whether or not the
mouse is currently down and has not been let up since the button was
pressed.

info("panoramafolder") Page 5405
This function returns the folder id (see “Disk Files and Folders” on
page 165) of the folder containing the currently running copy of Pan-
orama. This folder id can be used in other functions and statements.

info("panoramatoolsfolder") Page 5407

This function returns the folder id (see “Disk Files and Folders” on
page 165) of the System:Prefs:Panorama Tools folder, if any. If there is no
such folder (for example on PC systems) it returns the folder that contains
Panorama itself.

info("panoramaname") Page 5406
This function returns the name of the currently running copy of Pan-
orama. In other words, if you have renamed your copy of Panorama this
function will tell what the name is.

Function Reference
Page Description

Chapter 1:Formulas Page 177
info("parameters") This function returns the number of parameters passed to a procedure.

info("runninghandler")
This function returns true if the current procedure is running as a “han-
dler” procedure. See “Event Handler Procedures” on page 394 for more
information on this mode.

info("scratchmemory") Page 5413
This obsolete function returned the amount of memory allocated for
scratch memory on OS 9 systems. On OS X and PC systems it always
returns 1000000 (one million).

info("screenrectangle") Page 5414
This function returns a rectangle defining the edges of the main screen
(the screen that contains the menu bar). The rectangle is in screen relative
coordinates.

info("systemfolder") Page 5429
This function returns folder id (see “Disk Files and Folders” on page 165)
of the system folder (Mac OS). This folder id can be used in other func-
tions and statements.

info("trigger") Page 5433

This function returns information about how the current procedure was
triggered. If the procedure was triggered by data entry this function will
return the word Key followed by a period and then the key that actually
triggered the procedure:

Key.return
Key.enter
Key.tab

If the procedure was triggered by a button, the function will return the
word Button followed by a period and then the name of the button, for
example:

Button.Save
Button.Calculate Tax
Button.Show Chart

If the procedure was triggered by a custom menu, the function will return
the word Menu followed by a period, the name of the menu, another
period, and then the menu item. Here are some examples:

Menu.Accounting.Aging
Menu.Letter.New

info("version") Page 5440

This function returns the version of the currently running copy of Pan-
orama. The version number is returned as text, for example 3.5.1. If you
want to extract only a portion of the version number you can use the
array or array functions. This example will extract the first two numbers
of the version. The result will be something like 3.5 or 4.0.

arrayrange(info("version"),1,2,".")

info("volumes") Page 5441 This function returns a carriage return delimited array containing the
name of each volume (disk) currently mounted on this computer.

info("unixusername")
This function returns the short user name the user has logged in under
(Mac OS X only). This is the user name that needs to be used in terminal
sessions.

listprinters() This function returns a carriage return delimited list of the printers avail-
able on the system (Mac OS X only).

os9() This function returns true if running on Mac OS 9, otherwise false.

oswindows() This function returns true if running on Microsoft Windows, otherwise
false.

Function Reference
Page Description

Page 178 Panorama Formulas & Programming
osx() This function returns true if running on Mac OS X, otherwise false.

panoramasubpath(child)
This function makes it easy to reference any subpath of the Panorama
folder. Or you can leave it blank ("") to reference the main Panorama
folder.

parameter(number) Page 5592

This function is used to transfer data between a main procedure and a
subroutine. The main procedure can set up one or more data item param-
eters as part of the call statement (see “CALL” on page 5086 of the Pan-
orama Reference). The subroutine can retrieve and use these data items
using the parameter(function. Number is a number specifying what
parameter you want to retrieve. All parameters are numbered, starting
with 1 (1, 2,3, 4, etc.). The function returns a data item. This data item may
be text or numeric, depending on what kind of data is passed to the sub-
routin

New in Panorama 5.5: The parameter(function now works with negative
parameter numbers. When a negative parameter # is passed it returns
information about the parameter data type. This can be used in conjunc-
tion with the setparameter statement to modify the data type of the data
being passed back by setparameter. Possible data types are: 0 = parameter
cannot be modified (might not exist), so has no data type, 1 = text, 2 =
compressed text, 3 = compressed text, 4 = picture, 5 = date, 6 = floating
point, 7 = integer,8 = fixed 1 digit, 9 = fixed 2 digits, 10 = fixed 3 digits, 11
= fixed 4 digits, -1 = variable (has no data type).

Function Reference
Page Description

Chapter 1:Formulas Page 179
User Information

These functions return information about the person that is currently using the computer. The last three func-
tions can only return useful information if the person has logged in. To learn more about setting up users and
database security see the Panorama Database Security Supplement, which is available separately from Pro-
VUE for a small charge.

Function Reference
Page Description

info("user") Page 5436

This function returns the name of the user of this computer. On Mac OS 9
computers this is the Owner Name which is set with the File Sharing
control panel. On OS X this is the name of the logged in user.

On Windows computers this function always returns an empty string ("").

info("userid") Page 5437

This function works with the Panorama security system. It returns the id
(usually initials or the first name) the user has logged in under. If the user
has not logged in, this function will return empty text (""). For example,
the formula below could be used in a report header (in an auto-wrap text
object or Text Display SuperObject™ to show who printed the report and
when.

"Printed by: "+info("userid")+
 " @"+timepattern(now(),"hh:mm am/pm")

info("userlevel") Page 5438

This function works with the Panorama security system. It returns the
current user level for this user, a number from 0 to 255. If the user has not
logged in, this function will return 0. The example procedure below only
allows users with access levels of 25 or higher to use the rest of the proce-
dure.

if info("userlevel")<25
 message "Sorry, your access level "+
 "does not allow this operation"
 stop
endif
…
… (rest of procedure)
…

info("username") Page 5439

This function works with the Panorama security system. It returns the
name the user has logged in under. If the user has not logged in, this
function will return empty text (""). The formula below could be used in a
report header (in an auto-wrap text object or Text Display SuperObject™
to show who printed the report and when.

"Printed by: "+info("username")+
 " @"+timepattern(now(),"hh:mm am/pm")

info("unixusername")
This function returns the short user name the user has logged in under
(Mac OS X only). This is the user name that needs to be used in terminal
sessions.

Page 180 Panorama Formulas & Programming
Variable Information

These functions allow a formula to determine what variables are currently available and to access variables in
other databases.

Database Information

These functions return information about the currently active database.

Function Reference
Page Description

grabfilevariable(file,variable) Page 5328

This function makes it possible to access a fileglobal (see “FILEGLO-
BAL” on page 5227 of the Panorama Reference) or permanent (see “PER-
MANENT” on page 5602 of the Panorama Reference) variable from other
databases. (Usually these variables can only be accessed from the data-
base in which they were created.) File is the name of the database that
contains the fileglobal or permanent variable. Note: This database
must currently be open! Variable is the name of the variable you want to
access. In general, this variable name must be enclosed in quotes (unless
you are using a formula to calculate the name).

The result of this function is whatever value that is contained in the spec-
ified variable. This may be text or numeric.

grabwindowvariable(
window,variable) Page 5329

This function makes it possible to access a windoglobal variable (see
“WINDOWGLOBAL” on page 5895 of the Panorama Reference) in a differ-
ent window from the one in which it was created. Window is the name of
the window in which the variable was created. (Of course the window
must be open!) Variable is the name of the variable you want to access. In
general, this variable name must be enclosed in quotes (unless you are
using a formula to calculate the name).

The result of this function is whatever value that is contained in the spec-
ified variable. This may be text or numeric.

info("filevariables") Page 5377 This function builds a carriage return separated text array containing a
list of the currently allocated fileglobal variables in the current database.

info("globalvariables") Page 5383 This function builds a carriage return separated text array containing a
list of the currently allocated global variables.

info("localvariables") Page 5389 This function builds a carriage return separated text array containing a
list of the currently allocated local variables.

info("windowvariables") Page 5449 This function builds a carriage return separated text array containing a
list of the currently allocated window variables for the current window.

Function Reference
Page Description

constantvalue(fieldorvariable)
This function converts a field or variable into an equivalent constant
value. If the field or variable contains text the result will be quoted. The
result of this function can be used in an execute statement.

countsummaries(level)
This function counts the number of summary records in the current data-
base. The level parameter should be from 0 to 7. If 0, all summary records
will be counted. If 1 to 7 then only that specific level will be counted.

Chapter 1:Formulas Page 181
datatype(fieldvariablename) Page 5142

This function determines what kind of data is in a field or variable: text,
number, etc. Fieldvariablename is the name of the field or variable that
you want to get information about. To get information about a variable
the variable name must be enclosed in quotes. The quotes are optional
when accessing information about a field. The function returns the type
of data from the list below:

Text
Compressed (Choice)
Picture
Date
Floating Point
Integer
Fixed 1 Digit (#.#)
Fixed 2 Digits (#.##)
Fixed 3 Digits (#.###)
Fixed 4 Digits (#.####)

Note: The Compressed, Picture, and Date types can only occur if the
datatype(function is used with a field as the parameter. Variables cannot
contain data of these types (for a date, the data type is Integer).

datavalue(fieldorvariable)
This function returns the value of a field or variable. The advantage of
this function is that you can calculate the name of the field or variable at
the time the formula is evaluated.

dbcheckopen(database) This function returns true if the specified database is currently open, oth-
erwise false.

dbfolder() This function returns the folder ID of the folder the current database is
located in.

Function Reference
Page Description

Page 182 Panorama Formulas & Programming
dbinfo(option,database,) Page 5150

This function gets information about a database: what forms it contains,
what fields, what flash art pictures, etc. There are two parameters: option
and database.

Database is the name of the database you want to get information about.
This must be a database that is currently open. If you want to get infor-
mation about the current database you can use the info("databasename")
function or simply use empty text ("").

Option controls what kind of information this function will retrieve.
There are about a half dozen possible options: "fields", "forms",
"procedures", "crosstabs", "flash art", "folder", "level" and "autosave". The
"fields" option produces a text array (with carriage return separators)
containing a list of the fields in the database. (If a field name contains car-
riage returns, they are converted to spaces before being placed into the
array.) The "forms" option produces a text array (with carriage return
separators) containing a list of the forms in the database. The
"procedures" option produces a text array (with carriage return separa-
tors) containing a list of the procedures in the database. The "crosstabs"
option produces a text array (with carriage return separators) containing
a list of the crosstabs in the database. The "flash art" option produces a
text array (with carriage return separators) containing a list of the flash
art in the database’s Flash Art™ gallery. The "folder" option produces a
folder id for the folder containing the database. (See “Disk Files and Fold-
ers” on page 165.) The "level" option returns a number that indicates the
privilege level for this database: 0 = author mode, 1 = user mode, or 2 =
custom mode. The "autosave" option returns the number of minutes
between automatic saves, or zero if the auto-save option is turned off.
(See also “SETAUTOSAVE” on page 5739 of the Panorama Reference.) The
"fileglobals" option lists all fileglobal variables associated with the data-
base specified by the second parameter, as does the "filevariables" option.
The "fieldtypes" option returns binary data with one byte per field. Each
byte indicates the field type of the corresponding field, and will be one of
the following values: 0=text, 4=date, 5=float, 6=integer, 7-10=fixed point.
The "records" option returns the number of records in the database. The
"selected" option returns the number of records in the database. The
"changes" option returns the number of changes since last save.

This example uses dbinfo(to calculate the number of forms in the current
database.

arraysize(dbinfo("forms",""),¶))

dbmetatag(database,attributes)

This function returns a piece of metadata information for the specified
database (if any). This second parameter specifies the metadata item you
want to retrieve - legal items are: Version, Title, Project, Authors, Key-
words, Description. These are all case sensitive. For example, you can
retrieve the document keywords with the formula dbmetatag(myData-
base,"Keywords").

dbmetatagclose()
This function returns the tag that appears after the metadata database
information. This tag helps the Tiger (Mac OS X 10.4) metadata import
function to locate the metadata.

dbmetatagdictionary(database)
This function returns the metadata database information for the specified
database (if any). This metadata contains information like the database
author, keyword and description.

dbmetatagopen()
This function returns the tag that appears in front of the metadata data-
base information. This tag helps the Tiger (Mac OS X 10.4) metadata
import function to locate the metadata.

dbname() This function returns the name of the current database.

Function Reference
Page Description

Chapter 1:Formulas Page 183
dbpath() This function returns the path of the folder the current database is located
in.

dbsubfolder(subpath)

This function returns the folder ID of a subfolder within the same folder
as the current database. For example if the current database is in the
folder "MyDrive:My Stuff", the function dbsubfolder("Images") returns
the folder ID of the "MyDrive:My Stuff:Images" folder.

emptydatabase() This function returns true if the current database is empty, false if it is not.

emptyline() This function returns true if the current line (all fields) is empty, false if it
is not.

fieldmax(fieldname) Page 5219

This function returns the maximum number of characters that can be
stored in a field. If this is not an SQL client database, this number is
always 65535. If this is an SQL client, this function returns the length of
the corresponding SQL field in the server database.

fieldstyle(fieldname) Page 5221

This function determines the style and color of a field (see “Data Style
and Color” on page 474). Fieldname is the name of the field that you
want to determine the style of. The function returns a text data item list-
ing all the styles that apply to this field in the current record. The possible
styles are:

bold
italic
underline
shadow
black
red
green
blue
cyan
magenta
yellow

The example below selects all the records where the name is bold.

select fieldstyle(Name)="bold"

 It there is more than one style for a cell, this function will list each one.
The example below will select all records where the name is italic, even if
other styles also apply (for example bold italic or underline italic).

select fieldstyle(Name) contains "italic"

 This final example selects all the records where the name is plain (no
styles at all).

 select fieldstyle(Name)=""

getautonumber() This function returns the automatically generated number for the next
record that will be added to the database.

getproceduretext(database,
procedure)

This function returns the contents (source) of a procedure. The first
parameter is the name of the database (or "" for the current database)
and the second parameter is the name of the procedure.

grabfieldtype(database,field) This function gets the type of a database field in any open database. The
result is an integer: 0=text, 4=date, 5=floating point, 6-10=integer.

Function Reference
Page Description

Page 184 Panorama Formulas & Programming
listchoices(field,separator) Page 5475

This function builds a text array containing a list of all the values stored
in a specified field. (Note: this function is not related to the choices data
type.) There are two parameters: field and separator. Field is the name of
the field that contains the values you want to build a list of. Separator is
the separator character for the text array you are building (see “Text
Arrays” on page 93).

The lischoices(function scans the specified field and builds a list of all the
values stored in that field. The list is returned in the format of a text array.
Here is a formula that builds a list of the states in the current database.

listchoices(State,¶)

seq() Page 5727

This function returns a sequential numbers (1, 2, 3, etc.). This function
only works in conjunction with the formulafill, select, find and
arrayfilter statements.

When it is used with the formulafill, find or select statements (see
“FORMULAFILL” on page 5274, “FIND” on page 5245, and “SELECT”
on page 5710 of the Panorama Reference), the seq() function return a
sequential number for each record (the first selected record is 1, the sec-
ond is 2, etc.).

When it is used with the arrayfilter statement (see “ARRAYFILTER”
on page 5045 of the Panorama Reference), the seq() function returns a
sequential number for each element in the array being processed (the first
array element is 1, the second is 2, the third is 3, etc.).

When it is used at any other time, the seq() function returns the number 1.

This procedure uses the seq() function to select the first 10 records in the
database:

select seq()≤10

Function Reference
Page Description

Chapter 1:Formulas Page 185
uniqueid(field,root) Page 5870

This function is designed for generating unique ID codes for each record
in a database. The function generates ID codes with a text root and a
numeric suffix (for example Jeff261). By using the machine name as the
text root you can guarantee that the ID will be unique even for multiple
copies of the database on different machines.

The function has one parameters: field and root. Field is the name of the
field that will contain the ID code. The function needs to know the name
of this field so that it can scan the field to find an ID code that has not
been used yet. The field name should be surrounded by quotes. For
example, if the name of the field is ID, you should use "ID" as the param-
eter. Root is the text root that the ID code will be based on. This root may
contain any kind of character, but it should not end with a numeric digit.
To get a root that will be unique for each different computer you have,
use the info("user") function for the root. This function returns the
user name specified in the Sharing Setup control panel.

Although you may find other uses for it, the uniqueid(function was
designed specifically for creating unique Smart Merge serial numbers.
Whenever a new record is added to a database that supports Smart
Merge you must make sure that the ID and Modified fields are filled in.
The best way to do this is to add a .NewRecord automatic procedure to
your database. The two lines shown below will fill in the proper values.

Modified=superdate(today(), now())
ID=uniqueid("ID",info("user"))

The uniqueid(function will scan the ID field to find the next serial num-
ber available. For example, if you are using a computer with a user name
of Sam and the highest Sam serial number is 296, the uniqueid(function
will return the value Sam297.

info("bof") Page 5360 This function returns true if the database is currently on the first visible
record. (Note: "bof" stands for "beginning of file".)

info("changes") Page 5363 This function returns the number of changes that have been made to the
current database since the last time it was saved.

info("cursorrectangle") Page 5365

This function returns a rectangle defining the edges of the current data
cell (if any). The rectangle is in screen relative coordinates (use the
xytoxy((see “Rectangles” on page 149) function to convert to window or
form relative co-ordinates).

info("databasename") Page 5367 This function returns the name of the current database. If the database
name has a .pan suffix, that suffix is not included.

info("datatype") Page 5368

This function returns the data type of the current field. The function
returns a number from 0 to 10:

 0 Text
 1 Choice
 2 Choice
 3 Picture
 4 Date
 5 Floating Point
 6 Integer
 7 Fixed 1 Digit (#.#)
 8 Fixed 2 Digits (#.##)
 9 Fixed 3 Digits (#.###)
10 Fixed 4 Digits (#.####)

Function Reference
Page Description

Page 186 Panorama Formulas & Programming
info("empty") Page 5371

This function returns true or false depending on the result of the last
select operation. If no records were selected the function will return true,
otherwise it will return false. The procedure below selects all records that
are "Ready", whatever that means. If there are any ready records, the pro-
cedure prints them.

select Status="Ready"
if info("empty")

 message "Nothing ready today!"
 stop

endif
print dialog
field Status
formulafill "Printed"

info("eof") Page 5372 This function returns true if the database is currently on the last visible
record. (Note: "eof" stands for "end of file".)

info("expandable") Page 5374
This function checks to see if the current record is a collapsed summary
record. It returns true if the record is a collapsed summary record, false if
it is a data record or an already expanded summary record.

info("fieldname") Page 5375 This function returns the name of the current field. See also the
info("modifiedfield") function below.

info("found") Page 5381

This function returns true or false depending on the result of the last
find or next statement (see “FIND” on page 5245 of the Panorama Refer-
ence). If the last find or next found something, this function will return
true. Otherwise it will return false.

info("modifiedfield")

This function returns the name of the field that was just modified. The
most recently modified field is not always the same as the current field
(see the info("fieldname") function above). For example if a checkbox or
radio button has just been clicked this function will return the name of
the field associated with that object rather than the current field. This
function is designed to be used in the .ModifyRecord and .ModifyFill
procedures, the results may not be valid if the function is used in any
other context.

info("proceduredatabase")

This function returns the name of the database that contains the proce-
dure itself, even if another database is currently active. It's primarily use-
ful when the farcall statement is used to call the procedure (or when the
procedure is being used as a custom statement). Here's an example that
opens the Help Window form in the database that contains the proce-
dure, even if a window from another database is currently on top,

window info("proceduredatabase")+":SECRET"
openform "Help Window"

info("records") Page 5410

This function returns the total number of records in the current database.
To find out the number of selected records, use info("selected")
(see below).

This example checks to see if all records are selected. If some records are
not selected, the procedure does a selectall statement.

if info("selected") <info("records")
 selectall
endif

info("selected") Page 5415
This function returns the number of selected records in the current data-
base. To find out the total number of records, use info("records")
(see above).

Function Reference
Page Description

Chapter 1:Formulas Page 187
info("stopped") Page 5426

This function returns true or false depending on the result of the last
uprecord, downrecord, left or right statement. If the statement
could not move the active cell because the active cell was already as far as
it could go, the function will return true. Otherwise it will return false.

info("summary") Page 5428
This function returns the summary level of the current record, from 0
(data record) to 7 (see “3-Step Summarizing” on page 365 of the Panorama
Handbook).

info("tabdown") Page 5430
This function returns true if the tab down option is on, false if the tab
down option is off (see “Tab Down” on page 277 of the Panorama Hand-
book).

info("visible")

This function returns true/false result based on whether or not the cur-
rent record is visible. Useful for situations where Panorama may scan
invisible records, for example the arraybuild and select statements, also
the Scrolling List SuperObject.

Function Reference
Page Description

Page 188 Panorama Formulas & Programming
Window, Form and Report Information

These functions return information about the current database and its windows, forms reports and objects.

Function Reference
Page Description

extrapages(pagelist) Page 5213

This function is used to control the printing of extra pages This function
must be used in an auto-wrap text object, it has no effect in any other sit-
uation. Pagelist is a text item listing the extra pages that should be
printed. For example, if you want to print data tiles 3 and 5 the page list
should be "35". See “Selectively Printing Multiple Pages per Record” on
page 1115 of the Panorama Handbook.

findwindow(point) Page 5250

This function checks to see if a point (in screen relative co-ordinates) is
inside any Panorama window. If it is inside a window, this function
returns the name of the window. Point is a point, which must be in screen
relative co-ordinates. All measurements are in pixels (1 pixel = 1/72 inch).

The function returns a text item. If the point is inside a Panorama win-
dow, the function returns the name of the window. You can use the win-
dow statement to bring this window to the top. If the point is not inside
any Panorama window the function returns empty text ("").

This illustration shows a window and two points. The green point is
inside the window, so the findwindow(function will return the window
name, in this case Sample:Form. The purple point is not inside the win-
dow, so the findwindow(function will return "".

Chapter 1:Formulas Page 189
formtype(database,form) Page 5270

This function returns the form type (a number) for any form in any open
database. The form type is a number that you can set up using the Form
Comment dialog in the Setup menu (see “Form Comments” on
page 732). Database is the name of the database that contains the form.
The database must be currently open. If this parameter is empty text ("")
the current database is assumed. Form is the name of the form.

This function returns a number (integer) from 0 to 255. The value of this
number depends on the Primary Purpose of Form area of the Form Com-
ment dialog (in the graphics mode Setup Menu.) There are predefined
radio buttons for 1) Data Entry, 2) Printing, and 3) Dialog and other. Or
you may enter any value from 0 to 255 in the Custom area. The default
value of a form is 0 (unknown).

listwindows(file) Page 5478

This function builds a text array containing a list of all the open windows
associated with a particular file. File is the name of the database file that
you want to list the windows of. This should be the name of an open
database. If the file parameter is empty ("") the listwindows(function will
list all open windows, no matter what database they are in.

The function scans the windows and builds a text array using carriage
returns (¶) as separators (see “Text Arrays” on page 93). The windows are
listed in order from front to back.

Function Reference
Page Description

Page 190 Panorama Formulas & Programming
objectinfo(option) Page 5557

This function returns information about a graphic object: its location, size,
color, font, etc. This function must be used in combination with either the
object (see “OBJECT” on page 5555 of the Panorama Reference),
selectobjects (see “SELECTOBJECTS” on page 5721 of the Panorama
Reference) or changeobjects (see “CHANGEOBJECTS” on page 5097 of
the Panorama Reference) statement. It can also be used in a formula inside
an object on a form — in that case it will always refer to the object cur-
rently being drawn (an object could find out its own rectangle, for exam-
ple).

Option is the type of information you want to retreive about an object.
You must pick the option from the list below:

objectinfo("rectangle")
objectinfo("ID")
objectinfo("name")
objectinfo("fieldname")
objectinfo("type")
objectinfo("custom")
objectinfo("font")
objectinfo("textsize")
objectinfo("textstyle")
objectinfo("alignment")
objectinfo("color")
objectinfo("selected")
objectinfo("locked")
objectinfo("expandable")
objectinfo("expandshrink")
objectinfo("tile")
objectinfo("text")
objectinfo("fillpattern")
objectinfo("linepattern")
objectinfo("linewidth")
objectinfo("count")
objectinfo("boundary")

See the reference page for details on each of these options.

overflow() Page 5587

This function is used with auto-wrap text objects and an overflow report
tile to print text or graphics that won’t fit on a single page. For example,
you can use this function to help print multiple page letters. See “Printing
Data that Overflows a Page” on page 1116 of the Panorama Handbook for
more information on using this function.

Function Reference
Page Description

Chapter 1:Formulas Page 191
textdisplay(color,style) Page 5852

This function works with Text Display SuperObjects™. By using this
function as the first part of the formula in a Text Display SuperObject™
you can control the color and style of the text on the fly (see “Controlling
Text Display Color and Style on the Fly” on page 619). For example, you
can automatically display all negative numbers in red. (Advanced note:
The textdisplay(function actually generates a special header that is inter-
cepted and removed by the Text Display SuperObject™. The header con-
tains information the Text Display SuperObject™ uses to select the style
and color.)

This function has two parameters: color and style. Color is the color that
should be used to display the text. See the rgb(function. If you pass "" for
this parameter the text will be displayed in the normal color for this
object. Style is the style or combination styles that should be used to dis-
play the text. For a single style by itself simply use the name of the style:
"Plain", "Bold", "Italic", "Underline", "Outline" or
"Shadow". If you want to combine multiple styles together you must
specify the style numerically. Add up the numbers for the styles you want
from the table listed below. For example, for bold italic text the style
should be 3.

 0 Plain
 1 Bold
 2 Italic
 4 Underline
 8 Outline
 16 Shadow

info("activesuperobject") Page 5358
This function returns the name of the currently active text editor or word
processor SuperObject, if any. If no such object is currently being edited,
the function returns empty text ("").

info("buttonrectangle") Page 5361

This function returns a rectangle defining the edges of the button that
was clicked on (needless to say, this function should be used in a proce-
dure that is triggered by a button). The rectangle is in screen relative coor-
dinates (use the xytoxy(function to convert to window or form relative
co-ordinates).

info("cursorrectangle") Page 5365

This function returns a rectangle defining the edges of the current data
cell (if any). The rectangle is in screen relative coordinates (use the
xytoxy((see “Rectangles” on page 149) function to convert to window or
form relative co-ordinates).

info("formcolor") Page 5378
This function returns the background color of the current form (see “Col-
ors” on page 154). If the current window does not contain a form, the
function will return empty text ("").

info("formcomment") Page 5379 This function returns the form comment that has been set up for the cur-
rently open form (if any). See “Form Comments” on page 732.

info("formname") Page 5380 This function returns the name of the current form. If the current window
does not contain a form, the function will return empty text ("").

Function Reference
Page Description

Page 192 Panorama Formulas & Programming
info("matrixcell") Page 5391

This function is designed to be used with Matrix SuperObjects™ (see
“Matrix Co-Ordinates (What cell is this?)” on page 953 of the Panorama
Handbook). The function returns the cell number within the matrix, start-
ing with 1 in the upper left hand corner. If the matrix order is horizontal,
then the cell numbers will be consecutively numbered from left to right in
each row. If the matrix order is vertical, then the cell numbers will be con-
secutively numbered from top to bottom in each column.

The illustration shows two matrixes with the cell number displayed in
the upper right hand corner. The matrix on the left has vertical cell order,
the matrix on the right has horizontal cell order.

info("matrixcelldata")

This function returns the data associated with the current matrix cell.
This function is only valid if a formula has been defined for this Super
Matrix Object. Note: It's up to you what to do with this data. You can dis-
play it using a Text or Flash Art object, or simply ignore it if you want.
The Matrix object doesn't display this data automatically.

Example: The formula below could be used in a Text Display SuperObject
to display the cell number and data.

 str(info("matrixcell"))+" "+info("matrixcelldata")

info("matrixcolumn") Page 5392

This function is designed to be used with matrix SuperObjects™ (see
“Super Matrix Objects” on page 939 of the Panorama Handbook). The func-
tion returns the column number, starting with 1 for the left hand column
and increasing by one for each column to the right.

The illustration shows the columns and rows for a Matrix SuperObject.

info("matrixdata")

This function returns the all of the data associated with the current
matrix. This function is only valid if a formula has been defined for this
Super Matrix Object. Note: It's up to you what to do with this data. You
can display it using a Text or Flash Art object, or simply ignore it if you
want. The Matrix object doesn't display this data automatically.

Example: The formula below could be used in a Text Display SuperObject
to display the data and the cell number and position, for example Orange
[4 of 17] .

 info("matrixcelldata")+" ["
 +str(info("matrixcell"))+" of "+
 str(arraysize(info("matrixdata")+
 , info("matrixseparator")) +"]"

Function Reference
Page Description

Chapter 1:Formulas Page 193
info("matrixrow") Page 5394

This function is designed to be used with matrix SuperObjects™. The
function returns the row number, starting with 1 for the top and increas-
ing by one for each row as you go down.

The illustration above the columns and rows for a matrix SuperObject.

info("matrixseparator")

This function returns the separator associated with the current matrix.
This function is only valid if a formula has been defined for this Super
Matrix Object.

Example: The formula below could be used in a Text Display SuperObject
to display the data and the cell number and position, for example Orange
[4 of 17] .

 info("matrixcelldata")+
 " ["+str(info("matrixcell"))+
 " of "+str(arraysize(info("matrixdata")+
, info("matrixseparator"))+"]"

info("maximumwindow") Page 5395

This function returns the largest possible rectangle for this window. This
can be controlled by setting up an Auto Grow SuperObject for this win-
dow (see “Maximum Window Size” on page 929 of the Panorama Hand-
book).

info("minimumwindow") Page 5396

This function returns the smallest possible rectangle for this window.
This can be controlled by setting up an Auto Grow SuperObject for this
window (see “Maximum Window Size” on page 929 of the Panorama
Handbook).

info("pagecount")

The new info("pagecount") function calculates the total number of pages
that will be printed. For example, if you wanted to print Page 1 of 4, Page
2 of 4, etc. on the top of each page you would use a formula of

"Page "+str(info("pagenumber"))+" of "
 +str(info("pagecount"))

This function is only valid when used in an object in a form (Text Display
SuperObject, auto-wrap text object, etc.) that is being printed.

info("pagenumber") Page 5403

When printing, this function returns the current report page number. This
function is designed to be used as part of an auto-wrap text object or Text
Display SuperObject™ in a report form. See “Page Numbers” on
page 1100 of the Panorama Handbook.

info("reportcolumns") Page 5411

This function returns the number and direction of report columns that
have been set up for the currently open form (if any). The function
returns a text string that contains the number of columns followed by the
direction, for example "3 Down" or "2 Across". See “Controlling the Num-
ber of Columns” on page 1139 of the Panorama Handbook.

info("rulers") Page 5412

This function returns the current measurement units for the ruler in this
form. The function may return five possible values: Inches, Centimeters,
Pixels, Deca-Pica, or Deca-Elite. See “Rulers” on page 506 of the Panorama
Handbook.

info("screenrectangle") Page 5414
This function returns a rectangle defining the edges of the main screen
(the screen that contains the menu bar). The rectangle is in screen relative
coordinates.

Function Reference
Page Description

Page 194 Panorama Formulas & Programming
info("typeofwindow") Page 5435

This function determines what type of window the current window is.
The window may be one of the types listed below:

Data Sheet
Form (Data Mode)
Draw (Graphics Mode)
View As List
Design Sheet
Cross Tab Sheet
Floating Input Window
Procedure
Flash Art Gallery
Clipboard
Memory Usage
Print Preview

info("windowbox") Page 5442

This function returns the dimensions of the current window in screen rel-
ative co-ordinates. All four dimensions are returned in a text string, for
example "34 123 490 630". This is a “classic” Panorama function that is
retained for compatibility with older databases. For new applications we
recommend using the info("windowrectangle") function (see
below).

info("windowdepth") Page 5443

This function returns the pixel depth of the current window. This table
shows the possible values:

 1 Black and White
 2 4 color
 4 16 color
 8 256 color
16 Thousands of colors
32 Millions of colors

 If the window crosses over two monitors with different pixel depths, the
info("windowdepth") function will return the lower value.

The formula below could be used in a Flash Art object. If this is a black
and white monitor it displays the picture bwSky, otherwise it displays the
picture Sky.

?(info("windowdepth)=1,"bwSky","Sky")

info("windowname") Page 5445 This function returns the name of the current window.

info("windowrectangle") Page 5446
This function returns a rectangle (see “Rectangles” on page 149) defining
the edges of the current window. The rectangle is in screen relative coor-
dinates.

info("windows") Page 5447
This function builds a carriage return separated text array (see “Text
Arrays” on page 93) containing a list of all the currently open windows.
The windows are listed in order from front to back.

Function Reference
Page Description

Chapter 1:Formulas Page 195
Server Database Information (Panorama Enterprise)

These functions provide information about the server database associated with the current Panorama data-
base (if any).

info("windowtype") Page 5448

This function determines what number type the current window is. The
window number may be one of the listed below:

 2 = Data Sheet
 5 = Form (Data Mode)
 6 = Draw (Graphics Mode)
15 = View As List
 7 = Design Sheet
10 = Cross Tab Sheet
 1 = Desk Accessory
 3 = Floating Input Window
 8 = Procedure
11 = Flash Art Gallery
13 = Clipboard
12 = Memory Usage
14 = Print Preview

updatingwindow() This function returns true if called from a procedure that is part of dis-
playing an object in a form, otherwise it returns false.

Function Reference
Page Description

adjustservervariable(database,
variable,adjustvalue)

This function adjusts the value of a server variable. If adjustvalue is a
number the server variable must also be numeric, and is incremented or
decremented. If adjustvalue is text, it is appended to the server variable.

dbserverdomain()

This function returns the server domain for the database. If this is run-
ning on a server, it always returns the servers domain. If running on a cli-
ent (presumably for testing) it will return the ip address of the server this
client is hosted on.

dbshared() This function returns true if the current database is shared, false if it is
not.

dbwebpublish() This function returns true if the current database is web published, false if
it is not.

info("plugandrun") Page 5408

This function tells how Panorama will resolve conflicts between the client
and server when the client database is reconnected to the server after
being used off line. There are four possible modes:

off This is the value that will be returned if this is a single user Panorama
database that is not linked to an SQL server database.

client This means that if a record has been modified by both the client
and the server, the clients changes will be kept and the servers changes
will be discarded.

server This means that if a record has been modified by both the client
and the server, the servers changes will be kept and the clients changes
will be discarded.

manual This means that if a record has been modified by both the client
and the server, the user will be presented with a list of the changed record
and allowed to "cherry pick" which records to keep.

info("serverfile") Page 5420 This function returns the name of the SQL database linked to this Pan-
orama database, if any.

Function Reference
Page Description

Page 196 Panorama Formulas & Programming
info("serverrecordid") Page 5421

This function returns the internal serial number on the server of the cur-
rent Panorama record. This number is guaranteed to be unique in this
database if this is a SQL connected database. If this is a standalone data-
base, this function will return zero for all records. This function will also
return zero for new records created while disconnected to the server.
These new records are not assigned an internal serial number until the
next time the database is synchronized with the server.

info("serverrecordts") Page 5422

This function returns the internal "time stamp" number Panorama uses to
determine which records need to be synchronized. By itself, this number
is basically meaningless. However, if the time stamp for record A is
higher than record B, then record A was edited later than record B. If this
is a standalone database, this function will return zero for all records.
This function will also return zero for new records created while discon-
nected to the server. These new records are not assigned an internal time
stamp until the next time the database is synchronized with the server.

This function is intended for debugging purposes only. It is included here
for completeness. However, it could possibly have useful non-debugging
purposes.

info("serverstatus") Page 5423

This function returns the connection status of the SQL database linked to
this Panorama database, if any. There are four possible values:

Standalone (Read/Write) This is the value that will be returned if this is a
single user Panorama database that is not linked to an SQL server data-
base.

Connected (Read/Write) This is the value that will be returned if this is a
multi user Panorama database that is linked to an SQL server database,
and the link is currently open with full record locking.

No Connection (Read/Only) This is the value that will be returned if this
is a multi user Panorama database but there is currently no network con-
nection to the SQL server database. For example the user might be using
this database on a laptop computer with no connection to the server. This
database does not allow off-line editing, so the database cannot be edited.

Standalone (Read/Write) This is the value that will be returned if this is a
multi user Panorama database but there is currently no network connec-
tion to the SQL server database. For example the user might be using this
database on a laptop computer with no connection to the server. This
database does allow off-line editing, so the database may be edited. The
changes made off-line will be saved and synchronized the next time the
server is available.

info("servertimeout") Page 5424

This function returns the maximum time Panorama will keep a record
locked with no keyboard or mouse activity. This timeout can help prevent
a user from starting to edit a record and then walking away from the
computer and leaving the record locked and unavailable to other users
indefinitely. The time interval is specified in seconds. A timeout value of
zero indicates no timeout (infinite time).

info("subsetformula") Page 5427

The info("subsetformula") function returns the formula used to extract
the current local subset from the server database. If the local database
contains a copy of the entire server database (select all) the result will be
an empty string ("").

serverdomain() This function returns the domain name or IP address of a server. The
server must be currently available.

serverrunning() This function returns TRUE if this copy of Panorama is running as a
server, or false if it is running in single user or as a client.

servervariable(database,variable)
This function gets the value of a server variable (a permanent variable on
the server). The server variable must already be set up with the SetServer-
Variable statement.

Function Reference
Page Description

Chapter 1:Formulas Page 197
Custom Functions

Panorama doesn’t limit you to the built-in functions that are supplied with a Panorama. In fact, you can actu-
ally create your own user defined functions that can be used in any formula. To build a custom function you
assemble it from the functions and operators that already exist. For example, you could define a new
money(function with one parameter:

money(number)

This custom function can be defined using Panorama's built in pattern(function, like this.

pattern(number,"#,.##")

Once the function has been defined you can use it in any formula. For example, the formula

money(54321.5678)

would result in the text value 54,321.56.

The Custom Functions Wizard

To create your own custom functions you’ll use the Custom Functions (User) wizard. You’ll find this wizard
in the Developer Tools submenu of the Wizard menu. This wizard has a view as list form with four columns
(three of which are shown in the illustration below. Each line is a slot for a custom function.

serverdatabasename(database)
This function returns the name of the server associated with a shared
database. If the database name is "" the server name for the current data-
base will be returned.

servername(database)

This function returns the server database name associated with a shared
database. This is the name of that database on the server (which may be
different from the name on a client). If the database name is "" the server
database name for the current database will be returned.

sharedusers(database)

This function returns a list of users that are currently sharing a database.
The specified database must currently be connected to the server on this
computer. If the database name is left blank then the current database is
assumed. If the database name is * then all users on the server will be
listed (the current database must be a shared database). If the database is
not connected, or is not a sharable database, the result will be "". If this is
a connected database the result will be a carriage return separated array,
with each line containing the session id, user name, and user's computer's
name separated by tabs.

Function Reference
Page Description

Page 198 Panorama Formulas & Programming
To create a new custom function, use the Add New Record tool to add a line to the database. In the leftmost
column, type in the name of the function and parameters, like this:

Now tab over to the next column (labeled "body"). Enter the formula that should be used to calculate the cus-
tom function's value. For example, the body for the concatenate function could be:

Now you can try out your new function. Type in sample parameters into the test data column, for example:

When you press the Enter or Return key the results column will show the result of your function (or you'll
see an error message if you made a mistake). In this case the result is helloworld.

That's all there is too it! Your custom function is now ready to use in any formula.

Function Names

Function names may consist only of alphabetic characters - no numbers, punctuation or other characters.
Upper or lower case is ok, but it is ignored, so you can't create separate functions called alpha(and
ALPHA(. If you rename a custom function the old function will continue to work until you restart Panorama.
For compatibility with future versions of Panorama we recommend that you avoid generic names that might
be used by a built in Panorama function in the future. If a future version of Panorama uses the name you
have chosen, your function will no longer work.

function result displayed here

Chapter 1:Formulas Page 199
Parameter Names

The name of each parameter must be unique within the body of the function definition. This means you
should not use generic names like text or sum. You especially should avoid single letter names like x, y, z, a,
b, etc. If you want to make absolutely sure to avoid problems you can put chevrons around the parameters,
for example «number» or «text». You’ll need to use these chevrons in both the name and body fields.

Advanced Topic: The FDF File

When Panorama starts, it looks inside the Panorama folder for a Functions folder inside the Extensions
folder. This folder may contain one or more files with names ending in .fdf. These .fdf files contain the actual
custom function definitions. Panorama will automatically open and process these files each time it launches.
You can't look at these files directly, but they are generated automatically by the Custom Function wizards.

Advanced Topic : Creating Custom Functions In A Procedure

If you are distributing an application to other users you may want to define functions in the .Initialize proce-
dure of your database, instead of using the wizard. This is possible with the RegisterFunction procedure
statement. This statement has four parameters: folder, name, parametercount and body.

folder - This parameter is currently unused. For now, simply supply an empty string ("").

name - This is the name of the function. It must be all uppercase letters, terminated by a (. Here are some
valid examples:

CONCATENATE(
MYCOOLFUNCTION(

parametercount - This is the number of function parameters.

body - This is the the body of the function. Parameters should be represented as •1, •2, •3, etc.

This example shows how to add a custom concatenate(function:

registerfunction "","CONCATENATE(",2,{•1+•2}

Page 200 Panorama Formulas & Programming
The Custom Functions (ProVUE) Wizard

Panorama includes a number of custom functions that have already been defined for you. To see a list of
these functions open the Custom Functions (ProVUE) wizard.

All of the functions displayed in this wizard are ready to use (and most are already described earlier in this
chapter).

Chapter 1:Formulas Page 201
You can also find these functions in the Programming Reference wizard. It’s easy to identify custom func-
tions in this wizard because the information is all displayed in a single, plain font.

If you have any suggestions for additional functions you would like to see appear in this library, please let us
know.

Page 202 Panorama Formulas & Programming

Chapter 2: Procedures

Right out of the box, Panorama is a very flexible program. Its built in menus and tools bring incredible power
to your fingertips. In spite of this power, however, Panorama is a general purpose tool. To get the most out of
Panorama you’ll want to customize it to meet the specific needs of your business or industry. Doing this takes
an up front investment of time and/or money. But if done properly, the payoff can be huge—a tool optimized
specifically for running and organizing your business or life, not someone else’s idea of how things should be
done. You’ll save time, reduce errors, and look more professional to your customers, vendors, employees
and/or supervisors.

Programming Isn’t Magic!

If you’ve never programmed before, the idea of programming may seem like magic. But really there’s noth-
ing magic about it at all. Programming doesn’t really add any new features or capabilities to Panorama. Any-
thing that can be done with programming can also be done manually with Panorama’s standard menus and
tools.

If programming doesn’t add any new features, what is it for? Many database tasks take more than one step to
complete. To set up a report, for example, you may need to select certain information, sort the database, and
perform calculations. A program allows you to define such a sequence of steps in advance. Once the
sequence of steps is defined, you don’t have to perform that sequence of steps manually any more. Simply
ask the computer and it will perform the steps for you, flawlessly and at the highest possible speed. This lets
the computer do what it does best, remember things accurately, and frees your mind for more important
tasks. Eventually you can teach Panorama all the everyday tasks you need for running your organization. Of
course every journey begins with a single step, so let’s get started!

Introduction to (Panorama) Programming

The next few pages introduce the fundamentals of programming with Panorama. You’ll learn how complex
programs are assembled from a series of small steps, and you‘ll learn the nuts and bolts of actually creating
and using programs. If you are experienced with other programming languages like C or Basic, much of this
material will be familiar to you already. If not, welcome to the exciting world of computer programming!

Page 204 Panorama Formulas & Programming
Procedures

A complete program is assembled by combining a series of steps together so that they perform a complete
task. In Panorama this complete series of steps is called a procedure. Each procedure performs a complete
task from start to finish.

Each database can contain many procedures—one for each task that needs to get done in that database. To
help keep all these procedures straight, Panorama requires you to give each procedure a unique name. The
procedure name is used whenever you need to refer to the procedure—in a menu, a button, etc. All of the
procedures in a database are listed in the View menu.

You can view a procedure by selecting it from this menu (“Switching Between Views” on page 168 of the Pan-
orama Handbook). You can also open the procedure in a new window (see “Opening More Than One Window
Per Database” on page 169 of the Panorama Handbook) by holding down either the Control key (Macintosh) or
the Alt key (Windows) while you select the procedure from the View menu.

Statements

As mentioned in the previous section, a procedure is simply a series of steps. Programmers have a special
name for these steps—they call them statements. Each statement is simply a single step to be performed by
the computer. Most statements start with a special word (sometimes called a command or keyword) that tells
Panorama what the statement should do, for example SortUp, Select, Print, Open. Panorama under-
stands several hundred different keywords that perform a wide variety of operations.

A statement may consist of a keyword all by itself, for example SortUp or CloseWindow. However, many
keywords also require additional options, for example Open "MyDatabase" or Select Price>200.
These additional options are called parameters. If a keyword uses parameters, they must follow the keyword
in the program.

(Note to experienced programmers: Unlike many programming languages, Panorama’s keywords or com-
mands are not reserved words. This means, for example, that you can use a database column named Print or
create a variable named Open. These names are perfectly OK in Panorama’s programming language. How-
ever, using keywords in this way could easily result in programs that are very confusing to read, so we rec-
ommend that you avoid keywords when you are defining fields and variables.)

procedures in this database

Chapter 2:Procedures Page 205
A Simple Procedure in Action

Let’s take a look at a simple procedure and see how it works. This procedure is part of a Checkbook database
that looks like this:

The procedure itself contains six statements. In this procedure each statement is on its own line, but as you’ll
see later this is not necessary.

To use a procedure you need to start it somehow. (This is called “triggering” the procedure.) There are two
easy ways to do this. If the data sheet is currently the top window you can trigger the procedure by choosing
it from the Action menu.

Page 206 Panorama Formulas & Programming
If the procedure itself is currently the top window you can trigger it by clicking on the Run tool, or by choos-
ing Run from the Debug menu.

Once the procedure is triggered Panorama begins performing the steps in the procedure. You can watch as
Panorama rapidly performs each step, kind of like a fast action “Keystone Kops” movie.

Let’s take a look at how Panorama performs each of the steps in our sample procedure, starting with step
number 1.

select Debit>0

This first statement selects a subset of the data. Panorama performs this step exactly as if you had chosen the
Find/Select command (see “The Find/Select Dialog” on page 336 of the Panorama Handbook) and filled in the
dialog like this. (However since Panorama already knows what to do it doesn’t actually display this dialog.)

or

step #1

Chapter 2:Procedures Page 207
The result of this step is that a subset of the database is now selected.

On to step number 2.

field Category

Many Panorama operations require you to click on a field before you perform an operation. For example, to
sort or group by a particular column you would first click anywhere in the column. In a procedure this is
accomplished with the field statement. If you watch quickly you’ll see the cursor jump over to the Cate-
gory column as Panorama performs this step.

step #2

Page 208 Panorama Formulas & Programming
Now Panorama is ready for step number 3.

groupup

This statement tells Panorama to group the database, just as if you had selected Group Up from the Math
menu (see “STEP 1 - GROUP” on page 394 of the Panorama Handbook).

step #3

Chapter 2:Procedures Page 209
On to step number 4.

field Debit

If we were performing this sequence of steps manually we would now click on the Debit column.

step #4

Page 210 Panorama Formulas & Programming
Next is step number 5.

total

This statement is the same as choosing the Total command from the Math menu (see “Total” on page 398 of
the Panorama Handbook).

step #5

Chapter 2:Procedures Page 211
And now for the final step, number 6.

outlinelevel 1

This statement is the same as choosing the Outline Level command from the Sort menu (see “Sorting by
Summary Value” on page 406 of the Panorama Handbook). The parameter on this statement, 1, tells Panorama
to simulate pressing the 1 button in the dialog. (Once again, since Panorama already knows what to do it
doesn’t actually display the dialog.)

Here’s the final result after all six statements have completed.

Pretty simple, is it not? This is the basic operation of any procedure — first the procedure is triggered, then
Panorama performs each statement from top to bottom. (Later you’ll learn several ways to change the top to
bottom order when it is necessary, see “Control Flow” on page 255.)

step #6

Page 212 Panorama Formulas & Programming
Creating a Procedure with the Recorder

A basic procedure like the one in the last section is very easy to create with Panorama’s built in procedure
recorder. The procedure recorder is like a tape recorder that records your actions as you work. Recording a
procedure is a four step process— 1) start the recorder, 2) perform the steps while Panorama records, 3) stop
the recorder, and 4) give the new procedure a name.

To start the procedure recorder, click the Record Procedure tool (available in the Data Sheet and Form tool
palettes (unless you are in Graphics Mode)).

The “reels” on the recorder tool will begin to spin. This lets you know that Panorama is recording your
actions.

tape reels spin when recorder is on

Chapter 2:Procedures Page 213
Once the recorder is running just continue to use Panorama normally. Panorama will record every menu
command or tool that you use. To demonstrate the recorder we’ll create a short procedure that calculates the
grand total. Start by clicking anywhere in the Debit field.

Next choose Total from the Math menu. Panorama calculates the total.

Our simple procedure is complete. To stop the recorder, click on the Record Procedure tool again. The “reels”
will rewind and stop and a dialog box appears. This dialog box allows you to give your new procedure a
name, up to 25 characters. Pick a name that will help you remember what the procedure does, for example
Print Invoices or Balance Checkbook.

Once you have entered the name, press Save Procedure.

Page 214 Panorama Formulas & Programming
Tip: There are five characters you should not use in a procedure name unless you know what you are doing.
The five characters are: ^ ; < (/. Later in this manual you’ll learn how these characters can be used to cre-
ate special effects in the Action Menu (see “Action Menu Options” on page 356).

Once you have given the recording a name, the new procedure is added to the end of the Action Menu. (If the
database doesn’t already have a Action Menu, it will be created.)

You can play back your new procedure at any time by selecting it from the Action Menu. To view the state-
ments in the new procedure you can open it with the View menu (hold down the Control key (Mac) or Alt
key (PC) to open the procedure in its own new window.)

Our simple recording contains two steps. You can use the procedure “as is” or you can customize it further.

Recording Mouse Clicks

Panorama does not normally consider clicking the mouse to be a step—clicking the mouse is not a menu
command or tool. However, if you click on a different window or a different field within the current window,
Panorama will record that step. The recorder will ignore all other mouse clicks (for example, clicking on the
scroll bar, dragging a window to a new position or changing the size of a window, etc.).

Panorama never records the row position of a click. If you look back at the previous section you’ll notice that
I clicked on check number 1915 when I recorded the procedure. However, this information was not recorded.
When the procedure is played back Panorama will not move to check number 1915, but will stay on whatever
check it is already on. The total statement doesn’t care as long as the column (field) is correct.

Chapter 2:Procedures Page 215
If you do want Panorama to move to a specific record you’ll need to use the find statement (see “FIND” on
page 5245 of the Panorama Reference). You can either create this during recording using the Find/Select dialog
(see “The Find/Select Dialog” on page 336 of the Panorama Handbook) or simply by typing it into the proce-
dure window. Here’s a modified version of the procedure that moves to check number 1915.

Of course this example doesn’t make much sense because Panorama will only be on check number 1915 for a
fraction of a second before the total statement makes Panorama jump to the end of the database.

Non Recordable Menus and Tools

A couple of pages ago we told you that Panorama records every menu and tool when the recorder is on.
Sorry, but that was a lie. Some menus and tools are not recordable. Most commands and tools that work with
graphics cannot be used. For example, Sort Up, Insert Record, and Print can be used as steps in a procedure,
but Bring to Front, Oval, and Align cannot. In general, only actions that affect data can be included in a pro-
cedure. If the recorder is on and you attempt to use a menu command or tool that cannot be used as a step in
a procedure, Panorama will alert you.

As long as you stick with the Data Sheet and Data Access Mode Forms you’ll usually be fine.

Recording Data Entry

Panorama doesn’t do a very good job of recording data entry. Instead of using the recorder we recommend
that you use assignment statements to perform data entry, as shown in this example.

You cannot record these assignment statements, you have to type them in manually. See “Assignment State-
ments” on page 243 for more information on assignment statements.

Page 216 Panorama Formulas & Programming
Writing a Procedure from Scratch

If you want to write a procedure from scratch (instead of using the recorder), the first step is to create a new,
empty procedure. To do this select New Procedure from the View menu.

Selecting New Procedure normally creates the new procedure in the same window you are currently in. It’s
often convenient to create the new procedure in a new, separate window, leaving the original window open.
That way you can easily flip back and forth between your database window (data sheet or form) and the pro-
cedure window. To open the new procedure in a separate window hold down the Control key (Macintosh) or
Alt key (Windows) as you click on the View menu.

After you select New Procedure this dialog appears.

Type in the name of the new procedure, then press OK. The name may be up to 25 characters long, and must
be unique within this database. Tip: There are five characters you should not use in a procedure name unless
you know what you are doing. The five characters are: ^ ; < (/. Later in this manual you’ll learn how these
characters can be used to create special effects in the Action Menu (see “Action Menu Options” on page 356).

Chapter 2:Procedures Page 217
After you press the OK button a new, empty procedure is created, and the window switches to show you this
new procedure. If you held down the Control key (Mac) or Alt key (Windows) the new procedure will open
in a new window just below and to the right of the original window, like this.

Writing Statements

Once you have created an empty procedure you can start adding statements to the procedure. If you know
the keywords for the statements you want to use, just type them in. For example, if you want to sort the data-
base in ascending order just type in the statement SortUp. By the way, the capitalization of statements
doesn’t matter, so you could also type sortup, SORTUP, or even SoRTuP. However, keywords are always a
single word with no blanks, so sort up will not work.

If you don’t know the exact keywords for the operations you want the procedure to perform, you have a sev-
eral choices. You could look up the keyword in this manual, then type it in from the keyboard. You could use
the Programming Assistant dialog (see “The Programming Assistant Dialog” on page 225), or you could
locate the keyword using the Topic submenu of the Programming Context Menu (right click, see “Topics
Submenu” on page 234). Another choice is to use the Programming Reference wizard, see “Programming
Reference Wizard” on page 237.

original window (in this case, the data sheet)

new procedure window

Page 218 Panorama Formulas & Programming
You’ll still have to type in any options and parameters yourself, but the Programming Assistant will type in
placeholders for these values to help remind you that they are necessary (we’ll talk more about options and
parameters later).

Here is the finished statement with the actual parameters typed in.

Here is the completed procedure.

This procedure has three statements. The local statement creates a local variable named whatname. The
gettext statement displays a dialog asking to enter a name. Whatever is typed in is placed in the whatname
variable. The find statement searches the database to locate the requested name.

Trying Out a Procedure

The easiest way to try out a procedure you are working on is to press the Run button (you can also press
Command-R on a Mac or Control-R on a PC).

statement typed in by Programming Assistant

parameter placeholders – replace with actual parameters

Chapter 2:Procedures Page 219
When you run a procedure this way Panorama will automatically switch to a window that contains data.
Any window that allows you to display and edit data will do (as long as it is in the same database), so Pan-
orama will pick the topmost one that will work. If there is no window that will work (for example if the pro-
cedure is in the only window for this database), Panorama will display an error message and the procedure
will not run.

In this case Panorama will switch to the data sheet window and begin performing the steps in the procedure,
starting with the topmost statement.

local whatname

This statement allocates a local variable named whatname for temporary storage (see “Variables” on
page 53). This operation is completely invisible.

On to step 2 —

GetText "Enter Name:",whatname

This statement displays a dialog asking the user to type in some text.

Enter the name you want to search for.

When you press OK the dialog disappears and the procedure continues on with the next statement. Before it
does, however, it copies the text that was typed in into the variable named whatname.

find «First Name»+" "+«Last Name»+" "+«Company Name» contains whatname

Page 220 Panorama Formulas & Programming
This final statement searches three fields in the database to see if they contain whatever text was typed in (see
“Comparison Operators” on page 124). This database does contain the name wendover, so Panorama jumps
to that record. The name is circled in the illustration below to make it more clear.

Now you have an easy way to locate any person in this database without having to bother with the Find/
Select dialog.

Checking for Mistakes

If you write a procedure yourself without using the recorder, you may make a mistake. You might misspell a
keyword, forget to include a parameter, leave off a closing parenthesis, etc. Panorama will not let you use a
procedure until you find and fix all of these mistakes.

To help you find these mistakes Panorama provides the Check Procedure tool or menu command (Edit
menu).

Chapter 2:Procedures Page 221
This tool scans the procedure looking for misspelled keywords and other mistakes. If it finds an error the sta-
tus bar turns red and contains a description of the error.

Choose Select Error from the Edit menu if you would like Panorama to attempt to highlight the location of
the error for you.

Page 222 Panorama Formulas & Programming
Panorama will identify the spot where it thinks the error occurred (see “Mysterious Errors” on page 222).

Correct the error, then use the Check Procedure tool again to see if there are any more mistakes. Repeat this
process until the Check Procedure tool no longer finds any mistakes in your procedure. (Note: Panorama
also automatically checks your procedure whenever you click on another window, save the database, switch
to another view, or close the window containing the procedure.)

Mysterious Errors

Usually the Check Procedure tool in combination with Select Error is able to pinpoint the exact spot where
the mistake in your procedure is located. Some types of mistakes, however, are not detectable right away, so
Panorama actually will highlight the wrong spot in the procedure. Usually this is caused by a missing endif
statement, mismatched parentheses, or mismatched quotes. If Panorama tells you that there is an error but
the spot highlighted looks ok to you, check carefully above the spot where the error was flagged. The actual
error may be many lines above the spot Panorama has flagged. If you still can’t find the error, try splitting the
procedure into several smaller procedures and checking each piece separately until you find the section con-
taining the error.

Closing the Window When a Procedure is Finished

When you have finished writing a procedure you’ll probably want to close the window for that procedure. If
it is in a separate window, just click on the close box. If it is the only window for the database use the View
Menu to flip to another view. You don’t have to close the procedure window to use the procedure, but when
you are sure it is working properly you will probably want to close it just to cut down on window clutter.

Re-Opening a Procedure

You can change any procedure at any time. Simply open the procedure with the View Menu, then make the
changes. Don’t forget that you can hold down the Control key (Macintosh) or Alt key (Windows) to make the
procedure open into its own separate window.

no such statement as “gerbil”

Chapter 2:Procedures Page 223
Font and Size

The Font and Size submenus (Edit Menu) allow you to change font and size of the procedures in this data-
base. The font and size are always the same for every procedure in the database—you cannot set different
procedures in the same database to different fonts or sizes.)

If you are using a Windows system we recommend that you stick with one of the four fonts installed with
Panorama: Alpine, Block, City or Yankee (the default is Alpine 12). These fonts are designed to be able to dis-
play some of the special characters used by Panorama that are not normally available on Windows systems
(≠, ≤, ≥ etc.)

Adding a Recording to an Existing Procedure

Earlier you learned how to create a new procedure by recording (see “Creating a Procedure with the
Recorder” on page 212). It’s also possible to use the recorder to add statements to an existing procedure. To
do this, start the recorder normally, and record the steps you want to include. When the steps have been com-
pleted click on the recorder again to stop the recording. When Panorama asks you what name you want to
give the new procedure, click the Cancel button.

Page 224 Panorama Formulas & Programming
Now go to your procedure window and click on the spot where you want the recording to be inserted. Then
choose the Paste Recording tool.

Panorama will insert the recording into the procedure. If necessary you can edit the recorded statements or
use them “as is.”

click to insert recording here

Chapter 2:Procedures Page 225
Programming Helpers

There are a wide variety of different ingredients that can go into writing a Panorama program — statements,
functions, fields, variables, you name it. It’s a lot to learn and keep track of, and even the top experts here at
ProVUE Development can’t keep all of it memorized. Fortunately, that’s not necessary. Panorama has a num-
ber of different aids to help you find all the right ingredients to complete your programming tasks, including
the Programming Assistant dialog, the Programming Context Menu, and the Programming Reference wiz-
ard.

The Programming Assistant Dialog

The Programming Assistant dialog makes it easy to type in any statement, function, field, variable or other
programming element. You only need to type in the first few characters and the assistant will fill in the rest.
Within a procedure you can open the assistant from the Edit menu, or by pressing Command-Quote, or by
right clicking on the procedure and choosing Programming Assistant from the Help submenu. No matter
how you open it, the dialog opens and displays a list of items that can be inserted into the procedure.

Page 226 Panorama Formulas & Programming
Initially the list may contain a couple of thousand items. To narrow this down, type in part of the item you are
looking for. For example if you want to open a file, start by typing in openf.

Once the item you want is visible, you have three choices for inserting it into the procedure:

1) If the item is one of the first nine, press 1 to 9.

2) Click once on the item, then press the Insert button.

3) Double click on the item.

If the item being inserted is a statement or function that has parameters, the first parameter will automati-
cally be selected.

You can just start typing to enter the first parameter.

When you’re ready to skip to the next parameter, choose Select Next Parameter from the Edit menu (or sim-
ply press Command-Comma).

You can continue the process until all of the parameters are completed.

Using the Assistant from the Keyboard

The Programming Assistant is designed so that you can use it entirely from the keyboard, without touching
the mouse.

1) Press Command-Quote to open the dialog.

2) Type in enough characters so that the item you want to insert is one of the first nine items.

3) Press 1 to 9 to insert the item into the procedure.

4) (Optional) Use Command-Comma to skip thru each parameter

Chapter 2:Procedures Page 227
Assistance Domains

The Programming Assistant has eight different domains that it can assist with. To reduce confusion, you can
choose to have only some of these domains displayed. Simply check the domains you want to see.

Three of these domains (Statements, Functions and Operators) are universal. These domains are the same no
matter what database is active.

The other five domains change depending on what database is selected.

When the dialog first opens these domains display items from the current database. Use the pop-up menu to
change what database is listed.

Domain Description

Statements Programming statements that can be used in a procedure.

Functions Calculation functions that can be used in a formula (math, text, dates, etc.)

Operators Operators that can be used in a formula (+, /, *, etc.)

Domain Description

Fields Field names in the current database.

Variables Global and fileglobal variables. Local variables are not listed, and variables are
not listed until the procedure defining them has been run.

Procedures Names of procedures in the current database (useful for setting up the
call statement, for example)

Forms Names of forms in the current database

Databases Names of all open databases

Page 228 Panorama Formulas & Programming
When the assistant is displaying database specific information, it displays the type of each item on the right
(procedure, database, form, field, variable, etc.)

If you want to display only a single domain, just right click on the domain or hold down the option key when
you click on the domain. This automatically unselects all of the other domains and selects only the domain
you clicked on. In this example I right clicked on the Fields checkbox, so now only fields in the Vendors data-
base are listed.

Chapter 2:Procedures Page 229
Getting Assistance with a Selection

If text is already selected when you open the dialog, the assistant will automatically pre-select items that
match the selected text. For example, suppose you want to use the arraybuild statement but you don’t
remember what the parameters are. You can start by typing arraybuild into the procedure and selecting it.

Then press Command-Quote to open the assistant.

Voila — arraybuild is already selected.

Smart Text Insertion

The Programming Assistant tries to be smart about inserting text. For example if you insert a field or variable
name that contains unusual punctuation, it will automatically add the necessary chevrons (« and »). How-
ever, it won't do that if you are inserting the name into quotes or if the selection is already surrounded by
chevrons, because in those cases it wouldn't be correct. For the most part you probably won't notice this as it
usually does the right thing.

Page 230 Panorama Formulas & Programming
The Programming Context Menu

When you’re editing a procedure you can right click in the editing window to activate a special menu that is
chock full of programming goodies. The exact contents of the menu will vary depending on the database and
the current selection, but it will generally look something like this:

This menu has six sub-menus, which are described in the following sections.

Help Submenu

This menu allows you to access various forms of programming help. Simply select the type of help you need
at the moment (see “The Programming Assistant Dialog” on page 225, “Programming Reference Wizard” on
page 237, “Using the View Wizard with Procedures” on page 344 and “Using the Formula Wizard” on
page 29.

If there is any text selected, the Help Submenu changes into the Lookup submenu, like this.

In this situation selecting an option in this submenu not only opens the window you requested, it also looks
up the selected text. For example, if you select the word fileload (as shown above) and then choose Program-
ming Reference, the Reference will open right to the page for the fileload(function.

Chapter 2:Procedures Page 231
You can check the value of a field, variable or formula by selecting it and then open the Formula Wizard
(Note: this does not work for local variables).

The Formula Wizard shows the value (if any) of the item you selected (see “Using the View Wizard with Pro-
cedures” on page 344).

To find out where else in the database a particular field, variable or procedure has been used, select the item
and then open the View Wizard

The View Wizard will show all of the procedures that contain the selected text.

To actually open any of the matching procedures and find the searched for item, double click on the proce-
dure name. See “Using the View Wizard with Procedures” on page 344 for more information.

Page 232 Panorama Formulas & Programming
Mark Submenu

A single procedure may include up to 32,000 characters of text. A procedure that long would be more than 20
pages long if printed. As a procedure grows it can be difficult to navigate within the procedure itself. The
Mark submenu allows you to create “bookmarks” within the procedure that you can quickly jump to.

This submenu is a duplicate of the Mark menu in the menu bar. To learn more about this menu, and how to
create marks, see “Organizing Large Procedures (The Mark Menu)” on page 305.

Chapter 2:Procedures Page 233
Insert Field Name Submenu

The Insert Field Name submenu lists all of the fields in all open databases. The fields in the current database
are listed first, then all of the other databases. To insert a field name into the procedure simply select it from
this submenu.

The field names are normally listed alphabetically within each database. If you would prefer to list them in
the order that they appear in the database, hold down the Option key when you bring up the menu.

When a fieldname is inserted into the procedure Panorama will automatically adjust it as necessary for the
situation. For example when a multi-word field name or a field name with punctuation is inserted, the neces-
sary chevrons will be added automatically (for example «Tracking Number» or «P/E Ratio»). However,
if the field name is being inserted in between quotes, the chevrons won’t be added (for example “Tracking
Number” or “P/E Ratio”). The quotes have to be put in first for this feature to work.

Insert Form Name Submenu

This submenu works just like the Field Name submenu, but lists forms instead of fields.

Insert Procedure Name Submenu

This submenu works just like the Field Name submenu, but lists forms instead of fields.

current database

other databases

Page 234 Panorama Formulas & Programming
Topics Submenu

The Topics submenu lists over a thousand Panorama statements and functions, divided into about two
dozen subtopics. (Some statements or functions may be displayed under more than one subtopic, and some
less used statements or functions may not be listed at all. Use the Programming Assistant or Programming
Reference for 100% coverage.)

To insert a statement or function just choose it from the menu.

Chapter 2:Procedures Page 235
Opening a Procedure or Form

If Panorama notices that you’ve selected the name of a procedure or a form, the context menu will contain an
option to directly open that procedure or form.

If you have both a procedure and a form with the selected name, options for opening both will be listed.

Selecting Parentheses Contents

If the current selection is just in front of a (symbol, choose Select (…) to automatically select all of the text
enclosed in the parentheses.

When this menu item is chosen the selection is extended up to the matching right parenthesis.

This feature will work with nested parentheses, however, it will be confused by text constants that contain
parentheses (for example “(“ or “)”).

Page 236 Panorama Formulas & Programming
Comment/Uncomment

If you’ve selected multiple lines of text, you can quickly “comment them out” using the context menu.

The “commented out” section of code will be skipped when this procedure is run. This can be useful for test-
ing.

For more information on this technique see “Notes To Yourself” on page 304.

Chapter 2:Procedures Page 237
Programming Reference Wizard

Panorama has over one thousand functions and statements that you can use in formulas and procedures.
Most of these have one or more parameters that must be used correctly. Even here at ProVUE Development
we can't keep all of this memorized. To help, we created the Programming Reference wizard, an instant, on-
line reference to what's what in Panorama formulas and programs. You can open this wizard from the Docu-
mentation submenu of the Wizard menu, or by pressing Control-R (Macintosh only). Once the wizard opens
the reference window is divided into four sections: search panel, template panel, topic list and topic panel.

Navigation Using the Search Panel and Topic List

The search panel and topic list work together to help you locate a specific topic. As you type into the search
panel, the topic list updates to show topics that match.

Page 238 Panorama Formulas & Programming
When you see the topic you want, click on it to display the topic in the topic panel.

If there is only one topic in the topic list, the wizard will display the topic automatically (without having to
click on the list).

To quickly erase the query in the search panel, click on the button.

Chapter 2:Procedures Page 239
The Full Text Search Option

The search panel normally searches only the name and category of each topic. When the Full Text Search
option is checked the wizard will also search the complete text of each topic. This makes it possible to quickly
find every topic that references a particular function or statement, as well as the function or statement itself.
For example, a normal search for the word hue will turn up only one match.

Repeating the search with the Full Text Search option turned on yields 14 matches. You can click on the match
you are interested in.

Page 240 Panorama Formulas & Programming
Navigation Using the Topic, Statement and Function Menus

To jump directly to any topic use the Topic, Statement or Function menus. The Topic menu divides topics
into about two dozen submenus. (Some topics may be display under more than one submenu, and some top-
ics may not be listed under any topics.)

The Statements menu lists every statement in alphabetical order. The Functions menu lists every function in
alphabetical order. Simply select a statement or function from one of these menus to jump to see the descrip-
tion of that topic in the topic panel.

Navigation Using HyperLinks

Like a web browser, the Programming Reference contains links from one page to other related topics. These
links are underlined in the text. To jump any linked topic simply click on the underlined text.

Chapter 2:Procedures Page 241
Built In vs. Custom Statements and Functions

Panorama supports both built in and custom statements and functions. Several hundred custom statements
and functions are included with Panorama, and these are also included as topics in the Programming Refer-
ence wizard. (You can also create your own custom statements and functions, but these are not included in
the Programming Reference wizard.) For most custom statements and functions the topic panel uses a basic
"plain text" format instead of the more graphical format used for built-in statements and functions.

Don't adjust your set -- this plain text view is normal for custom statements and functions.

Using the Template Panel

The template panel displays a sample that illustrates how this statement or function would be used in a for-
mula or procedure. In this case the panel shows an example of the rgb(function, which has three parame-
ters.

Page 242 Panorama Formulas & Programming
To copy the template into the topmost procedure window, hold down the Control key and click on the tem-
plate panel. (If you are using a PC system you should right-click on the template panel.) The template will be
pasted into the procedure at the current insertion point, and the procedure window will be brought to the
front so that you can edit it further (for example, filling in the actual parameters).

You can also copy the template into the procedure window using the Reference menu.

The Copy to Procedure command copies the template into the procedure and brings the procedure window
forward (exactly like control-clicking on the template panel). The Copy to Proc & Close command does the
same, but also closes the Programming Reference wizard.

Minimizing the Programming Reference Wizard

In addition to its normal "wide-screen" view, the wizard can also be used in a minimized view. To minimize
the wizard, either choose Minimize Window from the Reference menu or click on the button in the tem-
plate panel. As shown here the minimized wizard hides the search panel, topic list, and topic display panel.

Although you can't search for topics when the window is minimized, you can still use the Reference, Topics,
Statements and Function menus. When you want to maximize the window again choose either the Maxi-
mize Window from the Reference menu or click on the button.

Chapter 2:Procedures Page 243
Data Flow

The purpose of almost any program is to organize and channel data. Since Panorama is a database, this is
even more true for programs written in Panorama. This section discusses the techniques for storing and
manipulating data within a procedure.

Assignment Statements

An assignment statement computes a value (text or numeric) and stores that value somewhere. Unlike every
other statement, an assignment statement has no specific keyword that identifies the statement. Assignment
statements always have the format shown below:

<data storage location> = <formula>

The first part of the assignment statement is the data storage location. This is the final destination for the data
that is being moved. In fact, sometimes the data storage location is simply called the destination of the
assignment. The data storage location may be a variable, a field in the currently active record, or the clip-
board.

The next part of the assignment statement is the equals symbol. This identifies this statement as an assign-
ment statement.

After the equals symbol is the formula. The formula produces the data that will be stored in the data storage
location. The formula may simply take a variable or field and pass it along, or it may process, calculate or fil-
ter the data before it passes it along to be stored in the data storage location.

Here‘s a simple assignment statement that takes the contents of B and moves it into A. After this statement is
finished both A and B will contain the same value.

A=B

More complicated assignment statements may combine multiple fields or variables, and they may process
the data in some way. An assignment statement may also take a constant value and store it. Here are some
examples:

A=B*C

Name=upper(myName)

City="San Francisco"

In each case, the process is the same. First Panorama calculates the formula to produce a data value. Then it
stores the data value in a data storage location.

Triggering Automatic Calculations

A database can be set up so that when a field is modified by the user, one or more formulas are automatically
calculated (see “Automatic Calculations” on page 303 of the Panorama Handbook). When an assignment state-
ment modifies a field, however, these formulas are not automatically calculated. This is to give the procedure
programmer the ultimate control over all calculations that occur during the procedure.

If you as the programmer would like the automatic calculations to be performed during an assignment, add
an extra equal symbol to the assignment. The two equal symbols must be adjacent with no spaces between
them, like this:

PriceΩ==19.95

In this example, storing the value 19.95 will most likely trigger several additional calculations to compute the
total for this line item and the total for the entire invoice.

Page 244 Panorama Formulas & Programming
The Define Statement

The define statement is a special kind of assignment statement. This statement defines a value for a vari-
able, but only if that variable doesn’t already have a value. In other words, this statement will initialize the
variable if the variable’s value has not been defined yet, but if the variable already has a value it will not
touch the value.

The define statement has two parameters: the name of the variable and the value for the variable.

 define <variable>,<value>

The example shown below will initialize the variables DefaultAreaCode and TaxRate unless they have
already been initialized.

global DefaultAreaCode,TaxRate
define DefaultAreaCode,"714"
define TaxRate,4.25

The Set Statement

The set statement performs an assignment, much like an equals sign. However, the destination of the
assignment can be calculated on the fly.

set destination,formula

This statement has two parameters: destination and formula. Destination is a formula that calculates the
name of the field or variable that you want to modify. Formula calculates the value that will be placed into
the destination.

Panorama normally copies data info fields or variables with an assignment. For example, this assignment
statement copies the value Westside into the field (or variable) named City.

 Assignment statements like City="Westside" work fine as long as it is known where the data needs to be
copied into when the program is written. But sometimes this is not known, or it needs to change on the fly.
The set statement essentially lets the left hand side of the = change on the fly.

The procedure below assumes that the current database contains a field for each day of the week: Sunday,
Monday, Tuesday, etc. The example copies the variable DepartureTime into the field for the current day (the
second line of the procedure calculates the name of the day.

set datepattern(today(),"DayOfWeek"),DepartureTime

Here is the same procedure rewritten without the set statement. This illustrates the power of the set state-
ment, which in this case is doing the same work as the 17 statements below.

local dayName
dayName= datepattern(today(),"DayOfWeek")
case dayName="Sunday"
 Sunday=DepartureTime
case dayName="Monday"

Monday=DepartureTime
case dayName="Tuesday"
 Tuesday=DepartureTime
case dayName="Wednesday"
 Wednesday=DepartureTime
case dayName="Thursday"
 Thursday=DepartureTime
case dayName="Friday"
 Friday=DepartureTime
case dayName="Saturday"
 Saturday=DepartureTime
endcase

Chapter 2:Procedures Page 245
 The FormulaValue Statement

Like the set statement, the formulavalue statement calculates the result of a formula and puts it some-
where. The formulavalue statement gives you more control over how errors are handled, allows you to
specify the formula using a variable, and allows you to specify what database is to be used for the calculation
(an assignment or set statement always uses the current database).

formulavalue destination,database,formula

This statement has three required parameters: destination, database and formula. The destination is the name
of the field or variable that will receive the result. If a field is specified it must be in the current database, even
if you have specified that the formula be calculated using a different database.

The database parameter is the database to be used for performing the calculation. Any field values specified
in the formula will be obtained from the current record in the specified database. If no database is specified
("") the current database will be used.

The formula parameter is the formula to be calculated. Unlike an assignment statement, the formula is con-
tained in a formula, allowing you to change the formula on the fly. If the formula doesn't need to be changed
you must enclose it in quotes, otherwise you can store the formula in a variable. Unlike most statements the
formulavalue statement will not stop if an error occurs in evaluating the formula. To find out if an error
occurred you must check the info("error") function.

This simple example performs a calculation using the Checkbook database, which may or may not be the cur-
rent database (it does have to be open). There will be no window flashing or other visual artifacts even if
another database is currently on top.

local myFormula,lineBalance
myFormula="Debit-Credit"
formulavalue lineBalance,"Checkbook",myFormula

The formulavalue statement is especially useful in situations where the user can enter their own formula.
This example prompts the user to enter a formula. The result of the formula is calculated and displayed,
unless there is an error, in which case that is displayed.

local myFormula,myAnswer,myError
gettext "Enter Formula:",myFormula
formulavalue myAnswer,"",myFormula
myError= info("error")
if myError=""
 message "The answer is: "+ constantvalue(myAnswer)
else
 message info("error")
endif

Page 246 Panorama Formulas & Programming
The formulavalue statement is also useful for validating user supplied formulas. If the formulavalue
statement can process the formula without an error, then so can other statements like select or
arraybuild. In this case we don't really care what the resulting value from the formula is, as long as it is a
number (integer) and there is no error.

local myFormula,myAnswer,myError
gettext "Enter Formula:",myFormula
formulavalue myAnswer,"",myFormula
myError= info("error")
if myError <> ""
 message info("error")
 rtn
endif
if datatype("myAnswer") <> "Integer"
 message "Formula must calculate a true/false answer"
 rtn
endif
execute “ select ”+myFormula

Chapter 2:Procedures Page 247
Variables

A variable is a place in the computer where an item of data can be stored, kind of like a storage bin for a
value. Variables may be created by procedures or by SuperObjects. Most procedures will use one or more
variables to hold and transfer data as the program runs. Use a variable whenever you need to store a single
data item so that you can use it later. Unlike a field, the value variable doesn’t change as you move from
record to record, or, in the case of a global variable, even when you move from database to database.

Creating a Variable

Panorama has five different statements for creating variables within a procedure. The most common one is
the local statement (see “LOCAL” on page 5489 of the Panorama Reference), which generates temporary
variables that only last until the procedure is finished. This statement should be followed by a list of the vari-
ables to be created, with each name separated from the next by a comma. This example creates four variables.
Because these variables were created with the local statement they are called local variables.

local alpha,gamma,delta,sigma

Creating a variable is kind of like surveying a lot on empty land. Once the land is surveyed you know where
it is, but the land is still empty until something is built on it. A new variable is like an empty plot of land that
has just been surveyed — it has an address (the name) but it doesn’t have any data yet.

By the way, Panorama allows any sequence of characters to be used as a variable name. However, if the vari-
able name contains any punctuation (including spaces) it must be surrounded by the chevron characters «
and ». (On the Macintosh press Option-\ to create the « chevron character and Shift-Option-\ to create the »
chevron character. On Windows systems press Alt-0171 to create the « chevron character and Alt-0187 to cre-
ate the » chevron character.) Here are some examples of typical variable names:

X

birthDay

Counter

«Tax Rate»

«PrimeRate%»

A variable name must be spelled exactly the same way every time, including upper and lower case. The vari-
able name birthDay is not the same as Birthday or birthday. In fact, you could create three different variables
using these three different names (although this is not recommended because it would be very confusing).

By the way, it’s always ok to use chevrons around a variable name, even if the name doesn’t have any punc-
tuation. «Counter» is exactly the same as Counter, and they can be used interchangeably. So if you have any
doubts about whether or not chevrons are necessary, go ahead and use them. No harm, no foul.

Note: Some programming languages require you to create all variables first, before any other statements.
Panorama isn’t that picky. You can create new variables anywhere in the program. Here is a procedure that
creates four variables, does some work, then creates two more variables.

local alpha,gamma,delta,sigma
alpha=4
gamma="blue"
delta=alpha*3
sigma=delta/alpha

local epsilon,omega
epsilon=0.01
omega="z"

By the way, the indentation is not necessary, it’s simply to make the local statements easier to see.

Page 248 Panorama Formulas & Programming
Assigning a Value to a Variable

Once a variable has been created you can assign a value to it. This is done by putting the variable on the left
side of an assignment statement (see “Assignment Statements” on page 243) like this.

alpha=4

gamma="blue"

delta=alpha*3

sigma=delta/alpha

A new value can be assigned to a variable at any time. You can assign a value to a variable once or over and
over again a million times. The new value does not have to have anything to do with the old value — you can
store a number in a variable that originally held text or vice versa — Panorama doesn’t care. This line of text
assigns the number 400 to the gamma variable, which originally had a text value stored in it.

gamma=400

Some programming languages allow you to assign a value to a variable without having to create the variable
first. Panorama’s programming language does not allow this. For example, this procedure creates four vari-
ables, then attempts to store a value into a fifth variable, sigmi.

local alpha,gamma,delta,sigma
sigmi=200

When you run this procedure Panorama will complain. Picky picky picky!

In this case the problem is probably a typo, and the variable name in the assignment needs to be corrected. If
this really is a separate variable you must create it first.

Using a Variable in a Formula

Once a variable has been assigned a value you can use it in a formula. A variable may be used anywhere a
field or constant may be used. Here are some typical examples.

alpha*sigma

gamma+" action"

4*alpha/(delta+20)

See “Formula Grammar” on page 42 to learn more about using variables in a formula.

Chapter 2:Procedures Page 249
The Birth and Death of a Local Variable

When a lot is surveyed, that lot usually exists more or less forever (barring wars or natural disasters). A local
variable, however, is not nearly that permanent. In fact, local variables only exist until the end of the proce-
dure that they are created in. When the procedure finishes, Panorama checks to see if it created any local vari-
ables. If it did, the values in these variables are dumped out and all record of the variables are destroyed, just
as if they had never existed in the first place. It’s kind of as if you went down to the county recorder’s office
and burned all the survey records for a tract of land.

Why are the local variables destroyed? Two reasons. First, they take up memory that is no longer needed and
can be used for other things. Secondly, this allows different procedures to use the same variable names with-
out having to worry about conflicting with each other. Suppose procedure A and procedure B both have a
local variable named gamma. Since the variable is destroyed when each procedure finishes, neither proce-
dure needs to worry about the other. Each happily creates and uses its own copy of gamma, which is then
destroyed before it can interfere with any other procedure.

Note; If you are an experienced programmer you may be wondering about recursion at this point. If you
can’t resist, you can jump ahead to “Recursive Subroutines” on page 273.

Long Life Variables

Sometimes, of course, you won’t want a variable to be destroyed when the procedure is finished. Panorama
actually has five different kinds of variables, each with different life cycles (local, window, fileglobal, global
and permanent). You’ve already learned about local variables. The next most common type of variable is a
fileglobal variable, which I’m sure you’ll be surprised to learn is created with the fileglobal statement
(see “FILEGLOBAL” on page 5227 of the Panorama Reference). Just as with the local statement, the fileglobal
statement is followed by a list of variables to create. This statement creates two variables.

fileglobal Speed,Direction

Unlike a local variable, a fileglobal variable isn’t destroyed when the procedure is finished. It hangs around
and can be used over and over again. However, fileglobal variables don’t last forever. When the database is
closed, the values in these variables are dumped and the variables themselves are destroyed.

As you might guess, a permanent variable has a very long life. However, the life of a permanent variable is
not continuous but interrupted. When the database is closed any permanent variables associated with that
database are destroyed. However, before the variables are destroyed the values are stored in the database
itself. When the database is re-opened later Panorama automatically re-creates the permanent variables
again. (Note: You must save the database. Just as with data in database fields, Panorama only saves perma-
nent variables when the database is saved.)

Another type of long life variable is a global variable. A global variable is not destroyed even when the data-
base that created it is closed. It’s almost immortal. However, when you Quit from Panorama, that’s the end of
the road for global variables. They are not re-created automatically the next time Panorama opens.

A specialized kind of variable is a window variable. This kind of variable is attached to whatever window
was open and on top when it was created. When that window is closed, the variable is dumped. Poof! Win-
dow variables are usually used with clonable forms (see “Window Clones” on page 457).

Destroying a Variable

If necessary you can use the undefine statement to destroy any variable at any time (see “UNDEFINE” on
page 5866 of the Panorama Reference). When you use this statement the variable (or variables) is completely
destroyed as if it had never been created in the first place. This example destroys the variables Speed and
Direction.

undefine Speed,Direction

Page 250 Panorama Formulas & Programming
You can destroy any kind of variable. If a variable can be accessed, it can be destroyed. Before you destroy a
permanent variable, however, you should first make in un-permanent, like this:

unpermanent timeStamp
undefine timeStamp

It’s rarely necessary to destroy a variable yourself. Panorama automatically destroys local variables when the
procedure open, destroys fileglobal variables when the file is closed, and destroys windowglobal variables
when the window is closed.

Variable Accessibility

Just because a variable exists doesn’t mean you can access it. Many types of variables are “attached” to a file
or a window and are only available when that file or window is active. When the file or window isn’t active,
these variables are “dormant.” They still exist (and take up memory), but you cannot access or modify them
until the file or window they are attached to becomes active again.

Fileglobal and permanent variables are attached to the file that was active when they were created.
When this file is open and on top, the variables are accessible and can be used in a formula or modified with
an assignment statement. When some other file is on top these variables are dormant and cannot be used.

The beauty of this system is that it allows you to create variables without worrying about conflicting with
other databases. Consider the two fileglobal variables created in the previous section, Speed and Direction.
What if some other open database also has variables with these names? As long as both databases use fileglo-
bal variables instead of global variables (see below) they’ll both be all right. Each will have their own sepa-
rate Speed and Direction variables. When database A is active its variables will also be active while B’s are
dormant. When database B is active A’s variables become dormant. Essentially Panorama will keep two com-
pletely separate sets of Speed and Direction variables, each with their own values.

Windowglobal variables are attached to the window that was active when they were created. You can have
multiple cloned windows that use the same variable name but actually each has its own separate variable
that is only active when the window is on top (see “Window Clones” on page 457).

Global variables are always active, no matter what file or window is on top. This is great if you need to have
data that is accessible anywhere at any time. But be careful! If two different databases use the same global
variable they had better be co-operating with each other! Remember thay you may open databases that were
created by other people. Who knows what global variable names they will use? If you do need to use global
variables we recommend that you use very long descriptive names like ProTechSpeed or AcmeSalesTaxRate.
Names like this are more likely to be unique and not conflict with anyone elses global variable names.

Accessing “Dormant” Variables

Fileglobal, permanent and window variables are normally “dormant” when the file or window they are asso-
ciated with is not open and on top (see “Variable Accessibility” on page 250). However, it is possible to access
the values in these dormant variables with special functions. The grabfilevariable(function (see
“GRABFILEVARIABLE(” on page 5328 of the Panorama Reference) can grab the value of a value even if it is
dormant. The function below will grab the value of the Speed fileglobal variable even if the Transpac Race
database is not on top (it must be open, however). Notice that the variable name ("Speed") must be in quotes .

grabfilevariable("Transpac Race","Speed")

The grabwindowvariable(function is similar (see “GRABWINDOWVARIABLE(” on page 5329 of the
Panorama Reference) except that it grabs the value of windowglobal variables for windows that are not on top.

Chapter 2:Procedures Page 251
“Hidden” Variables and Fields

You may wonder what happens if two or more variables are both accessible and have the same name. For
example, what if the current database has a fileglobal variable named Grok and there is also a global variable
named Grok. In this case the global variable is “hidden” behind the fileglobal variable and cannot be
accessed. The global variable will remain hidden as long as this database is active. The table below shows
how different types of variables can hide other types of variables.

As the table shows, variables can also hide database fields if they have the same name. This can especially be
a problem with global variables, which can interfere with any field in any database. (By interfere we mean
that the field will not be accessible in a formula.) Be sure to avoid global variable names like Name, Address,
State, Amount, or any name that might be likely to be used as a database field.

Accessing Variables In Form Objects (Text or Images)

Several different form objects can display the results of a formula (all references are to the Panorama Hand-
book).

As long as it is accessible (see “Variable Accessibility” on page 250) a variable can be used in the formulas for
any of these objects. For example, a Text Display SuperObject may display any global variable, any fileglobal
or permanent variable created in the same file, or any windowglobal variable created in the same window.

Since a local variable is created and destroyed within each procedure local variables are not accessible to for-
mulas in form objects. If you want to display a variable in a form it must be a windowglobal, fileglobal, per-
manent or global variable.

Creating Variables with a SuperObject

Variables are usually created in a procedure (see “Creating a Variable” on page 247). However, several differ-
ent types of SuperObjects have the option of linking to a variable or a field, and these objects will automati-
cally create the variable if it does not exist. When a variable is created by a SuperObject it is always a global or
fileglobal variable and is initialized to empty text. SuperObjects that can create variables include the Text Edi-
tor (see “Text Editor SuperObject” on page 639 of the Panorama Handbook), Word Processor (see “Word Proces-
sor SuperObject” on page 673 of the Panorama Handbook), Data Button (see “Data Button SuperObjects™” on

Type of Variable Hides these types (if the name is the same)

local all other types of variables and fields

windowglobal fileglobal variables, permanent variables, global
variables and fields

fileglobal
or permanent global variables and fields

global database fields

field nada!

Graphic Objects That Can Display Variables Using a Formula

Auto-Wrap Text (see “Displaying Formulas in Auto-Wrap Text” on page 602)

Text Display SuperObjects (see “Text Display SuperObjects™” on page 608)

Text Editor SuperObjects (see “Text Editor SuperObject” on page 639)

Word Processor SuperObject (see “Merging Data into Word Processing Documents” on page 707)

Flash Art and Super Flash Art (see “Flash Art™” on page 750)

Data Button (see “Data Buttons” on page 837)

Pop-Up Menu Buttons (see “Pop-Up Menus” on page 860)

List SuperObjects (see “List SuperObjects” on page 879)

Page 252 Panorama Formulas & Programming
page 838), Pop-up Menu (see “Pop-Up Menu SuperObjects™” on page 860 of the Panorama Handbook), List
(see “List SuperObjects” on page 879 of the Panorama Handbook), Sticky Button (see “Sticky Push Button
SuperObjects™” on page 855 of the Panorama Handbook) and Scroll Bar (see “Scroll Bars” on page 979 of the
Panorama Handbook).

For example, suppose you are working on a form and create a checkbox using the Data Button tool (see
“Data Buttons” on page 837 of the Panorama Handbook). You select the Variable option and type in the variable
name DeluxeOption, as shown in this illustration.

When the OK button is pressed, Panorama checks to see if you have already created a variable named
DeluxeOption. This may be a global variable, a fileglobal or permanent variable (in this database) or a win-
dowglobal variable (in this window). If the variable has already been created, Panorama will simply use it.
But if there is no such variable, Panorama will create it as a global or fileglobal variable. The default is a glo-
bal variable unless the FileGlobal Variables option is set in the Form Preferences dialog (Setup menu). Except
for how it was created, this variable is just like any other variable and can be used freely in procedures and
formulas.

variable name

Chapter 2:Procedures Page 253
Panorama actually creates the variable the first time it displays this object. If you shut down Panorama and
then later re-open it, the variable will be created the first time the form is displayed. If database has been
saved with the Save Window Position option turned on (see “Saving Window Positions” on page 64 of the
Panorama Handbook) so that this form opens automatically the variable will be created immediately when the
file is first opened.

Permanent Variable Tips

When the permanent statement creates a permanent variable, it really creates two variables: one in memory
and one in the current database. The one in memory is an ordinary fileglobal variable. Whenever the data-
base is saved, Panorama copies the contents of the fileglobal variable into the copy of the variable in the data-
base itself, then saves the database. Just like any other data, the contents of the permanent variable are not
saved unless the database itself is saved. However, if you have not made any other changes to the database,
Panorama will not warn you if you attempt to close a database without saving changes to the permanent
variable.

Whenever a database is opened, Panorama automatically creates fileglobal variables for any permanent vari-
ables associated with that database. Next it copies the values from the database into the fileglobal variables.
The variables are now ready to use.

If you ever want to make a permanent variable un-permanent, use the unpermanent statement, which is fol-
lowed by a list of variables you want to make unpermanent. This statement doesn’t make the variables go
away, but they will no longer be permanent. The unpermanent statement only affects variables that are per-
manent in the current database. The example below changes two permanent variables back into regular (non-
permanent) global variables.

unpermanent myAreaCode,myZipCode

Displaying and Changing Variables

Global, fileglobal and permanent variables can be displayed and modified with the Variables wizard
(in the Developer Tools submenu of the Wizard menu). To display a variable open the wizard and then pick
from one of the three variable submenus.

Page 254 Panorama Formulas & Programming
The wizard window will show the value of the variable. (The window title will show the type of variable, the
database it is associated with and the actual name of the variable.

If you are absolutely sure you know what you are doing, you can click on the variable to edit the value.

When you press the Enter key the variable will be changed. Press Command-Period if you decide not to
change the value (Control-Period on PC systems).

If you want to view variables in another database use the Database menu to select the database that contains
the variables you want to examine.

type of variable database
name of variable

Chapter 2:Procedures Page 255
Control Flow

As it runs a procedure, Panorama usually starts with the first statement in a procedure and works its way
down. However, Panorama is not limited to this kind of linear approach. The procedure can be designed to
make comparisons or decisions and take different steps depending on the result. For example, the procedure
might decide to skip one or more steps, or it might decide to repeat a sequence of steps more than once. The
procedure may even decide to trigger another procedure to help it complete its job. Programmers call this
decision making process control flow, because it controls and possibly alters the flow of statements dynami-
cally as the program is running.

The ability to change the flow of steps “on-the-fly” is the key to programming. A simple example may help
make the utility and power of this concept more clear. Suppose you want to create a procedure that adds fifty
new records to the end of the database. You could simply create a procedure with the AddRecord statement
repeated fifty times. Of course this is inconvenient, and what if you wanted to create 2500 new records?
Instead of repeating the AddRecord statement over and over, you can write a program that repeats a single
AddRecord statement over and over until the proper number of records have been added.

loop
addrecord

until 50

The program is much shorter than if you had literally repeated the AddRecord statement 50 times, and can
be changed easily if you want to add a different number of new records.

Now suppose you want to change this program so that as it adds new records, it alternately puts the word
Black or Gold into the Color field of each record. This requires the program to make a decision for each
record—is this record even or odd? There are several ways this could be programmed in Panorama, The
example below shows just one of them. In this example you’ll notice that all seven steps between loop and
until are being repeated 50 times.

local nextColor
nextColor="Black"
loop

addrecord
Color=nextColor
if nextColor="Black"

nextColor="Gold"
else

nextColor="Black"
endif

until 50

Although this program is quite simple, it illustrates the basic elements of control flow.

True/False Formulas

In Panorama as in most programming languages, control flow decisions are made on the basis of formulas
that are either true or false. The most basic true/false formula compares two values to see if they are equal.

PaymentMethod="C.O.D."

This formula will compare the value in the field PaymentMethod with C.O.D. The result will be true if Pay-
mentMethod is C.O.D., and false if it contains anything else (for example Check, Cash, Visa, etc.). To learn
more about true/false formulas and how to create them see “True/False Formulas” on page 124.

Page 256 Panorama Formulas & Programming
Equals Comparison vs. Assignment

If you have been paying attention you undoubtedly noticed that the formula in the previous section looks
exactly like an assignment. Why doesn’t this formula

PaymentMethod="C.O.D."

assign the value C.O.D. to the field PaymentMethod? At first glance this may appear ambiguous…the same
formula is used to compare two values and to assign a value. How do we know when we are assigning and
when we are comparing? The answer lies in the context in which the formula is found.

In a procedure, an assignment is always by itself, not part of a larger statement. A true-false formula is
always part of another statement, for example if, case, until, while, stoploopif, repeatloopif,
find, select. Here’s an example that shows two formulas that look almost the same, but one is a true-false
formula and one is an assignment.

if PaymentMethod="C.O.D."
ShippingMethod="UPS"

endif

The first formula, PaymentMethod="C.O.D.", is part of the if statement. Because it is part of the if state-
ment this formula means: Is the field (or variable) PaymentMethod equal to C.O.D. (true/false)?

The second formula, ShippingMethod="UPS", is not part of any statement, but stands alone, so this is an
assignment. The statement means: Take the value UPS and copy it into the field or variable named Shipping-
Method.

If an assignment has more than one equals sign, the first equals sign is for the assignment and the rest are for
comparisons. The example assignment below compares B and C. If they are equal (true) the value -1 will be
copied into A. If they are not equal (false) the value 0 will be copied into A.

A=B=C

In other words, A becomes the result of the comparison between B=C.

True/False Values

For purposes of calculation, Panorama treats true and false as numbers: true is -1 and false is zero. Like any
other number, you can store a true/false value in a field or variable and then use it later. The example below
calculates whether a person is a teenager, then uses that information later.

local Teenager
Teenager=Age≥13 and Age<20
...
if Teenager

Price=4.50
else

Price=6.00
endif

Notice that the if statement doesn’t need to compare, it simply uses the result of the comparison that was
calculated earlier. In fact, the if statement (and all other statements that use true/false logic) can use any for-
mula that produces a numeric integer result. The value 0 will be regarded as false, and any non-zero value
will be regarded as true. The example below will be true if the length of the name is non-zero.

if length(Name)
yesno "Is this a home address?"
...

endif

The first line of this example could also have been written if length(Name)<>0. The result is the same
either way.

Chapter 2:Procedures Page 257
IF Statements

The basic building block for making decisions in a Panorama program is the if statement. The if statement
will skip over the next few statements (up to the next endif statement) if the true/false formula is false.
Here’s a simple example.

if City=""
City="Pismo Beach"
State="CA"

endif
message City+", "+State

Depending on what’s in the City field, this procedure can work one of two ways. If the City field is empty, the
true/false formula City="" will be true, so the procedure will perform the assignments City="Pismo
Beach" and State="CA". But if the City field is not empty, the true/false formula will be false, and Pan-
orama will skip past the endif to the message statement.

In this example there are two statements between the if and endif statements. These two statements will be
skipped if the formula is false. However, there is no limit to the number of statements that may be between
the if and endif. Just make sure that there is always a matching endif for every if. Although it is not
required, indenting the statements between the if and the endif usually makes the procedure easier to read
and understand.

ELSE Statements

The else statement turns the if statement into a two way operation: if true, do this, otherwise, do that. You
could do this with two if statements in a row, but the else is simpler.

To use the else statement, place it between the if and endif statements. If the true/false formula is true,
Panorama will perform the statements from the if up to the else and skip the statements from the else up
to the endif. If the true/false formula is false, Panorama will skip the statements from the if up to the else
and perform the statements from the else up to the endif.

The example below calculates sales tax and shipping for both in-state and out-of-state purchases.

if State="CA"
SalesTax=0.08
Shipping=2.50

else
SalesTax=0
Shipping=5.00

endif

If the state is California, the sales tax is 8% and shipping is $2.50. But if the purchase is from any other state,
the sales tax is zero and shipping is $5.00. In this example more or less the same statements are used in both
halves of the if/else, but this is not necessary. The two sections could be completely different.

Nested if Statements

Panorama is not limited to one if at a time. Panorama can make a decision, execute some more statements,
and then make a subdecision. Since the inner if endif pair is completely surrounded by the outer pair, this
is called nesting.

local CardLength
if PaymentMethod="Credit Card"

CardLength=length(CardNumber)
if CardLength<13 or CardLength>16

message "Sorry, invalid credit card number."
endif

endif

Page 258 Panorama Formulas & Programming
If the PaymentMethod is not Credit Card, the procedure will skip all the following statements and do noth-
ing. But if the PaymentMethod is Credit Card, the procedure will continue and calculate the CardLength
variable. The second if statement checks the card length. The message statement will only be performed if
both if statements are true.

Error Handling with if error

There are literally hundreds of different errors that can occur while a procedure is running. Of course you’ll
want to eliminate all of the errors in the procedure itself, but many errors are the result of circumstances
beyond the programmers control. A file can fail to open because it was placed into the wrong folder, the user
can enter the wrong data type into a formula, the list is endless. When such an error occurs, Panorama’s nor-
mal response is to display an error message and stop the procedure immediately. (In addition, if the proce-
dure window is open, Panorama will attempt to highlight the location of the error.)

If you want to create a database that operates professionally, simply stopping the procedure half finished if
there is an error may not be acceptable. Instead, you may want your procedure itself to trap the error and try
to correct it, if possible. At a minimum, you may be able to display an error message that is more relevant to
an untrained operator than Panorama’s general purpose error messages.

To trap errors, use the if error statement (two words - there must be a space). This statement must be
placed immediately after the statement that you are worried might cause an error. For example, suppose you
have a procedure that appends a file with the openfile statement. If the file is missing or has been moved
an error will occur. This example checks for that error, and if the error occurs, asks the user to enter a new file
name. The procedure will keep trying until the file is opened successfully or the user gives up and enters an
empty name.

local txFileName
txFileName="New Transactions"
loop

openfile "+"+txFileName
if error

gettext "Enter the file name",txFileName
reloopif txFileName≠""

endif
while 1≠1
if txFileName="" stop endif
/* further processing of the new transactions, below */
...

A very useful trick for if error is checking to see if a global variable has been initialized with a value (see
“Assigning a Value to a Variable” on page 248). If the variable has already been initialized with a value, you
don’t want to change that value, but if it has not been initialized, you do want to set the value. The example
below checks the AreaCode global variable to see if it has already been set by another procedure. If it has, the
statement xTest=AreaCode will work perfectly. But if AreaCode doesn’t have a value yet, this statement
will produce an error. The if error statement traps the error and sets the AreaCode variable to 714.

fileglobal AreaCode
local xTest
xTest=AreaCode
if error

AreaCode="714"
endif

If you have a lot of variables it may not be necessary to test each one, as long as they are initialized as a group
by any procedure that sets them up. If they are initialized as a group you can just test one variable, then if it
has not been initialized you can initialize the entire group.

If error must be used by itself, you cannot combine other conditions. For example, the statement:

if error and info("modifiers") contains "shift" /* WILL NOT WORK !! */

Chapter 2:Procedures Page 259
will NOT work. To get this effect you must nest a second if statement inside the if error, like this.

if error
if info("modifiers") contains "shift"

...
endif

endif

Another way to handle errors is with the onerror statement, which allows you to change Panorama’s
default behavior for handling an error. See “Catching Program Errors (Especially for Web and other Server
Applications)” on page 288 for details on this statement.

CASE Statements

If a program needs to select one (and only one) option out of many, the case statement is the way to go. Like
the if statement, the case statement uses a true-false formula to decide whether or not to perform the fol-
lowing statements. But unlike the if statement, which is used alone, the case statement is always used in
groups. Panorama checks the true-false formula for each case statement. If it is false, it skips to the next
case statement. If it is true, it performs the statements until the next case statement. Then it skips past all
the rest of the case statement to the endcase statement.

After all the case statements, you may optionally add a defaultcase statement. This will pick up any left-
overs that weren’t included in any of the other cases.

The example below shows how the case statement can be used to divide people up into five age groups.

case Age<5
AgeGroup="Pre-School"

case Age<13
AgeGroup="Youth"

case Age<20
AgeGroup="Teen"

case Age≥65
AgeGroup="Senior"

defaultcase
AgeGroup="Adult"

endcase

This example has included one statement for each case statement, but there is no limit to the number of
statements that may be included in each section. However, there is a maximum limit of 75 case statements
per endcase statement.

LOOP Statements

A loop allows Panorama to repeat a sequence of statements over and over again. The loop can be repeated a
fixed number of times, or until a special condition is fulfilled.

All loops begin with the loop statement, and end with either until or while. The statements in between
these two statements are said to be “inside the loop.” These are the statements that will be repeated over and
over again. Although it is not required, your procedures will usually be easier to read and understand if the
statements inside the loop are indented.

To repeat the statements inside the loop a fixed number of times, use the until statement with a number
after it. This number may be a fixed number, or a variable or formula that calculates a number. For example,
this procedure will add a dozen shiny new records to the database:

loop
addrecord

until 12

Page 260 Panorama Formulas & Programming
To repeat the statements inside a loop until a specific condition is met, put a true/false formula after the
until statement. Like the previous example, this example adds new records to the database. In this case,
however, the number of new records is determined by asking the user (with the gettext statement, see
“GETTEXT” on page 5317 of the Panorama Reference).

local NewCount
NewCount="1"
gettext "How many new records?",NewCount
NewCount=val(NewCount)
loop

NewCount=NewCount-1
AddRecord

until NewCount=0

The while statement is the exact opposite of the until statement; it repeats the loop as long as the formula
remains true. Here is the previous example rewritten to use the while statement.

local NewCount
NewCount="1"
gettext "How many new records?",NewCount
NewCount=val(NewCount)
loop

NewCount=NewCount-1
AddRecord

while NewCount>0

These two examples are exactly the same except for the last line.

Note: The while statement can also be followed by the special word forever, which tells Panorama to
repeat the loop forever. Usually this is used with a stoploopif statement to break the loop, otherwise your
procedure won’t ever stop!

Stopping a Loop in the Middle

The stoploopif statement allows Panorama to break out of the loop in the middle (or even at the top),
instead of at the bottom. Panorama will break out of the loop if the true-false formula is true.

The example below finds every record where the field PrintDuplicate contains Yes. Each of these records is
duplicated. But what if there were no such record? The stoploopif statement will stop the loop before it
ever begins. The stoploopif statement also checks each time the loop is repeated to see if the next state-
ment has found another record to duplicate, or if the loop is done.

toprecord
find PrintDuplicate="Yes"
loop

stoploopif info("notfound")
copyrecord
pasterecord
downrecord
next

while forever

Notice that this sample uses while forever. This means that the while statement will never stop the loop.

Chapter 2:Procedures Page 261
Restarting a Loop in the Middle

The repeatloopif statement tells Panorama to restart the loop from the top. The example procedure below
tries to extract a phone number from the clipboard.

local X,theChar,aPhone
X=1
aPhone=""
loop

theChar=clipboard()[X;1]
X=X+1
stoploopif theChar=""
repeatloopif theChar≠"(" and aPhone=""
aPhone=aPhone+theChar

until aPhone match "(???) ???-????"

Each time the loop goes around it copies the next character from the clipboard into the variable theChar. If
there are no more characters, the loop stops. Each character is checked to see if it is a left parenthesis. Until a (
is found, the repeatloopif statement stops the loop short, repeating only the top portion of the loop. Once
the (is found the loop starts collecting the following data into aPhone. The loop finally stops when the entire
phone number is collected or the clipboard runs out of data.

Subroutines

Sometimes you may need to use the exact same series of steps in several places in your program. Wouldn’t it
be nice if Panorama had a special statement that performed this series of steps for you, so you wouldn’t have
to type those same steps over and over again? Your programs would be smaller, easier to create, and easier to
modify. You can’t create your own statements, but a subroutine is the next best thing.

A subroutine is used by “calling” it. It’s sort of like calling someone to dinner. When a subroutine is called,
Panorama temporarily stops performing the steps in the current procedure. It marks its place in the current
procedure, and then starts performing the steps in the subroutine. When it has completed all the steps in the
subroutine Panorama goes back to the original procedure and starts off right where it left off. The net effect is
as if the statements from the subroutine were copied into the middle of the original procedure.

When the same steps are used in different places, a subroutine has many advantages. First of all, using a sub-
routine makes the database smaller, because these statements appear only once. An even bigger advantage is
that if the statements in the subroutine ever need to be changed, they will only have to be changed in one
place, instead of over and over again.

It’s possible for the main procedure and the subroutine to pass values back and forth between them. These
are called parameters. Parameters allow very general subroutines to be written that can handle a wide vari-
ety of situations.

CALL Statement

The call statement allows any procedure in the current database to be called as a subroutine. The basic format
is simple:

call <procedure name>

For example, suppose you have created a procedure called DuplicateRecord. The procedure looks like this:

Page 262 Panorama Formulas & Programming
We can use this procedure in another procedure by calling it.

toprecord
find PrintDuplicate="Yes"
loop

stoploopif info("notfound")
call DuplicateRecord
next

while forever

Each time Panorama repeats the loop it will call the DuplicateRecord procedure. The three steps in that pro-
cedure will be performed, then it will return to the loop and perform the next statement. As far as Panorama
is concerned, this is exactly the same as if you had written the procedure this way.

toprecord
find PrintDuplicate="Yes"
loop

stoploopif info("notfound")
copyrecord
pasterecord
downrecord
next

while forever

Although there is no difference as far as running the procedure is concerned, there is a big difference for writ-
ing procedures. Suppose you have many procedures that need to duplicate a record. If you create a subrou-
tine to duplicate the record, you can save two lines of typing each time you need to duplicate a record. Most
subroutines have more than three lines, so the savings are even more substantial.

An even more important advantage is that using subroutines allows you to “modularize” your code. You’ll
probably never have to modify the simple code needed to duplicate a record, but more complicated subrou-
tines often need to be adjusted from time to time. If you had simply typed the statements of the subroutine
into each location where they were needed (as shown in orange above) then making the adjustment would be
very time consuming because you would have to locate and modify each copy of the statements. By collect-
ing these statements together in a subroutine you can make any adjustments necessary to the code in a single
location. Every procedure that calls the subroutine will automatically get the benefit of the adjustments.

Calling Procedures With Unusual Names

If a procedure has a space or other punctuation inside the procedure name, you must enclose the procedure
name in quotes, like this:

call "Calculate P/E Ratio"

Quotes are not necessary for a procedure name that contains a period, even if the period is the first character
of the name.

call .DialNumber

It is even possible to calculate the procedure name with a formula. The formula must be surrounded with
parentheses. The example below assumes that there is a dialing procedure for several different fields in the
database, Dial Name, Dial Company, etc. If there is such a procedure for the current field, this procedure will
call it.

call ("Dial "+info("fieldname"))
if error

message "Sorry, can't dial the "+info("fieldname")
endif

If there is no such procedure, the error message will appear.

Chapter 2:Procedures Page 263
Passing Values to a Subroutine (Parameters)

There are a couple of ways to communicate values between the original procedure and the subroutine. One is
to simply put the values in one or more fileglobal or global variables.

A more flexible method is to use procedure parameters. A subroutine may have one or more procedure
parameters. Each procedure parameter is numbered, starting from 1. When you call the subroutine, you must
pass the procedure parameters after the subroutine name. Each parameter must be separated from the next
with a comma, like this:

call <procedure>,<parameter 1>,<parameter 2>, …

Each procedure parameter may be a field, a variable, a text or numeric constant, or a complete formula. How-
ever, if you are going to change a parameter with the setparameter statement, that parameter must be a
field or a variable.

Inside the procedure, the programmer can use the parameter(function to retrieve the parameter values
(see “PARAMETER(” on page 5592 of the Panorama Reference). This function itself has one parameter: the pro-
cedure parameter number, for example parameter(1), parameter(2), etc.

Here is a silly little procedure named Addition that displays the result of an addition problem.

message str(parameter(1))+" plus "+str(parameter(2))+" equals "+
str(parameter(1)+parameter(2))

Any other procedure in the same database can call this procedure with two numeric parameters, like this.

call Addition,4,3

When you run this procedure it calls the subroutine and displays this alert.

By changing the parameters you can change the result.

call Addition,35,12

The subroutine grabs the parameters and puts up the result.

Each parameter may be a complete formula containing variables, constants, operators and functions.

call Addition,4*2+3*7,sqr(121)

Page 264 Panorama Formulas & Programming
Panorama will compute each parameter and pass it to the subroutine.

Subroutine parameters can be numbers or text. Here is a procedure named WordStats that takes a single text
parameter.

local words,wordcount,letters
words=parameter(1)
wordcount=arraysize(words," ")
letters=stripchar(words,"AZaz")
message str(wordcount)+" words (average length "+

pattern(length(letters)/wordcount,"#.#")+" characters)"

This procedure can be called as a subroutine like this.

call WordStats,"Now is the time"

Here is the result.

Just as with the previous example you can pass any data you want to this subroutine.

call WordStats,"Dysfunctional institutions instantiate excessive gobbledigook"

The subroutine calculates the new statistics.

Passing Values Back From a Procedure

The subroutine can also change a parameter value using the setparameter statement (see “SETPARAME-
TER” on page 5747 of the Panorama Handbook). This statement itself has two parameters, the procedure
parameter number you want to change, and new value.

setparameter <number>,<value>

Chapter 2:Procedures Page 265
Here’s a procedure named Weekend that decides whether the current day is during the week or on a week-
end.

if datapattern(today(),"DayOfWeek") beginswith "S"
setparameter 1,"Weekend"

else
setparameter 1,"Weekday"

endif

Any other procedure in this database can call this procedure to find out if today is a weekday or a weekend.
This procedure adds a new record to the database on weekdays but not on weekends. The parameter is the
local variable TypeOfDay.

local TypeOfDay
call Weekend,TypeOfDay
if TypeOfDay="WeekDay"

addrecord
endif

A parameter can be passed to a procedure and then back again. Here’s a modified version of the Weekend
procedure that works for any day, not just today.

if datapattern(parameter(1),"DayOfWeek") beginswith "S"
setparameter 1,"Weekend"

else
setparameter 1,"Weekday"

endif

Here is a procedure that uses this revised subroutine. Notice that the DayInfo variable is assigned a value
(December 7, 1941) before being passed to the procedure. The procedure gives the DayInfo variable a new
value (Weekend).

local DayInfo
DayInfo=date("December 7, 1941")
call Weekend,DayInfo
message "Pearl Harbor was bombed on a "+DayInfo

An important point to understand is that the subroutine does not know the name of the field or variable it is
modifying. It could be DayInfo, TypeOfDay, or ZippityDoo — it’s up to the procedure that calls the subrou-
tine.

In the previous section you learned that a parameter can be any formula, for example 3*4 or
array(Address,2,¶). However, this is not true for parameters that are modified by the subroutine. A
parameter that is going to be modified must be a field or variable. For example, you cannot call the Weekend
subroutine like this.

local DayInfo
call Weekend,date("December 7, 1941") <--- WRONG
message "Pearl Harbor was bombed on a "+DayInfo

The problem with this procedure is that the subroutine has no idea where to put the result.

Here is a more useful subroutine that uses parameters. This subroutine (named ConvertLength) can convert
one measurement system into another (for example feet into meters).

/* call ConvertLength,dimension,from,to */
local from,to,length
from=lookup(info("databasename"),Units,lower(parameter(2)),Factor,0,0)
to=lookup(info("databasename"),Units,lower(parameter(3)),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1,length

Page 266 Panorama Formulas & Programming
The ConvertLength subroutine is designed to be part of this database, which contains the measurement fac-
tors used by the lookup(functions in the procedure (see above).

Here is a procedure that uses the subroutine to convert 12 inches into feet.

local original,converted
original=12
converted=original
call ConvertLength,converted,"inches","feet"
message str(original)+"="+pattern(val(converted),"#.###")

The result is this alert.

By making a slight adjustment we can convert 12 inches into centimeters.

local original,converted
original=12
converted=original
call ConvertLength,converted,"inches","centimeters"
message str(original)+"="+pattern(val(converted),"#.###")

The result is this alert. News flash — 12 inches equals 1 foot.

Chapter 2:Procedures Page 267
This procedure/subroutine combination illustrates a quirk in the way Panorama handles numeric parame-
ters. If you look at the original procedure you will notice that it is setting the parameter to a numeric value.

/* call ConvertLength,dimension,from,to */
local from,to,length
from=lookup(info("databasename"),Units,lower(parameter(2)),Factor,0,0)
to=lookup(info("databasename"),Units,lower(parameter(3)),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1,length

However, the setparameter statement always converts numbers to text when it stores the result in a vari-
able. Because of this the calling procedure must use the val(function to convert the number back into a
number again.

local original,converted
original=12
converted=original
call ConvertLength,converted,"inches","centimeters"
message str(original)+"="+pattern(val(converted),"#.###")

You’ll need to keep this in mind if your subroutine passes back numeric values. (Note: This quirk could prob-
ably be considered a bug. However, if we fixed it then all of the databases that currently work (by using the
val(function) would suddenly become broken. Therefore we intend to keep it this way.)

What if the parameters don’t match the procedure?

Like a hand in a glove, the procedure parameters supplied as part of the call statement must exactly match
the parameters used by the procedure being called. For example, consider the ConvertLength procedure in
the last example. If you call this procedure, you must supply at least three parameters. (It’s ok to supply more
than three…the extra parameters will be ignored.) If you supply less than three parameters, the Con-
vertLength procedure will stop and an error message will be displayed when it tries to access a missing
parameter.

In addition to having the correct number of parameters, the parameters must also have the correct data type.
In our ConvertLength example, the first parameter supplied must be a number, while the second and third
parameters must be text. If the wrong type of data is passed in the parameter, the procedure will stop and dis-
play an error message when you try to use the value. Here’s the message that appears if a numeric parameter
is passed when a text parameter is required, a similar message appears for the opposite case.

Page 268 Panorama Formulas & Programming
It’s possible to check for missing parameters in a procedure using the if error statement. This allows you
to perform your own action instead of displaying the default error message. Here’s a revised version of the
ConvertLength procedure that displays custom error messages and then stops if a parameter is missing.

/* call ConvertLength,dimension,from,to */
local from,to,length,fromUnits,toUnits
fromUnits=parameter(2)
if error

messaage "From units must be inches, feet, yards, centimeters, etc."
stop

endif
toUnits=parameter(3)
if error

messaage "To units must be inches, feet, yards, centimeters, etc."
stop

endif
from=lookup(info("databasename"),Units,lower(fromUnits),Factor,0,0)
to=lookup(info("databasename"),Units,lower(toUnits),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1,length

Although this example stops if there is a parameter error, that is not absolutely necessary. If you can deter-
mine a reasonable default value for a missing parameter the procedure can simply substitute that value and
continue on its way. Here is another variation of the ConvertLength procedure that defaults to inches if the a
parameter is missing.

/* call ConvertLength,dimension,from,to */
local from,to,length,fromUnits,toUnits
fromUnits=parameter(2)
if error

fromUnits="inches"
endif
toUnits=parameter(3)
if error

toUnits="inches"
endif
from=lookup(info("databasename"),Units,lower(fromUnits),Factor,0,0)
to=lookup(info("databasename"),Units,lower(toUnits),Factor,0,0)
if from=0 or to=0 rtn endif
length=(parameter(1)*from)/to
setparameter 1,length

Chapter 2:Procedures Page 269
Here is a procedure that uses the revised subroutine to converts 12 centimeters into inches.

local original,converted
original=12
converted=original
call ConvertLength,converted,"centimeters" <-- missing parameter defaults to inches
message str(original)+"="+pattern(val(converted),"#.###")

Or the missing parameter can be in the middle of the list like this. In this case 12 inches will be converted into
centimeters.

local original,converted
original=12
converted=original
call ConvertLength,converted,,"centimeters" <-- missing parameter defaults to inches
message str(original)+"="+pattern(val(converted),"#.###")

Calling a Subroutine in Another Database

The call statement calls another procedure in the current database as a subroutine. (The current database is
the database associated with the topmost window — not necessarily the database the current procedure
belongs to.) The farcall statement can call any procedure in any open database, not just the current one.
The format of this statement is almost identical to the call statement, but you must specify the database
name.

farcall <database>,<procedure>,<parameter 1>,<parameter 2>, …

The database name should usually be in quotes, like this.

farcall "Length Measurments",ConvertLength,converted,"feet","miles"

It’s also possible to use a formula to calculate the database name. The example below searches for any open
database with the word Phone in the name, then attempts to call the .Dial procedure in that database.

local X,dbList
dbList=info("files")
X=search(dbList,"Phone")
if X=0

message "No phone database open!"
stop

endif
X=arrayelement(dbList,X,¶)
farcall (array(dbList,X,¶)),.Dial,Name

When the database name is calculated as in this example, the formula must be surrounded by parentheses ().

Terminating a Subroutine in the Middle

The rtn statement (short for return) allows a subroutine to stop short in the middle and return to the original
procedure. Usually when a subroutine is called, all the statements in the subroutine are performed from top
to bottom. But if the rtn statement is encountered, the subroutine stops and immediately goes back to the
original procedure. The rtn statement is almost always used in combination with the if or case statement.

Page 270 Panorama Formulas & Programming
The simple example below dials a local phone number, which is passed to the subroutine in parameter 1. If
no phone number is passed, or if a long distance phone number is passed, the subroutine returns without
doing anything.

local DialNumber
DialNumber=parameter(1)
if error

rtn
endif
if DialNumber="" or length(DialNumber)>8

rtn
endif
dial DialNumber

If the rtn statement is encountered in a procedure that has not been called as a subroutine (i.e. an original
procedure) the procedure will simply stop.

Panorama also has another statement that terminates a subroutine in the middle: rtnerror. This statement
allows a subroutine to generate an error (complete with error message). If the statement following the origi-
nal call statement is if error, the subroutine will return and the error will be processed by the if error
statement (see “Error Handling with if error” on page 258). If there is no if error statement, the program
will simply stop immediately and display an error message.

Mini Subroutines within a Procedure

Sometimes you may want to use a short subroutine, perhaps two or three lines. It just seems like too much
hassle to create a separate procedure. For these situations, Panorama allows you to create a subroutine right
inside the current procedure. This special subroutine within a procedure is called a short subroutine.

A short subroutine always begins with a label. A label is a unique series of letters and numbers that identifies
a location within the procedure. The label may not contain any spaces or punctuation except for . and $, and
must always end with a colon. The colon is not actually part of the label, it simply identifies the series of let-
ters and numbers as a label, as opposed to a field or variable. Here are some examples of labels:

diamond:

blue:

mailAction7:

Dispatch.Route:

A short subroutine ends with the end of the procedure, or with a rtn statement. A single procedure may con-
tain many short subroutines, each starting with a label and ending with a rtn statement.

Short subroutines are called with the shortcall statement. This statement is always followed by the name
of the short subroutine (the label). Don’t include the colon here. You must type the label exactly as it appears
at the top of the short subroutine (except for the colon), no quotes, and unlike a regular call statement the
subroutine name cannot be calculated. The shortcall statement also does not allow parameter passing.
Here are examples of how to call short subroutines.

call diamond

call blue

call mailAction7

call Dispatch.Route

Chapter 2:Procedures Page 271
The example below contains a short subroutine called GroupTotal. The short subroutine starts on line 7, with
the label GroupTotal:. This short subroutine performs three steps and then returns to the main section of
the program. The main section of the program calls the subroutine twice, then stops.

field City
shortcall GroupTotal
field State
shortcall GroupTotal
stop

GroupTotal:
groupup
field "Amount"
total
rtn

If the stop statement was not included, the program would continue down and perform the steps in the
short subroutine a third time. In fact, we do this on purpose to produce a shorter version of this program.

field City
shortcall GroupTotal
field State

GroupTotal:
groupup
field "Amount"
total

We’ve also removed the rtn statement at the end of the short subroutine. It’s redundant in this case because
the short subroutine ends at the end of the entire procedure. However, if there were additional short subrou-
tines after this one, all but the last one would require a rtn statement at the end.

Subroutines and Local Variables

Earlier in this chapter you learned that local variables are destroyed at the end of the procedure that created
them (see “The Birth and Death of a Local Variable” on page 249). Local variables also become dormant when
a subroutine is called (except for short subroutines, see “Mini Subroutines within a Procedure” on page 270).
At the end of the subroutine the local variables come out of hibernation. Because of this, local variables cre-
ated in one procedure cannot be accessed in another procedure. Local variables are always completely sepa-
rate.

To illustrate this, consider this procedure which creates a local variable named x.

local x
x=2
call test
message x

The procedure test contains only one line which displays the x variable.

message x

Page 272 Panorama Formulas & Programming
However, this subroutine does not work! The x variable is now dormant and is not accessible to the test pro-
cedure. Instead of displaying the value 2, this error message appears.

As a matter of fact, Panorama allows the test subroutine to have its own separate x variable, like this.

local x
x=9
message x

Now when the original procedure (see above) is run two alerts appear. The first displays the value 9 (the
value of x set in the test subroutine). The second displays the value 2 (the original value of x which was dor-
mant but re-appeared when the test subroutine was finished).

The UseCallersLocalVariables and UseMyLocalVariables Statements

As described in the previous section, local variables created in a procedure can normally only be accessed in
that procedure and not any other. In some special cases, however, it can be useful for a subroutine to access
the local variables of the subroutine that called it. This is especially true when you are creating procedures for
use as custom statements, and when using the execute statement.

Panorama has two statements that allow a procedure to access the local variables of the procedure that called
the current procedure:UseCallersLocalVariables and UseMyLocalVariables. These statements
must be used as a pair. (Be careful not to use the Rtn statement without first using the
UseMyLocalVariables statement.) The UseCallersLocalVariables statement temporarily swaps out
a procedures current local variables with the local variables of the procedure that called this procedure. The
UseMyLocalVariables statement swaps the variables back again. While the variables are swapped you
have full access to the local variables of the caller. You can even create new local variables, which become
local variables belonging to the calling procedure. Here is an example that creates a local variable named
alphabet and initializes it with 26 letters.

usecallerslocalvariables
local alphabet
alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
usemylocalvariables

A procedure could call this subroutine like this. The message statement will display ABCDEFGHIJKLM-
NOPQRSTUVWXYZ even though this local variable wasn't created in this procedure.

call MakeAlphabet
message alphabet

Chapter 2:Procedures Page 273
Recursive Subroutines

A recursive subroutine is a subroutine that calls itself. Some programming languages don’t allow recursion,
but Panorama does allow recursion up to 8 levels deep. Here is an example of a recursive procedure called
AddAddAdd. Notice that it calls itself on line 4.

local x,y
x=parameter(1)
if x>1
 call AddAddAdd,x-1,y
 y=val(y)+x
else
 y=x
endif
setparameter 2,y

Given an integer, this procedure will calculate the sum of that integer plus all lower integers. For example, if
you start with 4 the procedure will compute 4+3+2+1 = 10. The procedure calls itself for each addition. Here
is a procedure that calls AddAddAdd to start the computation. In this case the computation starts with 6, so
the result will be 6+5+4+3+2+1 = 21.

local answer
call AddAddAdd,6,answer
message answer

Although Panorama allows recursion it is very limited. The AddAddAdd procedure won’t work with any
number larger than 8. Usually it’s best to try to write a procedure without recursion. Here’s an example of a
procedure that solves the same problem without recursion. Now we can calculate that for a larger number
like 68 our cumulative sum is 2346.

local x,sum
x=68
sum=0
loop
 sum=sum+x
 x=x-1
while x>0
message sum

As you can see, the non-recursive solution is actually quite a bit simpler than the recursive solution. How-
ever, there are some cases where recursion can greatly simplify the solution of a problem, and Panorama does
have a limited capability to allow recursion.

Using a Subroutine in a Formula (the CALL(function)

Subroutines are usually called from other procedures, but the call(function allows a subroutine to be
called from inside a formula. This means that a procedure can be used anywhere you can use a formula — to
display data on forms and reports, in a Live Menu definition, in a formula fill, anywhere.

The call(function has two required parameters and may also include any number of additional parame-
ters.

call(database,procedure,parameter1,parameter2,parameter3, …)

The first parameter, database, is the name of the database that contains the procedure to be called. If this
procedure is in the same database you can simply use "".

The second parameter, procedure, is the name of the procedure to be called. Usually the procedure name
must be quoted, for example "CubeRoot".

Page 274 Panorama Formulas & Programming
If there are any additional parameters their values are passed along to the procedure, where they can be
accessed with the parameter(function (see “Passing Values to a Subroutine (Parameters)” on page 263).
The procedure can also find out how many parameters were passed by using the info("parameters")
function. (Note: Unlike a regular procedure you cannot pass a value back to a parameter with the
setparameter statement.)

A procedure called within a formula usually a value. This is done with the functionvalue statement,
which has one parameter — the value to be returned. This may be either a text or numeric value. (If the pro-
cedure does not execute a functionvalue statement the default value "" will be returned.)

functionvalue value

Lets look at an actual example. Here is a procedure designed to take arbitrary text and turn it into an alpha-
betized list of words contained within the original text.

This procedure can be called in the Formula Fill command by using the call(function. In this case the text
to be converted into a list of words is in the Joke field.

Chapter 2:Procedures Page 275
It takes a bit longer to run the Formula Fill command than usual, but when it’s done you’ll see that it has
compiled an alphabetical list of words contained in each joke.

This function can also be used in a form to supply data for a Text Display, Text Editor, Auto-Wrap Text, or
Super Flash Art object. In this example we’ll use a Text Editor SuperObject.

Page 276 Panorama Formulas & Programming
Here is the form that contains this object. The Text Editor object that uses this formula is on the right. (Notice
that the Words field is not reference in this formula — it is not needed and can be left out of the database. The
list of words is calculated on the fly as the form is displayed.)

If a new word is added to the joke it will automatically be displayed in the list of words.

Of course you can also use the call(function within a procedure, like this.

local mywords
mywords=call("","wordlist",Joke)
message str(linecount(mywords))+" different words were used in this joke."

The call(function brings the power of procedures to any formula.

Chapter 2:Procedures Page 277
Restrictions on Subroutines used as Formulas. There are some significant restrictions that any procedure
called by the call(function must follow:

For the most part it’s up to you to follow these rules. If you violate these rules Panorama will stop the proce-
dure and the formula with the call(function will fail to calculate a value. (In some situations Panorama
may even crash so take care if you are pushing the envelope.)

You should also be careful to make the procedure run as fast as possible. Since the procedure may be trig-
gered by a formula in a form that is displayed or printed, or in a formulafill statement, it should be kept as
short and fast as possible.

Other Control Flow Statements

There are a few other control flow statements that don’t fit into any neat categories. These statements are
described in the following sections.

Jumping to an Another Location in the Program

The goto statement tells Panorama to jump immediately to another spot in the program (see “GOTO” on
page 5326 of the Panorama Reference). The format of this command is simple:

goto <label>

A label is a unique series of letters and numbers that identifies a location within the procedure. The label
may not contain any spaces or punctuation except for . and $, and must always end with a colon. The colon is
not actually part of the label, it simply identifies the series of letters and numbers as a label, as opposed to a
field or variable. Here are some examples of labels:

diamond:

tryAgain:

accessRoute3:

Start.Over:

The procedure cannot have any database related side effects.
This means that it cannot modify any database fields (variables
are ok). It cannot move up or down (or search) to a different
record in the current database — it must stay on the current
record. It cannot move left or right to a different field.

The procedure cannot switch to a different window (this
includes secret windows) or switch to a different databases.

The procedure can’t change the view in the current window
(for example it cannot change from data sheet to form or
change from data mode to graphics mode).

The procedure cannot create a permanent variable (other types
are ok, and it is ok to change the value of a permanent variable
that already exists).

The procedure cannot display a dialog based on a form. You
can display an alert, though this is almost always a bad idea
and can cause endless loops (for example if an alert appears
when a form object is displayed).

Page 278 Panorama Formulas & Programming
The example subroutine below asks the user to enter an angle. If the angle is not between 0 and 360, Pan-
orama will jump back to the label TryAgain.

fileglobal GoAngle
GoAngle="0"

TryAgain:
gettext "Enter direction (0-360)",GoAngle
if GoAngle>360 or GoAngle<0

goto TryAgain
endif
setparameter 1,val(GoAngle)

You may wonder why the goto statement is buried here at the end of the chapter. It’s simple: we don’t want
you to use it! At least, not much. For years professional programmers have known that too many goto’s
quickly create “spaghetti” code that is usually confusing. In fact, it has been mathematically proven that any
program can be written with if and loop statements, without any goto’s at all. Here’s how our example
could be rewritten without a goto.

global GoAngle
GoAngle="0"
loop

gettext "Enter direction (0-360)",GoAngle
while GoAngle>360 or GoAngle<0
setparameter 1,val(GoAngle)

As you can see, this example is actually simpler without the goto statement. Occasionally the goto state-
ment does make it easier to write a program. Frankly we couldn’t come up with an example of this, but if you
do, feel free to use the goto statement. That’s what it’s there for.

Stopping the Program

The stop statement tells Panorama to stop the procedure immediately (see “STOP” on page 5796 of the Pan-
orama Reference). If the current procedure is a subroutine, the original procedure is also stopped. If you want
the current subroutine to stop but the original procedure to continue, use the rtn statement (see “Terminat-
ing a Subroutine in the Middle” on page 269). The rtn statement also acts to stop the procedure if it is not
being used as a subroutine.

Aborting a Program

Sometimes you may need to stop a program in the middle, before it has finished running. For example, sup-
pose you make a mistake and create a loop that never stops. If that happens you need to abort the program.
On the Macintosh you can do this by pressing Command-Period, on the PC by pressing Control-Period.

The ability to abort any program is normally an important safety valve, but you may have a procedure that
should not be stopped in the middle with a job halfway done. For these types of cases Panorama allows you
to disable the ability to abort during some or all of a procedure.

To disable the abort feature use the disableabort statement. To re-enable the ability to abort use the
enableabort statement. (If you don’t include an enableabort statement Panorama automatically re-
enables aborting at the end of the procedure.)

Chapter 2:Procedures Page 279
The example below shows how these statements can be used. In this case there is no way that the new record
can be added without being filled in by the lookup formulas. You either get all or nothing, but not a halfway
done job.

disableabort
addrecord
Name=dialogName
Address=lookup("Contacts","Name",Name,Address,"",0)
City=lookup("Contacts","Name",Name,City,"",0)
State=lookup("Contacts","Name",Name,State,"",0)
Zip=lookup("Contacts","Name",Name,Zip,"",0)
enableabort

When using the disableabort statement you must be careful, especially when using loops. The procedure
below will hang Panorama. The only way to stop the loop is to reboot the computer or do a force quit on Pan-
orama (Command-Shift-Option-Escape on the Macintosh, Control-Alt-Delete on the PC).

disableabort
local i,tag
i=1
loop

tag="<"+array(Text,i,¶)+">"
stoploopif tag=""
i=i+1

while forever
enableabort

While this example may look silly, it is easy to create an endless loop without realizing it.

Controlling the Abort Process

Sometimes you may want to allow a procedure to be aborted before it is finished, but in a controlled way. For
example, suppose a procedure opens a progress window then loops over and over again to perform some
operation (perhaps copying files or some other slow function). You might want to allow the procedure to be
cancelled before it finishes, but you want to make sure that it closes the progress window even if the proce-
dure is aborted. This can be done with the info("abort") function. This function returns a true or false
value depending on whether the Command-Period (Mac), or Control-Period (PC) key has been pressed.
Here is an example of a procedure that stops the loop if these keys are pressed.

disableabort
loop

if info("abort")
alert 1014,"Abort?"
if info("dialogtrigger") contains "yes"

stoploopif 1=1
endif

endif
...
... body of loop
...

while forever
...
... clean up after loop (close temporary windows, etc.)
...
enableabort

Since the procedure itself is testing to see if it should abort it is able to abort cleanly, finishing up any neces-
sary tasks like closing progress windows, etc. This is much better than simply stopping the procedure at a
semi-random spot.

Page 280 Panorama Formulas & Programming
Important note: The info("abort") function will only return true ONCE for each time the Command-
Period (Mac), or Control-Period (PC) key combination is pressed. If you need to test it more than once (for
example to cancel two nested loops you must copy the result into a variable and then test the variable. In
other words, you generally don’t want to have the info("abort") function in more than one spot within a
loop.

Doing Nothing for a While

The nop statement (short for no operation) tells Panorama to do absolutely nothing! You can use the nop
statement as a placeholder, or to delay for a short time. Here’s an example of a procedure that will delay for a
short time (probably less than a second).

loop
nop

until 20

The exact amount of time delay depends on the speed of your computer. Here's an example that will delay
exactly 10 seconds.

local startTime
startTime=now()
loop

nop
until now()>startTime+10

Another use for the nop statement is to fool Panorama into not displaying a warning dialog. When used as
the last statement in a procedure, or just before a stop statement, statements like quit and close will ask
the user if they want to save changes. By adding a nop statement you can prevent this dialog from appearing.

if info("trigger") contains "Close w/o Save"
close
nop
stop

endif

See “NOP” on page 5545 of the Panorama Reference to learn more about doing nothing with the nop statement
(just kidding, there’s nothing more to learn!).

Building Subroutines On The Fly (The Execute Statement)

Subroutines are usually written in advance using the procedure editing window (see “Writing a Procedure
from Scratch” on page 216). However it is possible for a procedure to construct a subroutine “on-the-fly” and
then immediately call (execute) that subroutine. This magical trick is performed by a special statement called
execute. The execute statement is followed by a formula that calculates the text of the subroutine to be
called.

execute <formula>

Here is an example procedure that uses the execute statement to “ditto” the value in the cell above the cur-
rent cell. Basically, this procedure moves up a line, grabs the cell, then moves down a line and assigns the
new value to the current cell.

local dittoValue,dittoField
dittoField=info("FieldName")
uprecord
if stopped rtn endif
dittoValue=«»
downrecord
execute dittoField+"={"+dittoValue+"}"

Chapter 2:Procedures Page 281
The first line (local dittoValue,dittoField) simply sets up the two local variables we will need (see “Vari-
ables” on page 247).

The second line (dittoField=info("FieldName")) gets the name of the current field and places it in the dit-
toField variable. In the example above this value will be Company.

The third line (uprecord) moves up one record, like this.

The fourth line (if stopped rtn endif) checks to see if we were already on the top line of the database, and
if so, stops the procedure.

The fifth line (dittoValue=«») grabs the value in the current cell, in this case Palo Alto Lumber (see “Using
the Current Field” on page 52).

The sixth line (downrecord) moves back down one record to the original position.

The seventh line (execute dittoField+"={"+dittoValue+"}") assigns the value in dittoValue to the cell.

Let’s take a close look at how the execute statement did its job. Here’s the formula it used.

dittoField+"={"+dittoValue+"}"

Now we know that dittoField is Company, and dittoValue is Palo Alto Lumber. So the result of this formula is
this —

Company={Palo Alto Lumber}

Page 282 Panorama Formulas & Programming
Now this is a valid assignment statement (see “Assignment Statements” on page 243) that assigns a value
into the Company field! (In case you have forgotten, { and } are alternate quote characters that can be used
instead of ". See “Constants” on page 49 for a complete list of quote characters.) This line is a completely
valid subroutine all by itself. So Panorama goes ahead and executes this custom subroutine which causes the
company name to be filled in.

If we move one column to the left, the formula will generate a different custom subroutine.

Title={Purchasing}

The ditto procedure will work for any text field. (It could be revised to work with numeric and date fields as
well with some extra work with the str(and datepattern(functions.)

Tips for On-The-Fly Program Writing

Writing a regular program can be tricky enough. Attempting to create a procedure on the fly can turn into a
quagmire if you don’t take a systematic approach. Careful planning will insure success.

Before you start attempting to write a formula make sure you have a good idea of what the final subroutine
will look like. If the subroutine is more than one or two lines it’s a good idea to create a “mock up” using the
procedure editor. This should be a fully running procedure hard coded for specific data. Here’s an example
mock up for the ditto cell procedure described in the previous section.

Once the mock up is debugged you can start converting it into a formula. Start by figuring out which sections
of the procedure are fixed and which will change, and where the data for the changeable parts will come
from.

Now we’ll start to assemble the formula. The first part is changeable, and comes from the dittoField variable.
So the first part of the formula is simply

dittoField

Next is a fixed component ={. We want this to appear exactly like this in the final subroutine, so we quote it
and concatenate it to the first section. Since we’re using { and } for quotes in the final procedure we’ll need to
use a different kind of quote here. We’re using "" here but we also could have used smart quotes (see “Con-
stants” on page 49 for a list of different types of quotes).

dittoField+"={"

The next component is changeable, and comes from the dittoValue variable, so we’ll add that on next.

dittoField+"={"+dittoValue

from dittoField variable from dittoValue variable

fixed

Chapter 2:Procedures Page 283
Finally we’ll add on the closing } quote. Again this must be enclosed in a different type of quote.

dittoField+"={"+dittoValue+"}"

The trickiest part is often the nested quotes. Each type of quote must be nested in another type. An alternative
technique would be to use the chr(function (see “CHR(” on page 5099 of the Panorama Reference) to generate
the { and } quotes, like this.

dittoField+"="+chr(123)+dittoValue+chr(125)

The values 123 and 125 must be looked up in an ASCII chart. A partial ASCII chart is shown below. (Use the
ASCII Wizard to see complete ASCII chart — see “The ASCII Chart Wizard” on page 89).

As you can see, a regular " quote can be generated with chr(34).

If you are having a difficult time getting your execute formula to work properly a good tip is to temporarily
replace the execute statement with a message statement, like this.

local dittoValue,dittoField
dittoField=info("FieldName")
uprecord
if stopped rtn endif
dittoValue=«»
downrecord
message dittoField+"={"+dittoValue+"}"

When the procedure runs it displays the actual subroutine that it was about to execute.

Page 284 Panorama Formulas & Programming
Often at this point the error is obvious and you can easily go back and check it. If the subroutine is too long to
fit in the dialog you can copy it into the clipboard instead.

local dittoValue,dittoField
dittoField=info("FieldName")
uprecord
if stopped rtn endif
dittoValue=«»
downrecord
clipboard=dittoField+"={"+dittoValue+"}"

After the program runs you can paste the generated subroutine into a text editor and carefully examine it.

If the execute was not the last statement in the procedure you will probably want to place a stop statement
(see “Stopping the Program” on page 278) after the message or clipboard= statement.

Execute and Local Variables

The subroutine generated “on-the-fly” by the execute statement is not part of the current procedure but is a
separate procedure on its own (although it doesn’t have a name and disappears as soon as it is finished). This
means that the local variables in the original procedure become dormant while the “on-the-fly” subroutine is
running, and that the “on-the-fly” subroutine cannot use or modify any of those local variables (see “Variable
Accessibility” on page 250). (It can have its own local variables, however.)

To get around this limitation a new statement was added to Panorama in 2004 — the ExecuteLocal state-
ment. This statement is identical to the execute statement except for the fact that it uses the local variables
of the enclosing procedure instead of its own separate local variables. Here is an example:

local x
x="Hello"
executelocal {message x}

This procedure will display the word “hello”, even though the x variable is not defined within the executelo-
cal part of the procedure.

Using Execute to Process Arrays

The execute statement can be very handy for working with arrays. For example, suppose you have an comma
separated text array (see “Text Arrays” on page 93) named Numbers that contains a series of numbers like
this —

78,173,9,32,201,12,82,376,249

and you’d like to add up the numbers and place the sum in a field named Total. With the execute statement
this can be done with a single line of code!

execute "Total="+replace(Numbers,",","+")

The replace(function (see “REPLACE(” on page 5665 of the Panorama Reference) converts the commas into
plus symbols. The generated subroutine is —

Total=78+173+9+32+201+12+82+376+249

Not only is this code simple, it is very fast. Here is a slightly more complex example that uses a similar tech-
nique to calculate the total of an invoice. The invoice looks like this. The big area on the right is a field named
Items.

Chapter 2:Procedures Page 285
As you can see, if a line in the Items field contains a price it is always after a dollar ($) sign. We can use this
fact to quickly calculate the total.

fileglobal linecalc
if Items≠""
 arrayfilter Items,linecalc,¶,array(import(),2,"$")
 linecalc=arraystrip(linecalc,¶)
 linecalc=replace(linecalc,¶,"+")
 execute "Subtotal="+linecalc
else
 Subtotal=0
endif
Tax=(Subtotal*7.75)/100
Total=Subtotal+Tax

Lines 3 thru 6 are the guts of this procedure.

Line 3 (arrayfilter Items,linecalc,¶,array(import(),2,"$")) uses the arrayfilter function (see
“ARRAYFILTER” on page 5045 of the Panorama Reference) to scan the Items array and strip out only the prices
(after the $ symbol). The intermediate result in linecalc will be something like this.

4.99

5.99
3.50
6.00

Items field

Page 286 Panorama Formulas & Programming
Line 4 (linecalc=arraystrip(linecalc,¶)) strips out any extra carriage returns. The result looks now
looks something like this.

4.99
5.99
3.50
6.00

Line 5 (linecalc=replace(linecalc,¶,"+")) converts the carriage returns (¶ - see “Special Characters” on
page 57) into plus symbols.

4.99+5.99+3.50+6.00

Line 6 (execute "Subtotal="+linecalc) is just like the previous example and calculates the total.

Do It Yourself Data Merge

Auto-wrap text objects allow you to merge data and formulas into a template to be displayed on the screen or
printed in a report (see “Displaying Data in Auto-Wrap Text” on page 595 of the Panorama Handbook). In this
section we’ll describe a technique using the execute statement that allows a procedure to do the same thing.
For example, suppose that you have a template in a variable named Letter that contains this text.

«Name»
«Address»
«City», «State» «Zip»

Dear «Name»,

Your order (reference «Order») has been shipped. You should expect it to arrive within the
next three to five days.

Sincerely,

Acme Widgets

If we can turn this template into a formula we can evaluate it with the execute statement. Let’s see how this
can be done. The first step is to create two arrays. The first array, FieldNames, will contain a list of the fields,
like this.

«Name»
«Address»
«City»
«State»
«Zip»
«Order»

The second array, FieldFormulas, will also contain a list of fields, but modified so that they can be included as
part of a formula.

"}+«Name»+{"
"}+«Address»+{"
"}+«City»+{"
"}+«State»+{"
"}+«Zip»+{"
"}+«Order»+{"

Here’s the code that can generate these two arrays (see “DBINFO(” on page 5150 and “ARRAYFILTER” on
page 5045 of the Panorama Reference).

local FieldNames,FieldFormulas
FieldNames=dbinfo("fields","")
arrayfilter FieldNames,FieldNames,¶,"«"+import()+"»"
arrayfilter FieldNames,FieldFormulas,¶,“"}+”+import()+“+{"”

Chapter 2:Procedures Page 287
Now we can use the replacemultiple(function (see “REPLACEMULTIPLE(” on page 5667 of the Pan-
orama Reference) to transform the template into a formula.

local MergeFormula
MergeFormula=”{“+replacemultiple(Letter,FieldNames,FieldFormulas)+”}”

After the transformation the template has been turned into a valid Panorama formula.

{}+«Name»+{
}+«Address»+{
}+«City»+{, }+«State»+{ }+«Zip»+{

Dear }+«Name»+{,

Your order (reference }+«Order»+{) has been shipped. You should expect it to arrive within
the next three to five days.

Sincerely,

Acme Widgets}

Here’s the complete procedure.

local FieldNames,FieldFormulas,MergeFormula
fileglobal FinalLetter
FieldNames=dbinfo("fields","")
arrayfilter FieldNames,FieldNames,¶,"«"+import()+"»"
arrayfilter FieldNames,FieldFormulas,¶,“"}+”+import()+“+{"”
MergeFormula=”{“+replacemultiple(Letter,FieldNames,FieldFormulas)+”}”
execute “FinalLetter=”+MergeFormula

This procedure turns the template into a final letter with all of the data merged in as requested in the tem-
plate. You could use a procedure like this to generate custom e-mail or as part of a CGI for a web server (in
which case the template would contain HTML).

On-The-Fly Subroutine Error Checking

Just as with any other procedure, it’s possible for an on-the-fly subroutine to contain grammar errors. If the
subroutine contains a grammar error (for example a++b) the procedure will stop and an alert displaying an
error message will appear. If you don’t want that to happen you can place an if error statement after the
execute statement. This example procedure executes whatever is in the PreFlight field and ignores any
grammar error that occurs.

execute PreFlight
if error

nop
endif

The program can find out what the problem was with the info("error") function (see “INFO("ERROR")”
on page 5373 of the Panorama Reference). To find out exactly where the problem occurred check the special
global variables ExecuteErrorStart and ExecuteErrorEnd. These variables contain numbers telling where
within the subroutine Panorama thinks the error occurred. If the subroutine was generated with a complex
formula it may be difficult to relate these numbers back to the formula that generated the subroutine.

The if error statement after the execute only catches grammar errors, not run-time errors. If you want to
catch run-time errors (for example field or variable does not exist or numeric when text expected) you must
build if error statements into the generated subroutine itself (see “Error Handling with if error” on page 258).

Page 288 Panorama Formulas & Programming
Building Parameters on the Fly (Parameters in a Variable)

Many statements accept one or more formulas as parameters. These formulas are usually fixed at the time the
procedure is written. For example the statement below has four parameters:

arrayfilter a,b,¶,str(seq())+": "+import()

Most statements also allow you to store the text of the formula itself in a variable. To do this, use @variable
or @«variable» instead of the formula itself. For example, the previous example could be rewritten using
this technique:

local myFormula
myFormula={str(seq())+": "+import()}
arrayfilter a,b,¶,@myFormula

In this example there is no advantage to this technique, but the power is that now you can change the for-
mula "on the fly". Of course you could also do this with the Execute statement, like this:

local myFormula
myFormula={str(seq())+": "+import()}
execute {arrayfilter a,b,¶,}+myFormula

Using the @ technique has two benefits over using the Execute statement. First of all, it can be quite a bit
faster. Secondly, it makes it much easier to work with local variables.

Warning: When using this technique, take extra care in checking your formulas. Panorama often cannot accu-
rately report the source of a formula error when this technique is used.

Catching Program Errors (Especially for Web and other Server Applications)

The if error statement (see “Error Handling with if error” on page 258) gives the programmer complete
control of what happens when an error occurs at a specific point in the program. However it requires the pro-
grammer to explicitly handle every error that may occur. The OnError statement can be used to catch all
errors that are not trapped by if error statements. This has two benefits when Panorama is used as part of
a web server. First it allows the programmer to easily eliminate all error alert dialogs. This is very important
for server applications because an alert dialog requires human intervention to get the server going again. Sec-
ondly, it makes it easy to build a log of errors.

The OnError statement has one parameter: a text string that contains one or more Panorama statements to
be executed when an error occurs. Notice that this is not the name of a procedure, but the actual statements
themselves (as a string of text). This is similar to the execute statement (see “Building Subroutines On The
Fly (The Execute Statement)” on page 280). Once an error has occurred these statements will run. Within
these statements you can use the info("error") function to find out what the error was, if necessary.

The effect of the OnError statement ends when the main procedure stops running. In other words, OnError
isn't a permanent error handler — you must specify it for each procedure you wish to have error trapping. If
you plan to use OnError, it is probably best to put it in the first line of any procedure that needs error trap-
ping. If you are going to use the same statements with OnError in several different procedures, you may
want to set up the statements in a variable in your .Initialize procedure, then use that variable as the parame-
ter to OnError.

It's important to consider the possible environment that may exist when an error is created. Depending on
the flow of your main procedure, Panorama may not be in the same window or even in the same database.
Your OnError program should generally not make any assumptions about what windows or databases will
be active or available when the error occurs.

Chapter 2:Procedures Page 289
Here is an example of how OnError could be used in a CGI (web server) application. In this example if there
is an error Panorama will return an error message to the web server and also log the error along with the date
and time.

global cgiResult,errorLog
errorLog=errorLog /* make sure errorLog exists */
if error

errorLog="" /* initialize errorLog */
endif
onerror {cgiResult="Panorama Error: "+info("error") }+

{errorLog=sandwich("",errorLog,¶)+}+
{datepattern(today(),"DD/MM/YYYY ")+}+
{timepattern(now(),"hh:mm:ss")+}+
{info("error")}

/* error logging is set up, now we can continue with our tasks */
...
... rest of this procedure
...

Custom Statements

Panorama comes with hundreds of ready to use built-in statements (see “Programming Reference Wizard”
on page 237), but you aren’t limited to these built-in statements. If you don’t find the statement you need you
can build your own! If you are planning on using a particular sequence of steps frequently then it might pay
to create a custom statement that you can use in any database.

As you might have guessed from the phrase “sequence of steps” in the previous paragraph, custom state-
ments are very similar to subroutines. In fact, custom statements actually are Panorama subroutines, written
using Panorama’s standard procedure editor and the Panorama programming language. The only difference
is that these subroutines are placed in a special location, where Panorama automatically loads them so. As it
loads the database containing these special subroutines, Panorama also adds them to the programming lan-
guage so that they are always available to procedures in any database.

To illustrate this, consider the subroutine shown below, which will make a new folder. This procedure is
called MAKENEWFOLDER and is contained in the _DiskLib database.

Even without the ability to create custom statements you can still call this subroutine from another database
using the line shown below. (see “Calling a Subroutine in Another Database” on page 269).

farcall "_DiskLib","MAKENEWFOLDER","My Drive:My Documents:MyImages:Zack:"

Page 290 Panorama Formulas & Programming
This technique has some drawbacks — you have to remember that this subroutine is in the _DiskLib data-
base, you have to make sure that the _DiskLib database has actually been opened, and you have to use the
exact capitalization MAKENEWFOLDER because MakeNewFolder or makenewfolder won’t work. Convert-
ing this procedure into a custom statement fixes these drawbacks. Here is the same subroutine used as a cus-
tom statement:

MakeNewFolder "My Drive:My Documents:MyImages:Zack:"

As illustrated in this example, the procedures used in custom statements are stored in one or more Panorama
databases. These databases are called procedure libraries. These library databases are normally kept in the
Extensions:Libraries folder within the Panorama folder. (Note: All of the databases in the folder shown below
begin with _ and end with Lib, but that is not necessary. You can use any name you like as long as the data-
base is placed within this folder.)

If a database is placed in this folder Panorama will automatically open it when Panorama launches (the data-
base is opened secretly, with no windows). Panorama will then scan the database and register each procedure
in the database as a custom statement. (Actually, only procedures with names that are all upper case letters
will be registered, for example ZIP or ZAP but not Zip or ZAP23.)

Chapter 2:Procedures Page 291
The Custom Statements Wizard

To learn about the custom library statements that are available for your use you can use the Custom State-
ment wizard. When you open this wizard it displays a list of the libraries that are currently available (on the
top left). When you click on a library in this list, the wizard displays a list of statements defined in that library
(on the bottom left).

these statements are defined in
the library _DiskLib.

Page 292 Panorama Formulas & Programming
You can click on a specific statement to see a description of that statement and its parameters.

If you want to see (or even edit) the actual code of this statement, double click on the statement name (in the
list of statements). The actual code for this statement will appear in a separate window. (Note: If the source
code for a custom statement has been opened recently you can also re-open it directly from the Recent
menu.)

If you make any changes to a statement, please do so carefully (especially for statements that are supplied
with Panorama). When you close this window the changes are automatically saved.

Chapter 2:Procedures Page 293
Creating Your Own Custom Statement Library

Panorama comes with about a dozen pre-built custom libraries that you can begin using right away, but you
can also use the Custom Statements wizard to create your own. To do so, choose New Library from the
Library menu. (You may have noticed that all of the libraries that come with Panorama have names that
begin with _ and end with Lib, but that is not necessary.)

Once you’ve entered the name, press OK. Your new library will appear in the list of libraries in the upper left
hand corner.

If you click on your new library you’ll see that it doesn’t contain any statements yet.

Creating a New Custom Statement

To create a new custom statement, first make sure that you have clicked on the name of the library you want
the statement to be created in. ((Note: We do not recommend that you add new statements to the libraries
that come with Panorama. If you do so, your new statements will be destroyed the next time you update Pan-
orama. Instead, make sure to add your new statements to your own libraries.) Then choose New Statement
from the Statement menu, and type in a name for your new statement.

Page 294 Panorama Formulas & Programming
The name must contain only the letters A through Z (uppercase only). You cannot include spaces, numbers,
lower case letters, or any other kind of character except for upper case letters. (Note: The New Statement
command won’t stop you from entering these characters, but if you do, you cannot use this procedure as a
custom statement.) Here are some examples of procedure names that may be used for custom statements.

PARSENAME
SPLITINPUT
WRITELOG

Here are some names that may not be used for custom statements. (If your library database contains proce-
dures with these names those procedures will be ignored when the library is initialized.)

ParseName
SPLIT INPUT
CARD#

To avoid conflicts with future versions of Panorama it's best to choose names that are unlikely to be used by
Panorama itself. For example, MYWRITELOG or ACCOUNTINGLOG might be a safer choice than WRITELOG. If a
future version of Panorama includes a statement with the same name as your statement then your statement
will stop working (you'll have to rename your statement and locate and change every place that you have
used it).

OK, back to the action. When you press the OK button, the wizard will create a brand new procedure with
the specified name.

Although it's not required, it's a good idea to include a procedure information block in each procedure that
will become a statement. In fact this is such a good idea that when you create a new statement a “typical”
procedure information block is created for you, as shown above. However, for this simple example we won’t
use the information block, so erase it and type in the actual code of the procedure.

procedure information block

Chapter 2:Procedures Page 295
This simple statement simply dials Mom’s phone number. However, the statement isn’t quite ready to use.
The final step is to “register” the statement with Panorama. To do this, click back to Custom Statements wiz-
ard and choose Register New/Modified Statements from the Statements menu. The new statement will
appear in the list of statements, and is now ready to use. (Notice that in the description area it says No addi-
tional information is available. This is because there is no Procedure Information Block for this statement.)

To use this new statement, simply type it into any procedure in any database. (Notice that like any other
statement, the dialmom statement is not sensitive, you can use DIALMOM, dialmom, DialMom, diALmOM or
any other combination of upper and lower case letters.)

That’s all there is to it. Later, if you quit and then re-launch Panorama, this statement will automatically be
registered as part of Panorama’s initialization process. From now on the dialmom statement is always avail-
able whenever you need it. (Of course you can always modify and/or delete it later if you wish, but be care-
ful, as this will break any procedures that use your new statement.)

Page 296 Panorama Formulas & Programming
Setting Up a Procedure Information Block

Although it's not required, it's a good idea to include a procedure information block in each procedure that
will become a statement. This block contains descriptive information about the statement and its parameters.
This serves two purposes:

1) It allows the statement to be "self-documenting" through the Custom Statements wizard.

2) It allows Panorama to perform some error checking on the parameters of your statement, making
debugging easier. For example, when this statement is used in a procedure Panorama can check to make
sure that the proper number of parameters is supplied.

The procedure information block should be included in a comment within your procedure (usually at the
top) and looks something like this.

/*
 <PROCEDUREINFO>
 <DESCRIPTION>
 --- put description of procedure here ---
 </DESCRIPTION>
 <PARAMETER NAME=name TYPE=TEXT>--- put description of parameter here</PARAMETER>
 <PARAMETER NAME=name TYPE=TEXT>--- put description of parameter here</PARAMETER>
 <PARAMETER NAME=name TYPE=TEXT>--- put description of parameter here</PARAMETER>
 <EXAMPLES>
 --- put examples (if any) here
 </EXAMPLES>
 </PROCEDUREINFO>
*/

When you create a new statement a “typical” procedure information block is created for you. You’ll need to
modify this block to reflect the actual structure of your new statement. The most important part is to set up
the parameter list to have the correct number of parameters.

Each parameter has a name, type and description.

 <PARAMETER NAME=name TYPE=TEXT>--- put description of parameter here</PARAMETER>

The current version of Panorama only supports one type: TEXT. The name is used only for documentation
purposes.

In the description area any extra whitespace will be ignored. In other words, when the description is dis-
played carriage returns will be turned into spaces and anywhere there are two or more spaces in a row they
will be replaced by a single space (just like HTML text).

The examples section is optional. If included, whitespace is handled the same as the description area. How-
ever, you can also include <p> and
 tags which work just like HTML. (However, <P> and
 are not
supported, the tags must be lower case.)

In the previous section a simple DIALMOM statement was created. This statement has no parameters at all, so
the procedure information block would look like this:

Chapter 2:Procedures Page 297
Whenever you change the procedure information block you must go back to the Custom Statements wizard
and use the Register New/Modified Statements command from the Statements menu. This is especially true
if you change the number of parameters. This command tells Panorama to update its internal description of
this statement. After using this command the wizard now shows the description from the information block.

Here is a slightly more advanced custom statement. This statement has one parameter, a message to be dis-
played.

After the Register New/Modified Statements command is used, this statement will appear in the Custom
Statements wizard like this.

If your procedure has additional parameters you need to document each one in the procedure information
block.

Page 298 Panorama Formulas & Programming
Processing Parameters

Within a custom statement parameters are usually handled with the parameter(function and setparameter
statement, just like a normal subroutine (see “Passing Values to a Subroutine (Parameters)” on page 263 and
“Passing Values Back From a Procedure” on page 264). For example, here is a custom statement that uses two
parameters.

The custom statement libraries that come with Panorama are full of ideas and techniques that you can use in
your own custom statements.

Optional Parameters

In some cases a parameter may be optional. If the parameter is not supplied then the statement will assume a
default value. To make a parameter optional you need to adjust the procedure information block and the pro-
cedure itself. For example, the custom statement below has one parameter (the date), but it is optional.

get original array value

get array separator character

set new array value

Chapter 2:Procedures Page 299
To make this parameter optional, the word OPTIONAL may be placed anywhere within the
<parameter...> tag, as shown above. Since the parameter is now optional, the parameter(function
might not work. The procedure checks for this with the if error statement (see “Error Handling with if
error” on page 258). If the parameter is missing, this particular statement substitutes today’s date.

Because the parameter is optional, the newtransaction statement can be used with or without a date parame-
ter. If there is no parameter, the statement assumes today’s date.

newtransaction

If there is a parameter, the statement will use that date instead.

newtransaction “8/27/03”

Repeating Parameters

Sometimes you may not know in advance how many parameters are needed. If placed at the end of the
parameter list, an optional parameter can actually repeat over and over again. The second parameter of this
custom statement is optional, so it can repeat over and over again.

Notice that the loop loads increasing parameters (2, 3, 4) until it finds a missing parameter, at which point it
stops.

Raw Parameters

The parameter(function allows a procedure to determine the value of a parameter. Sometimes, however, a
procedure needs to access the text of the parameter itself, rather than the value. This information is available
in the «_RawParameters» local variable. This variable is a tab separated array with the raw text of all of the
parameters passed to the subroutine.

If a statement needs to access the raw text of a parameter you'll usually need to add the keyword RAW to the
procedure information block for that parameter, like this:

<PARAMETER NAME=ASSIGNMENT RAW TYPE=TEXT>Assignment statement.</PARAMETER>

Page 300 Panorama Formulas & Programming
The RAW option tells Panorama not to display an error message if it can't compute a value for the parameter
(for example if a variable hasn't been defined yet). However, each parameter must still be a syntactically cor-
rect formula. In other words, it's ok to have a parameter of X even if X hasn't been created yet, but X+ can
never be a legal parameter because that is a syntax error.

To see a some good examples of how raw parameters can be used check out the MAKEGLOBAL and
ARRAYSUBSET custom statements in the _UtilityLib library.

Debugging a Custom Statement

A custom statement can be debugged like any other procedure. You can put a debug statement in the code
and then single step through it (see “Debugging a Procedure” on page 312). As long as the procedure editor
window is open you'll be able to step through the code. You can even step through the custom statements
that are supplied with Panorama.

Accessing Forms & Procedures in the Library Database

When you write a custom statement keep in mind that as the procedure runs the current database is normally
the database that has the topmost window... not the library database. If you need to refer to an item in the
current database you can use the info("proceduredatabase") function. For example, suppose you
want to open a form called "my form" in the library database. Here's an example of how this could be done:

window info("proceduredatabase")+":SECRET"
openform "my form"

Here's how to access a fileglobal or permanent variable in the library database:

grabfilevariable(info("proceduredatabase"),"variableName")

Here's how to call another procedure in the library database:

farcall info("proceduredatabase"),theprocedurename,parameters,if,any

Of course if the other procedure has a name that is all capital letters it will be a statement and can be called
that way as well.

Advanced Topic: Using Libraries In Other Folders

Panorama automatically loads the libraries in the Extensions:Libraries folder when Panorama opens. How-
ever, it is possible to have libraries in other locations. For example, you might want to do this for a commer-
cial product so that you can locate the library in your own folder instead of having to install it into the
Panorama folder. In this case, however, you must manually load the library. Naturally you do this with a cus-
tom statement - the LoadLibrary statement. This statement has two parameters, the path to the folder con-
taining the library and the name of the library itself. Here's how you could load the library database My
Library which is in the same folder as the current database.

loadlibrary folderpath(dbinfo("folder","")),"My Library"

(By the way, there's no harm in loading a library more than once, except for the small delay. If you want, you
can check to see if the library is already loaded with the info("procedurelibraries") function.) This
function returns a carriage return separated list of all of the libraries that are currently active.

Chapter 2:Procedures Page 301
Program Formatting

The way a program is formatted can make a big difference in how understandable it is. Panorama is very
flexible in letting you format a program; you can have multiple statements on a single line, or split a single
statement over multiple lines. Statements can be flush on the left or indented; it’s all up to you.

For example, here’s a sample procedure from earlier in this chapter with one line per statement.

select Debit>0
field Category
groupup
field Debit
total
outlinelevel 1

Here’s the same procedure squished onto a single line. Panorama will understand this just fine, although you
and I might have a more difficult time.

select Debit>0 field Category groupup field Debit total outlinelevel 1

You can even split individual statements across multiple lines, as long as you don’t split a single word or con-
stant in the middle. Here’s another version of this same program.

select
Debit>0
field
Category
groupup
field
Debit
total
outlinelevel
1

Anyplace you can have a single blank or carriage return you can have more than one. Here’s one final exam-
ple.

select Debit>0
field Category
groupup
field Debit
total
outlinelevel 1

In general, we recommend using one statement per line for readability. We also recommend indenting the
statements between if and endif, case and endcase, and between loop and until or while (as seen in
most of the examples throughout this manual). If you have multiple levels of nested if statements, each level
should be indented further. This makes it easy to see which statements are associated with each if/endif
pair.

Here’s a program example with no indenting:

local CardLength
if PaymentMethod="Credit Card"
CardLength=length(CardNumber)
if CardLength<13 or CardLength>16
message "Sorry, invalid credit card number."
endif endif

Page 302 Panorama Formulas & Programming
Now the same procedure with the recommended indenting:

local CardLength
if PaymentMethod="Credit Card"

CardLength=length(CardNumber)
if CardLength<13 or CardLength>16

message "Sorry, invalid credit card number."
endif

endif

A lot easier to understand, isn’t it?

The Edit menu has two commands that can help you shift a section of text to the left or right.

For example, suppose you start with this procedure, which is not indented at all (it’s the same procedure
listed earlier in this section).

To indent the text, start by selecting the text between the if and endif statements.

shift selected text to the right four spaces

shift selected text to the left four spaces

Chapter 2:Procedures Page 303
Now use the Shift Right command to indent the selected text.

Repeat as necessary to indent any other text.

You can even use these commands to change the indentation of the entire procedure.

Now we can add another if statement around the entire procedure.

Consistent indentation can go a long way towards making your programs more readable and bug free.

Page 304 Panorama Formulas & Programming
Notes To Yourself

A comment is a note inside the program. Comments are very useful for documenting how a procedure
works, what the variables are for, what the procedure parameters are, etc. Comments are totally optional, but
you should use them to record anything you think you might forget about the operation of a procedure.

Panorama has three different comment styles: /* … */, //, and ;.

/* … */ comments begin with /* and end with */ The advantage of this type of comment is that a single com-
ment may be many lines long. You can also use this type of comment within a formula.

// comments begin with // and continue to the end of the line.

; comments begin with a semicolon and continue to the end of the line.

A comment can appear almost anywhere in a procedure. The only restriction on comments is that they can-
not be inside the middle of a statement or formula; they must be between statements.

This example shows a procedure with lots of comments. If anyone comes back and takes a look at this proce-
dure next year, they will have no problem telling what the procedure does and how it does it. To emphasize
the comments they are shown in purple below. However, when actually editing a procedure the comments
are black just like everything else.

/* Procedure: .Delay

 This procedure delays for a fairly precise time.
 The procedure has one parameter, the number of seconds to delay.

 Example:
call .Delay,12; delay for 12 seconds

*/
local startTime
startTime=now()// record the time we started
loop

nop ; short delay
until now()>startTime+parameter(1)

“Commenting Out” Statements

One handy use for /* … */ comments is to temporarily remove one or more statements from your program
(usually for testing purposes). Simply put /* and */ around the statement or statements you want to
remove, and those statements are effectively removed from your program without actually erasing them.
(Programmers call this “commenting out” the statements, because they are temporarily “out” of the pro-
gram.) To re-enable the statements simply remove the /* and */.

Chapter 2:Procedures Page 305
Organizing Large Procedures (The Mark Menu)

A single procedure may include up to 32,000 characters of text. A procedure that long would be more than 20
pages long if printed. As a procedure grows it can be difficult to navigate within the procedure itself. The
Mark menu allows you to create "bookmarks" within the procedure. These marks are listed in the Mark
menu.

Choosing an item from this menu causes the editor to jump to the location in the procedure text correspond-
ing to the mark.

As you can see in the illustration above, a mark is simply a special comment (“Notes To Yourself” on
page 304) that looks like this:

//[--Mark Name--]

Page 306 Panorama Formulas & Programming
You can simply type in a mark yourself, or you can use the Set Mark... command in the Mark menu. This
command prompts you for the mark name, then inserts it into the procedure at the current location.

Here is the inserted mark.

Each procedure may contain up to 100 marks. If there are more than 100 marks then any past the first 100 will
not appear in the Mark menu.

new mark

Chapter 2:Procedures Page 307
Suppressing Display of Text and Graphics

As a program executes the windows belonging to the database will often flicker or even redisplay over and
over again as the statements are performed. Often this redisplay serves no purpose except to slow the pro-
gram down and annoy you. To disable display while a sequence of steps is performed you must bracket the
steps with the noshow and endnoshow statements, like this.

noshow
statement
statement
statement
...

endnoshow

The noshow statement tells Panorama to suppress all display of text and graphics by the following state-
ments. For example the sort and formulafill statements normally cause some or all of the window to be
redisplayed. But if these statements follow a noshow statement the window will not redisplay. The
endnoshow statement cancels the effect of the noshow statement and resumes normal display operation.

Note: The noshow statement suppresses all display that results from changes to the database. It does not,
however, suppress display that is causes by changes in the configuration of database windows. For example
if a procedure moves a window to the front with the window statement the newly visible section of the win-
dow will always be displayed, with or without a noshow statement. This is true for any statement that
changes the window configuration: opening or closing a window, changing the size of a window, or changing
the stacking order of the windows.

Updating the Display After (or Within) a NoShow Block

The noshow statement is great for making procedures run faster without unnecessary window updating.
There’s just one problem though - since the window is not updated, it winds up being wrong! Consider the
the procedure below.

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2

endnoshow

Without the noshow statement this procedure will cause the window to update four times. But with the
noshow statement the final result is not displayed! To fix this you must add one of the seven statements in the
table below.

Statement Parameters Description

showpage none Displays the entire database.

showline none Displays the current record.

showfields list of fields Displays the specified fields in the current record

showvariables list of variables Displays the specified variables

showcolumns list of fields Displays the specified fields in all visible records

showrecordcounter none Displays the number of records

showother field,option Depends on option, see documentation below

Page 308 Panorama Formulas & Programming
Using the showpage statement we can fix the program listed earlier so that it displays the final result at the
end of the procedure.

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage

endnoshow

The seven display statements are described in the following sections.

ShowPage

The showpage statement forces Panorama to redisplay all windows in the current database. Here is an
example that performs several operations on the current database, but only updates the display once:

noshow
field Date
groupup by month
field Category
groupup
field Amount
total
outlinelevel 2
showpage

endnoshow

ShowLine

The showline statement forces Panorama to redisplay the current record in all windows in the current data-
base. The example below clears the current record in the database, but doesn’t display anything until it is
completely finished.

noshow
field array(dbinfo("fields",""),1,¶) /* go to first field */
loop

clearcell
right

until stopped
showline

endnoshow

Without the noshow statement you would be able to watch as Panorama cleared each cell in the line. With
the noshow statement all of the cells will appear to disappear simultaneously.

ShowFields field,field,…,field

The showfields statement forces Panorama to redisplay the specified fields in all windows in the current
database. You may list as many fields as you want to display, with each field separated by a comma. (If you
want to display all the fields it is easier to use the showline statement.) The example below modifies three
fields but only displays the change made to the Balance field.

noshow
Date=today()
Time=now()
Balance=Credit-Debit
showfields Balance

endnoshow

Chapter 2:Procedures Page 309
ShowColumns field,field,…,field

The showcolumns statement forces Panorama to redisplay the specified fields in all windows in the current
database. In a data sheet or view-as-list window the entire column is re-displayed, not just the current record.
You may list as many fields as you want to display, with each field separated by a comma. (If you want to dis-
play all the fields it is easier to use the showpage statement.) The example below performs two calculations
on the Balance field, but only redisplays the column a single time.

noshow
field Balance
Balance=Credit-Debit
RunningTotal
showcolumns Balance

endnoshow

ShowVariables var,var,…,var

The showvariables statement forces Panorama to redisplay the specified variables in all windows in the
current database. You may list as many variables as you want to display, with each variables separated by a
comma. The example below adds a new record to the database without changing the display, but does show
the new record count.

noshow
global myCount
addrecord
myCount=info("total")
showvariables myCount

endnoshow

Warning: The showvariables statement is always required if you want to display changes to one or more
variables, even if you are not using the noshow statement.

ShowRecordCounter

The showrecordcounter statement forces Panorama to redisplay the record count in all windows in the
current database. The example below adds three new records to the database but only updates the display
once.

noshow
addrecord
addrecord
addrecord
showpage
showrecordcounter

endnoshow

Page 310 Panorama Formulas & Programming
ShowOther field,code

The showother statement forces Panorama to redisplay all windows in the current database. You specify a
code that tells Panorama what portion of the window to update. This is the code that Panorama uses inter-
nally, so if Panorama becomes capable of a new mode of redisplay it will automatically become available.
Some codes allow you to specify a specific field to update, you can use the field name or use All to specify all
fields. The available codes are listed in this table.

We recommend that you avoid this command if one of the other show commands will do the job for you.

Checking NoShow Status

Sometimes a procedure may need to check whether the display is currently disabled with noshow. This can
be done with the info("noshow") function. This function returns true if noshow is currently in effect, false
if display is normal.

local nstate
nstate=info("noshow")
noshow
sortup
if nstate=false()
 showpage
 endnoshow
endif
rtn

The example above is a subroutine that sorts the database without updating the display. It checks to see if
noshow was already on (perhaps the procedure that called this subroutine had already turned it on), and if
so, leaves it on when it finishes. The calling procedure can then continue to perform other operations without
updating the display. But if the calling procedure had not enabled noshow before calling this subroutine the
subroutine turns the display back to normal before returning (with endnoshow).

Disabling the Watch Cursor

As a procedure runs the cursor often flips from the arrow into a watch, or sometimes a pie chart. This helps
let the user know that they may need to wait.

Code Action

0 Display current cell (should use showfields instead)

1 Display entire page (should use showpage instead)

2 Cursor moved, update data sheet

3 Cursor moved, data sheet already updated

4 Update window after insertline (data sheet or view-as-list)

5 Move cursor up/down (for example after a search)

6 New line with cursor move

96 Display the tool palette

97 Display record count (use showrecordcounter instead)

98 Display data sheet field header (after changing field name)

99 Display after database redesign (insert field, etc.)

Arrow Watch Pie Chart

Chapter 2:Procedures Page 311
In some cases Panorama flips to the watch or pie chart cursor when it is not really necessary (especially on
today’s faster machines). If you want the mouse cursor to remain as an arrow while your procedure runs you
can use the nowatchcursor statement (see “NOWATCHCURSOR” on page 5549 of the Panorama Reference).
Here is a procedure that opens a database. This would normally cause the watch cursor to be displayed, but
in this case the arrow remains active.

nowatchcursor
openfile "Reference Data"
watchcursor

The final statement re-enables the watch and pie chart mouse cursors. In this example the watchcursor
statement isn’t really necessary because Panorama always automatically re-enables these cursors at the end
of any procedure.

Hide and Show

Previous versions of Panorama (up to 3.0) include hide and show commands that allowed a programmer to
turn off the display of text and graphics while the procedure was running. Unfortunately these commands
did not give accurate control over the display, and worse, they could even crash if you attempted to use them
across multiple windows. These commands are still available to retain compatibility with old databases, but
we recommend that you avoid them for new applications.

Page 312 Panorama Formulas & Programming
Debugging a Procedure

In the real world, programs often don’t work correctly the first time. (Sometimes they don’t work the second
or the third time, either!) Panorama has a number of tools that you can use to help locate and correct the
problem in a procedure.

One of the most basic tools you can use is the message statement. By inserting this statement at various
points in your program you can display intermediate results and get a feel for what is happening in your pro-
gram. For example, consider this procedure which has had three message statements inserted into it.

Chapter 2:Procedures Page 313
This procedure is designed to be triggered by a Matrix SuperObject (see “Super Matrix Objects” on page 939
of the Panorama Handbook) which contains menu items.

When you click on a particular matrix item the procedure is triggered.

The first message statement, message info("matrixcell"), displays the number of the cell that was
clicked on. (It also verifies that the procedure is being triggered correctly.)

Page 314 Panorama Formulas & Programming
The next message statement, message section, displays the result of the info("trigger") function.

The final message statement, message item, displays the item that has been looked up and will be added to
the order. This will allow you to quickly spot any errors in the code that retrieves the item and price.

Once the procedure is working correctly you can remove the message statements. If you think there is any
chance you might need them again you can temporarily remove them by “commenting them out” (see
““Commenting Out” Statements” on page 304) like this.

As long as the // is in front of the message statement the statement is disabled. Any time you want the state-
ment back in again you simply need to remove the //.

Sometimes you may want to run a portion of the procedure, display a message and then stop. To do this sim-
ply add a stop statement after the message statement (see “Stopping the Program” on page 278). If both
statements are on the same line then they can both be disabled with a single // comment.

Chapter 2:Procedures Page 315
The Panorama Interactive Debugger

To help solve more stubborn problems Panorama includes a built in debugger. The debugger allows you to
stop a procedure in the middle and execute statements one at a time (called single-stepping). You can actu-
ally watch as your program executes each statement, and you can check the value of fields and variables at
any time.

The Debug Statement

The debug statement pauses the procedure so that you can examine fields and variables. You can insert a
debug statement anywhere in a procedure, and a procedure may contain more than one debug statement.
Usually debug statements are inserted into the procedure temporarily while you are getting the program
running, and then removed when the procedure is operating properly.

Using the Debugger

The first step in using the debugger is to add one or more debug statements to a procedure. In this example
the debug statement has been inserted at the very top of the procedure, but it can be inserted anywhere.

Once this is done, go to a form or data sheet window where you can test the procedure. Be sure to leave the
procedure window open! If necessary, you can open an additional window in the same database - see “Open-
ing More Than One Window Per Database” on page 169 and “The View Wizard” on page 173 of the Panorama
Handbook.

Now start the procedure normally. Usually you will click on a button or pull down a menu item. If this is a
“hidden trigger” procedure you should perform whatever action triggers the procedure.

Page 316 Panorama Formulas & Programming
The procedure will run normally until it gets to the debug statement. At that point the procedure will stop
and Panorama will bring the procedure window back to the front. The statement following the debug state-
ment will be highlighted, indicating that it is the next statement to be performed when the procedure
resumes.

Important: If the procedure window is not open, the procedure will not stop. That’s why it was so important
to leave the procedure window open in the last paragraph. If you wish, you can leave debug statements per-
manently in a procedure. They won’t affect the procedure unless the procedure window is open.

Single Stepping

After the procedure has been stopped by a debug statement, you have the option of continuing the proce-
dure one step at a time. You can watch to see what happens as each step is performed. To perform the next
step, press the Single Step tool, or select Single Step from the Debug menu. (Note: you can also use the Sin-
gle Step command without the debug statement simply by clicking on the tool. Panorama will start single
stepping from the first line of the procedure.)

Before it performs the next statement, Panorama will move the procedure window to the back again, so that
the form or data sheet (or whatever the current window was) is on top again. Panorama performs the state-
ment, then brings the procedure window back on top again. The following statement is highlighted.

Chapter 2:Procedures Page 317
By single stepping again and again you can watch the program run. You can see as the procedure makes deci-
sions at if statements, watch as a loop runs over and over again—everything your procedure does is
instantly visible.

If the procedure uses call or farcall statement to trigger a subroutine (see “Subroutines” on page 261),
single stepping usually considers the subroutine to be a single step. In other words, in one step Panorama
will perform the entire subroutine. However, if the window containing the subroutine procedure is open,
Panorama will single step through the subroutine, letting you see each step in it.

Page 318 Panorama Formulas & Programming
Resuming Full Speed Execution

If you want the procedure to start up again at full speed, press the Run tool or select Run from the Debug
menu. The procedure will start up again at full speed from the current spot. It will continue at full speed until
it either reaches the end of the procedure, or it comes to another debug statement in an open procedure win-
dow.

Making Corrections to a Procedure

In the course of debugging you may find a problem with your procedure. To fix the problem, just edit the
procedure. However, after you change the procedure you can no longer single step or continue the proce-
dure. You must start over again from the top after any kind of change.

Watching Computations

When you single step through a procedure Panorama updates the status bar to show the result of each
assignment statement (see “Assignment Statements” on page 243). This makes it easier to follow along with
what is going on in the procedure. For example, the procedure shown below has just stopped after the debug
statement. The status bar shows the result of the last assignment statement, sentences=0.

Single stepping twice executes the loop and assignment statements. Again, the status bar shows the result of
the assignment, in this case the word Morris.

Chapter 2:Procedures Page 319
Each time you single step through an assignment statement the result is shown in the status bar.

You can use the statusmessage statement to display any formula in the status bar. This statement is similar
to the message statement, but instead of displaying the message in an alert it displays it in the status bar, as
shown below.

Page 320 Panorama Formulas & Programming
The statusmessage statement works any time the procedure window is open, even when the procedure is
running at full speed. A strategically placed statusmessage statement can be ideal for watching the
progress of a loop. For example the statusmessage statement in the procedure above will let you watch as
the procedure counts the words in each sentence — 1, 2, 3 … . If the procedure window is closed the
statusmessage statement is simply ignored, so it is safe to leave this statement in your final procedure in
case you need it later. (When the window is open the procedure may run slower than normal due to the time
taken to update the status bar.)

Using the Inspector to Examine Fields, Variables and Formulas

During debugging, you’ll often need to examine the contents of fields and variables. If the fields and/or vari-
ables you are interested in are not already visible in a form or data sheet window, you can use the Inspector
window to watch them. To access this window, choose the Open Inspector command in the Debug menu.

The Inspector window displays two columns. The left column is for formulas that you enter. The right col-
umn displays the result of each formula.

Chapter 2:Procedures Page 321
Each formula may consist of a field, a variable, or a more complex formula with fields, variables, and/or
functions. The Inspector window calculates and displays the result of each formula. The calculations are
updated every time a field or variable is changed, so you can actually watch the data change as you single
step or proceed through the procedure.

Use the buttons at the top of the window to add and remove formulas.

insert formula

add formula to end

delete formula

Page 322 Panorama Formulas & Programming
To edit a formula, click on it then begin typing.

Press Return or Enter to see the result.

The Inspector window normally displays a list of formulas, one line per formula. If you need to display a for-
mula or result that is more than one line high switch to the Zoom mode. In this mode only one formula and
result is displayed at time.

click to edit formula

Chapter 2:Procedures Page 323
If necessary you can enlarge the window to display a result that doesn’t fit in the normal window size.

To switch back to the list mode press the List button.

What Fields or Variables can be Displayed?

Sometimes you may enter a formula that looks correct to you, but no result appears in the Inspector window.
Why does this error occur? This means that the field or variable is not currently accessible to the procedure
being debugged. As a procedure runs, it may switch from database to database, and variables may be created
and destroyed (see “Variable Accessibility” on page 250). The Inspector window cannot display fields or
variables that the procedure cannot access.

If you are trying to display a local variable, that variable may not exist. Local variables only exist while the
procedure is actually running. You can only see the contents of a local variable while the procedure is
stopped in the middle or single stepping. Before the procedure is started, or after it is finished, the local vari-
able does not exist and cannot be inspected.

When displaying fields, the Inspector window always displays the value of the field in the current debug
database. Usually this is the database that contains the procedure. However, if the procedure switches to a
different database (with the window or openfile statement), the Inspector window will also switch to the
new database. If no result appears, you are probably attempting to display a field in another database.

Use the grabdata(function to display the value of a particular field in a particular database no matter what
database is being debugged. For example, to always display the PayTo field in the Checkbook database, type
the formula grabdata("Checkbook","PayTo") into the Inspector window as shown below.

As long as the Checkbook database remains open in memory you’ll be able to see the contents of this field.

Page 324 Panorama Formulas & Programming
Displaying Functions

Don’t forget that the Inspector window can display any formula, not just fields and variables. One handy
application for the Inspector window is to look at the results of info(functions. For example, you can display
the function info("trigger") to see how a procedure was triggered, or info("files") to see what
databases are currently open.

You can use the asc(function to look up the ASCII value of a character (see “Characters and ASCII Values”
on page 87).

Or you can use the Inspector as a handy calculator.

Note: The Formula Wizard also can be used as a handy calculator. See “Using the Formula Wizard” on
page 29.

Chapter 2:Procedures Page 325
Error Detail Wizard

The Error Detail wizard can help track down the source of an error in a procedure or formula. When an error
occurs, Panorama normally displays an alert, like this:

Once it is enabled the Error Detail wizard can give you more help in tracking down errors like this. Start by
opening the wizard. As you can see, it is initially disabled.

To enable the wizard choose the Error Detail Enabled command in the Error menu.

The menu always shows the current status.

Once you enable Error Detail it will remain on until you explicitly turn it off (even if you close the wizard or
completely quit and relaunch Panorama). Note: Sometimes Panorama becomes so confused by an error that
this wizard doesn't display the correct information. Fortunately this happens quite rarely.

Page 326 Panorama Formulas & Programming
Using the Error Detail Wizard

When Error Detail is enabled error messages in procedures and formulas will have an extra More Info but-
ton.

Pressing the More Info button will open the Error Detail wizard, and in most cases display additional infor-
mation about the error that just occurred.

error message

detailed explanation
of this error (does
not appear for all
error messages

statement in which
this error occurred

parameter (if any) in
which this error occurred

procedure in which this error
occurred, and database
containing the procedure

procedures (if any) that
called the procedure where
the error actually occurred

Chapter 2:Procedures Page 327
Finding the Source of the Error

In addition to providing more information about an error the Error Detail wizard can also pinpoint the exact
location where the error occurred. To find the exact location double click on the procedure name.
In

In some cases (like the example above) the actual problem isn’t at the location where the error occurred, but
further up the “call chain”, where the procedure was called (see “Subroutines” on page 261). You can double
any procedure in the “call chain” to see where the procedure containing the error was called.

Now we can see the problem — the call statement is passing the text "xyz" when it needs to be passing a
number like 123. Changing "xyz" to a number will fix the problem.

double click to see the location of the error

Page 328 Panorama Formulas & Programming
The wizard can also help track down problems that occur in an execute statement (see “Building Subrou-
tines On The Fly (The Execute Statement)” on page 280). Suppose you see an error message like this:

Press the More Info button to see the additional detail.

As you can see, the procedure containing the error has no name because it was built on the fly by an
execute statement. Double click on this line to see the statement itself.

But where is this in the original program? Double click on the second line to see the procedure that contains
the execute statement.

Ok, now the problem should be easy to fix. Notice that the actual statement in the two windows does not
match. This is because the Execute Source window shows the statement after the formula has been evaluated.
This can be very useful if the formula used to build the statement on the fly contains an error.

Chapter 2:Procedures Page 329
Open Reference Wizard

Need more information about the statement that the error occurred in? Simply choose Open Reference Wiz-
ard from the Error menu. The Programming Reference wizard (see “Programming Reference Wizard” on
page 237) will automatically open and display the page for the statement in question.

Copy to Clipboard

This command copies the error detail so that it can be pasted into an e-mail, allowing it to be sent to someone
else. Here’s what the error detail looks like in text format.

If the PROCEDURE name is blank this code is in an execute statement. The SPOT indicates the location of
the error within the source code. The spot is in characters, so for example the call statement in the test pro-
cedure is 8 characters from the start of that procedure (or in this case, the start of the statement defined by the
execute statement.

Error Detail Problems

The Error Detail wizard works well in almost all situations, but there are a few advanced programming tech-
niques can trip it up and prevent it from providing accurate information. Panorama was not originally
designed to support this wizard, and in some situations we were simply unable to retrofit it to do so. The
good news is that it will be immediately obvious when this happens, so you won’t waste time tracking down
bogus information. However in these cases you’ll have to resort to more old-fashioned methods for tracking
down the problem, for example inserting message statements into your code.

Page 330 Panorama Formulas & Programming
Debugging with the TTY (Virtual Teletype) Wizard

Back in the dark ages of computer history (before 1980) computers generally didn’t have fancy debugging
systems, and the most common method for finding bugs was inserting “print” statements in the code to type
messages on the teletype printer attached to the computer.

Chapter 2:Procedures Page 331
By looking at the output of the print statements the programmer could monitor the operation of the program
in question. Though we now have many other options for debugging, sometimes simply “printing” can still
be the most effective way to monitor program operation. Of course most of us no longer have actual teletypes
connected to our computers any more, so Panorama now includes a virtual teletype — the TTY wizard.
(Back in the day TTY was frequently used as an abbreviation for teletype.)

To use this wizard you need to insert one or more tty statements in your code. The tty statement is kind of
like the message statement, but instead of displaying an alert it sends the message to the TTY wizard.

To see the result of the tty statements in this procedure you must open the TTY wizard and enable the TTY
option. (If this option isn’t turned on the tty statements will simply be ignored. This means that you can
leave the tty statements in your procedure permanently if you wish, and only enable them when you want
to monitor the output of your program.)

Page 332 Panorama Formulas & Programming
Now go back and run the procedure.

To see the output of the tty statements, click on the TTY wizard.

The output is listed in three columns. The first column is the date, in YYYYMMDD format. The second col-
umn is the time, in 24 hour HHMMSS format (in the example above the program was run at about 6:45 PM
on January 24, 2007). The third column contains the output from the tty statements. Notice that the output is
listed in reverse order, with the most recent output at the top.

You can keep running the procedure over and over again, or run other procedures with tty statements.
When the data becomes too unwieldy you can start over by using the Clear TTY Log command.

Chapter 2:Procedures Page 333
Using TTY with Growl

Growl is a very cool free open source add-on for OS X that displays temporary messages that fade away
automatically after a few seconds. In other words, a perfect way to display tty messages! If you don’t already
have a copy of Growl you can download it from this web site.

http://growl.info/

It’s a small download (2 mb) and installs easily. Once it’s installed you can enable the Growl option and your
tty message can appear in floating “bubbles” that don’t stop the program and that fade away after a few sec-
onds.

To use the growl option check the option in the TTY wizard (of course you must install Growl first).

Now when you run the procedure you’ll see the growl bubbles appear.

After a few seconds the bubbles will magically disappear (you can also click on them to make them disappear
immediately).

Page 334 Panorama Formulas & Programming
Selective TTY Output (Modes)

The tty statement has an optional second parameter which may be used to specify a mode. This is simply an
identifier that you can use to identify the type or class of information being produced. You can make up any
names for modes you like. In this example the procedure uses three modes: loops, numbers and words.

If you run this procedure you’ll see that the mode appears as a fourth column on the right edge of the TTY
wizard (I also changed the procedure to only loop 5 times).

If you type in the name of a mode in the Modes box and re-run the program only tty messages with that
mode will be displayed.

Chapter 2:Procedures Page 335
If you type in multiple modes separated by commas, all of the listed modes will be displayed.

Note: Don’t type any spaces between the modes, just a comma.

Keeping a Permanent Record

Occasionally you may want to keep a permanent record of the output from the tty statement. The record is
kept in a file named Panorama.log (or Panorama Server.log if you are working with the server) which is
found inside the Application Support folder, which is inside the Library folder in your Home folder.

You can move, rename, or duplicate this file to keep a permanent record. The file can be opened with any text
editor (BBEdit, TextMate, TextEdit, TextWrangler, etc.) or can be imported into Panorama (the text is tab
delimited).

Page 336 Panorama Formulas & Programming
Procedure Debug Log

The procedure debug log was originally developed as an “in house” tool to help debug Panorama itself. It
has proved so useful that we have decided to document and make it available for general use. When the
debug log is in use Panorama records procedure activity in a text file. Later you can review the text file to
trace the actions of your procedure. Although Panorama rarely crashes, when it does the debug log comes in
very handy, because it will record the steps taken right up to the crash. This allows you to find out exactly
what statement is causing the crash (which explains why this debug log is so useful for our in-house pro-
gramming of Panorama itself.)

The Procedure Log Window

To open the log window choose Debug Log from the Wizards menu. When you first open the debug log it
looks something like this.

The list on the left hand side of the window shows each of the previously recorded logs. Each log is date and
time stamped.

list previously recorded logs
contents of selected log

recording optionscreate new log

start/stop recording

Chapter 2:Procedures Page 337
Recording a New Log

To record a new log, start by pressing the New Log button. A new log will be added to the top of the list.

Next, select the recording options for the new log.

For our first log we’ll record only the procedures and statements.

Once the options are set press the Record button to start recording. The button will highlight to show that it is
recording.

Option Description

procedures

When this option is selected the log will record each time a new procedure starts or finishes,
either by being triggered by a menu or button or as a subroutine call. This option can be
handy if you are not sure what procedure is triggered by a button. Simply turn on the Debug
Log, start recording and press the button. Then check the log to find out which procedure
was triggered.

statements When this option is selected the log will record each statement that is executed. Only the
statement itself is recorded, not any parameters (see next section).

parameters When this option is selected the log will record the values of each statement parameter (see
“Decoding Parameters and Assignment Statements” on page 341).

messages When this option is selected the log will record each logmessage statement (see “The Log-
Message Statement” on page 342).

assignments When this option is selected the log will record each assignment statement (A=B, etc.). See
“Decoding Parameters and Assignment Statements” on page 341.

new log

Page 338 Panorama Formulas & Programming
Open the database that contains the procedure you want to test (if it is already open, click on it to bring it to
the front.

Now perform whatever action it takes to trigger the procedure you want to test — choose the procedure from
the Action menu, press on a button, enter data, whatever (see “50 Ways to Trigger a Procedure” on page 355).
In this case we are going to test a procedure named Sentence Length in the Action menu. Here is the text of
the procedure.

Note: Depending on the recording options you have selected, the procedure may run much slower than it
usually does. The recording process slows down Panorama’s speed by an order of magnitude or more.

Chapter 2:Procedures Page 339
When the procedure has finished running, click on the Debug Log window and press the Record button. The
newly recorded log appears on the right hand side of the window.

At the beginning of the log you may see a few lines caused by the debug log database actually recording
itself. You should ignore these lines. Your recording starts with your test procedure being triggered. After that
you will see a recording of each statement the procedure performed.

debug log setup (ignore)

test procedure gets triggered

Page 340 Panorama Formulas & Programming
You can continue to trace the steps the procedure took all the way to the end.

debug log setup (ignore)

end of test procedure

Chapter 2:Procedures Page 341
Decoding Parameters and Assignment Statements

When the Parameters and/or Assignment options are enabled the log will contain much more information.

Each statement parameter is logged with the word Param: followed by the value of the parameter. Each
assignment is logged as the destination (words=) followed by the value that the procedure is putting into the
destination (Please). Notice that in either case the procedure is logging the value and not the formula used to
produce the value, for example n=2, not n=n+1.

local theWord,n,words,sentences

theWord=array(Joke,n,” ”)

n=n+1

words=words+1

Page 342 Panorama Formulas & Programming
The LogMessage Statement

The debug log can quickly generate reams and reams of information that can be tedious to wade through. By
inserting the logmessage statement in strategic locations you can create a log that shows only the informa-
tion that is useful to you. Here is a revised version of the procedure with four logmessage statements added
at strategic spots.

Before recording we’ll adjust the log options to only record messages, not statements, parameters or assign-
ments.

The revised log shows only the messages. You can easily see the flow of the procedure as it scans through
each word and sentence.

Chapter 2:Procedures Page 343
If you look closely at the procedure above (with the logmessage statements) you’ll notice that the assign-
ment statement at the beginning of the loop is different than in the previous examples.

theWord=array(replace(replace(Joke,¶," ")," "," "),n," ")

The reason for this change is that in the process of creating the screen shots to demonstrate the logmessage
statement the log actually showed us that there was a bug in the procedure that caused it to count the num-
ber of words incorrectly! The log created with the logmessage statements made this bug instantly visible,
and hopefully it can do the same for your bugs too!

The Log Menu

When you are finished with a log you can delete it by selecting the log and choosing the Delete Selected
Logs command from the Log menu. To delete every log choose Delete All Logs from the Log menu.

Panorama normally date and time stamps each log file. You can customize how the log file is created by using
the Edit Log File Template command from the Log menu. This command opens a template that allows you
to customize the date/time stamp.

You can customize this template by re-arranging the items.

Page 344 Panorama Formulas & Programming
Using the View Wizard with Procedures

The View wizard has some special features for working with procedures. You can search all procedures
within a database, list information about procedures, even export procedure source and transfer procedures
from one database to another. See “The View Wizard” on page 173 of the Panorama Handbook to learn the
basics of working with this wizard.

Searching All Procedures

The View Wizard has the capability of searching the text of all procedures in a database. Simply check the
Full Procedure Search option and type in the word or phrase you want to search for. The list will update as
you type each key.

check this option to search the
actual code within each procedure
(not just the name)

These procedures contain the word
“shopping”.

Chapter 2:Procedures Page 345
When you double click on one of these procedures the wizard will open the procedure window and automat-
ically locate the first occurrence of the word or phrase.

Choose Find Next from the Search menu to find the next occurrence of this word or phrase within the proce-
dure (if any).

Page 346 Panorama Formulas & Programming
You can repeat using the Find Next command until you have located every occurrence of the word or phrase
in this procedure. At that point you’ll need to go back to the View Wizard to continue with the next proce-
dure.

You can continue this process until you have located every occurrence of the word or phrase in the database.

Chapter 2:Procedures Page 347
Displaying Source Code Statistics

To see a list of statistics for the procedures in the current database choose Get Info from the Source menu. A
dialog with a list of all procedures in the database will appear, along with the number of lines and bytes in
each procedure. (The byte count is the number of characters in the source code, which will be less than the
amount shown in the Memory Usage window. The Memory Usage window shows the total of both the
source code and compiled code.)

If you scroll down to the bottom you’ll see totals for the entire database.

You can also copy this information to the clipboard using the Copy button.

Page 348 Panorama Formulas & Programming
Exporting and Importing Procedure Source Code

To export all of the procedures in a database into a text file use the Export Source command in the Source
menu. The exported file will look something like this:

You can open this file in any text editor to view or modify it. However if you are going to re-import it (see
below) be sure that you don’t disturb the PROCEDURE and ENDPROCEDURE lines.

To import a text file of previously exported procedures use the Import Source command in the Source menu.
You can import the text file into a different database or back into the original database (presumably you have
modified the procedures before doing this).

If you want to transfer one or more procedures from one database to another first export all of the procedures
to a text file, then use a text editor to remove the procedures that you don’t want to transfer. Then import the
modified text file into the second database.

Chapter 2:Procedures Page 349
Cross Referencing

A complex real world system (accounting, reservations, order entry, etc.) created with Panorama may involve
a dozen files with hundreds of fields, variables, procedures, forms, etc. Keeping track of all this information
in your head can be a monumental task.

Panorama’s Cross Reference database feature can help make this task manageable. A cross reference data-
base keeps track of all the items in one or more databases: every field, every variable, every procedure, every
form—every everything. Not only does the cross reference database keep track of where these items are
defined, but also everywhere they are used. For example, suppose your database has a field named Title. A
cross reference database can tell you that this field is used in the Entry, List, and Label forms, and is also used
in the procedures .NewRecord and Search. Or you could use a cross reference database to find out that the
.LastYear procedure is triggered by buttons in the Entry and Annual Report forms. As your database applica-
tions become more complicated you’ll find that a cross reference database is an invaluable tool to help you
sift through a mountain of databases and programming.

Note: You can also use the View Wizard to search through procedures (see “Searching All Procedures” on
page 178). However unlike a Cross Reference database the View Wizard cannot search through forms,
crosstabs or the design sheet.

The Cross Reference Wizard

You’ll find the Cross Reference wizard in the Developer Tools submenu of the Wizards menu.

Page 350 Panorama Formulas & Programming
Before you can use this wizard you’ll need to configure it, so press the Configure button.

For now we’ll simply use one of the previously saved cross references that comes with Panorama. Double
click on ProVUE Order Entry.xrf. The previously configured cross reference appears in the main window.
This cross reference contains a combined index for six databases.

This cross reference contains a combined index for six databases. As you start typing into the search box in
the upper left, the wizard shows you where that text appears in any of the forms, crosstabs, in the six data-
bases. There are 29 fields, forms or procedures that contain the phrase “order.”

2,058 items in this cross reference collection

Chapter 2:Procedures Page 351
The wizard display contains four columns. The leftmost column contains the full contents of the text that
matched your search, along with an icon that identifies the type of view.

The Database column contains the name of the database that contains this item.

The Procedure/Form/Crosstab column contains the name of the procedure, form or crosstab that contains
this item.

The Usage column tells how the matched item is used in this instance.

Opening a Form, Procedure or Crosstab

To open any of the items in the list, just double click on it.

Field (data sheet)

Procedure (script)

Form

Crosstab

double click to open item

Page 352 Panorama Formulas & Programming
If the database is already open, the form, procedure or crosstab will open in a new window. If the database is
not already open, the wizard will ask you if you want to open it.

If you press Open Normal, the database will open normally. Any saved window positions will open, and if
the database has an .Initialize procedure it will be triggered (just as if you had double clicked on this database
on your desktop, or opened it from the Open File dialog.) If you press Open Secret, the wizard will not open
any saved windows, and it will not trigger the .Initialize procedure, if any. Only the requested form, proce-
dure or crosstab will open.

If you double clicked on a procedure, the wizard will automatically highlight the first occurrence of the text
you originally searched for.

You can use the Find Next command to locate additional occurrences of this text.

Chapter 2:Procedures Page 353
Setting up a New Cross Reference

To set up a new cross reference, click on the Configure button. You’ll see the current configuration in the Con-
figuration window. Since you want to create a new configuration, press the Clear button, then type in the
name for the new cross reference you are going to create (up to 27 characters). You can also optionally type in
some notes. Finally, drag the files you want to be included in the cross reference into the bottom portion of
the window.

When you release the mouse the databases will be listed in the configuration window. If necessary you can
drag additional files into this area.

When everything is set up, press the Build Cross Reference button. After a delay, the Configuration window
will close and the new cross reference is ready to use. (The delay may be from a few seconds to a minute,
depending on the complexity level of the databases involved). You can now search the cross reference as
described in the previous section.

name

notes

drag files

Page 354 Panorama Formulas & Programming
If you press the Configure button you’ll see your new cross reference listed.

Updating a Cross Reference

A cross reference is a snapshot in time that reflects the contents of your database at the time you pressed the
Build Cross Reference button. As you work on your databases the cross reference will gradually go out of
date. When that happens you can update the cross reference by pressing the Configure button, then the
Build Cross Reference button.

Chapter 2:Procedures Page 355
50 Ways to Trigger a Procedure

Procedures don’t start up on their own — they must be triggered somehow. There aren’t really 50 ways to
trigger a procedure, but there are quite a few.

There are basically two types of triggers that can activate a procedure: explicit triggers and hidden triggers
(implicit). Explicit triggers allow the user to deliberately trigger a procedure, for example by pressing a but-
ton or choosing an item from a menu. Hidden triggers activate a procedure automatically when the user per-
forms some normal Panorama action. Examples of user actions that can cause a hidden trigger to activate
include adding new records to a database, deleting records, opening a file, closing a window and many more.
Procedures that are activated by hidden triggers can customize the way Panorama responds to these user
actions, giving the programmer tremendous flexibility in creating a user interface that is appropriate for the
task at hand.

The same procedure can be triggered different ways at different times. For example, the same procedure
could be triggered both by a menu command or a button. If necessary, a procedure can use the
info("trigger") function to find out how it was triggered.

The Action Menu

The Action menu is the simplest way to allow a procedure to be triggered. All you have to do is create the
procedure, and it is automatically listed in the Action menu. The Action menu is added to the end of the
standard menus, and the user can activate any procedure simply by selecting its name from the Action menu.
(Advanced tip: If a procedure may be triggered other means in addition to the Action menu (for example, by
a button), you can use the info("trigger") function to find out which way the procedure was triggered.
If the procedure was triggered by the menu this function will return Action Menu.)

Panorama allows some variations from the basic one-size-fits-all Action menu. The programmer can give the
Action menu a different name, or even split the Action menu into multiple menus. The programmer can also
exempt some procedures so that they are not listed in the Action menu (a procedure that is not listed can only
be triggered some other way, for example by a button).

The Action menu does have some significant limitations. Action menus can only be added to the standard
menus, they cannot replace the standard menus. Action menus cannot have any submenus. The Action
menu cannot change when the user switches from form to form—it always contains the same items (unless
you switch to a different database). In addition, there must be a separate procedure for each menu item in the
Action menu. It is not possible to have multiple menu items handled by a single procedure. With these
restrictions in mind, the Action menu is by far the easiest way to set up your own menus in a Panorama data-
base. For many custom Panorama databases, the Action menu is the only user interface. (Note: Prior to ver-
sion 3.0 the Action menu was called the Macro menu.)

Page 356 Panorama Formulas & Programming
Action Menu Options

By adding special characters to a procedure’s name, you can change the way the procedure is displayed in
the Action menu, or even remove the procedure from the menu completely.

There are two special characters that should never be used in a procedure name that is listed in the Action
menu: ^ and ; .

Setting Different Menu Item Styles (Bold, Italic, etc.)

You can make a procedure name appear in several different styles in the Action menu—bold, italic, under-
line, outline, shadow, or a combination of these styles. To change the style of a menu item you must add a
special suffix to the end of the procedure name. The suffix consists of the < character followed by the letter B
(bold), I (italic), U (underline), O (outline) or S (shadow). The action menu below show all six different styles
(including plain) and the procedure names for creating those styles.

You can also combine styles with multiple suffixes, for example Initialize Payroll<B<I for both italic and
bold. You can also combine a style with a command key equivalent, for example Back Order<I/B.

Here’s the same menu on a Windows based system.

 As you can see, the Outline and Shadow styles do not appear on Windows systems.

Shortcuts/Command Key Equivalents

Like other menu items, procedures in the Action menu can have keys on the keyboard assigned to them. On
the Macintosh these are called Command Key Equivalents, on the PC (Windows) they are called shortcuts.
To assign a key to a procedure you add a suffix consisting of a / character followed by the key you want to
assign to the procedure. For example, a procedure named

New Ticket/N

Chapter 2:Procedures Page 357
will show up in the Action menu assigned to the N key. Here is what this menu looks like on both the Mac
(left) and Windows (right).

You can run this procedure by choosing it from the menu, or by pressing Command-N on the Macintosh or
Control-N on a Windows based computer.

If a procedure’s key assignment conflicts with one of Panorama’s standard key assignments, the procedure
will override the standard equivalent. For example, Command/Control-P is normally a command key
equivalent for Print, but if you add a procedure called Post Checks/P, pressing Command/Control-P will
trigger the procedure instead of printing.

Note: You cannot assign a command key equivalent to an “unlisted” procedure (one that begins with a
period). Only procedures that appear in the Action menu can have command key equivalents.

Disabled Menu Items

If a procedure name contains the (character, the procedure name will appear in the menu but will be disabled
(gray).

Don’t use parenthesis in a procedure name unless you want the procedure to be disabled.

Separator Lines in a Menu

Many menus contain one or more gray lines separating different sections in the menu. To add a gray line to
the Action menu, create a procedure with a name that start with (-. Use the New Procedure command in the
View menu to create the procedure. Since the procedure will be disabled in the menu, it should not contain
any statements.

(in procedure name causes menu item to be disabled

Page 358 Panorama Formulas & Programming
To add a second gray line to the menu, create a procedure named (--. The third gray line should be named
(---, the fourth (----, etc. (Each procedure name must contain a different number of dashes because Pan-
orama does not allow duplicate procedure names.) Here’s an example of an Action menu divided into four
sections.

Chapter 2:Procedures Page 359
Renaming the Action Menu

To give the Action menu a different name, insert an empty procedure with a name that begins and ends with
a parenthesis as the very first procedure in the database. For example, inserting a procedure named
(Orchestra) before the first procedure causes the Action menu to become the Orchestra menu.

See “Creating a New Form, Crosstab or Procedure” on page 182 to learn how to insert a procedure in any
position.

Page 360 Panorama Formulas & Programming
Dividing the Action Menu into Multiple Menus

If your database contains lots of procedures you may want to split the Action menu into two or more sepa-
rate menus. To split the Action menu into separate pieces, insert an empty procedure with a name that begins
and ends with parentheses. For example, to start a new menu named People add a new procedure named
(People). All of the procedures below this point will be listed in the People menu. You may split the Action
menu into up to 12 separate menus. The example below shows an action menu split into four different
menus.

If necessary you can re-arrange the procedures to organize them into menus. See “Changing the Order of
Forms, Crosstabs or Procedures” on page 183.

Chapter 2:Procedures Page 361
“Unlisted” Procedures

You may not want the Action menu to list the special procedures you create for buttons, automatic events,
custom menus, or subroutines. To keep a single procedure out of the menu, add a period to the beginning of
the procedure name. Any procedure name that begins with a period will be “unlisted,” for example .Balance
or .Prepare Chart.

To keep an entire group of procedures out of the menu insert a menu named (). Any procedure below a pro-
cedure named () will not appear in any menu.

this procedure is “unlisted”
because it starts with a period

all procedures below () are unlisted

Page 362 Panorama Formulas & Programming
Live Menus

The Action Menu is a very simple method for adding menus to your database. If you need more flexibility,
however, you can use Panorama‘s “Live” menu feature. Live menus give you complete control over the con-
tent and appearance of each menu.

The secret behind the Live Menu system is a new special variable named LiveMenuFormula. If Panorama
finds this variable it uses the contents to control the arrangement and content of the menus in the menu bar.
This variable can be either a fileglobal variable (in which case it controls the menus for all windows in the
current database) or a windowglobal variable (in which case it will control only the current window). In most
cases, however, you will not manipulate this variable directly, but will access it with either the FileMenuBar
or WindowMenuBar statement.

The FileMenuBar Statement

The FileMenuBar statement sets up the menu configuration for every window in the current database. Typ-
ically you might use this statement in the .Initialize procedure so that the menus will be set up as the data-
base opens, but you can use it at any time to change the configuration. The statement has two parameters.

FileMenuBar StandardMenus,CustomMenus

The StandardMenus parameter is simply a list of the standard menus you want to include at the beginning of
the menu bar. Choices available are APPLE, FILE, EDIT, VIEW, TEXT, SEARCH, SORT, MATH and SETUP. (Note:
none of these choices are case sensitive.) You can also disable the action and wizards menu by using -
ACTION and/or -WIZARDS. Items may be separated by spaces or commas. To include all standard menus,
use ALL. To include the basic standard menus (Apple, File and Edit) use BASIC. (Note: On PC systems, the
Apple menu is always excluded even if you ask it to be included.) If all you want to do is suppress some of
the standard menus you can use this parameter and leave the CustomMenus parameter blank. For example, if
you want just the Apple, File, Edit, Action and Wizard menus, use this statement.

FileMenuBar "Basic",""

If you want the Apple, File, Edit, View and Action menu, use this statement.

FileMenuBar "Apple File Edit View -Wizards",""

The CustomMenus parameter contains the formula for your live menus. There are a number of techniques for
writing this formula, but the easiest is to use the menu(and menuitems(functions, like this:

FileMenuBar "Basic",
 menu("Colors")+menuitems("White;Yellow;Orange;Red;Green;Blue;Violet;Black")

As you have probably guessed, this creates a custom menu named Colors with eight items.

Chapter 2:Procedures Page 363
You can repeat to add as many menus as you like:

FileMenuBar "Basic",
 menu("Colors")+menuitems("White;Yellow;Orange;Red;Green;Blue;Violet;Black;")+
 menu("Texture")+menuitems("Flat;Matte;Smooth;Glossy;Ultra Glossy;")

This creates two menus — Colors and Texture:

Remember that you must put these statements into a procedure and run the procedure before the live menus
will appear. Until that point Panorama's standard menus will be used. To make sure that the live menus are
used immediately when the database is opened you should put the FileMenuBar statement into the .Initial-
ize procedure (see “.Initialize” on page 382).

The .CustomMenu Procedure

What happens when a user pulls down a custom menu and selects a menu item? Choosing an item in a cus-
tom menu automatically starts a special procedure. This procedure must be called .CustomMenu. If the data-
base does not have a .CustomMenu procedure then you’ll still be able to pull down custom menus, but they
won’t do anything.

(Tip: When you create the .CustomMenu procedure, make sure that the procedure name is spelled and capi-
talized correctly. Don’t forget the period at the beginning. The easy way to do it right is to select .Custom-
Menu from the pop-up menu in the New Procedure dialog (see “Creating Hidden Trigger Procedures” on
page 378).

Page 364 Panorama Formulas & Programming
If the .CustomMenu procedure name is not spelled correctly, Panorama won’t be able to find and trigger the
procedure when a custom menu item is used, and your custom menus won’t work.)

Programming the .CustomMenu Procedure

Since the .CustomMenu procedure is triggered for all custom menu items, the procedure needs a way to fig-
ure out what item was chosen and act accordingly. For example, if the user pulls down a menu item you’ve
created called Sort by City, you’ll want something different to happen then if the user selects Void Transac-
tion.

Whenever a custom menu item is chosen, Panorama stores the name of the custom menu and the name of the
item. The programmer can retrieve this information using the info("trigger") function (see
“INFO("TRIGGER")” on page 5433 of the Panorama Reference). By combining the info("trigger") func-
tion with if or case statements (see “IF Statements” on page 257 and “CASE Statements” on page 259) the
programmer can create a .CustomMenu procedure that performs the correct action for every custom menu
item. The following sections will illustrate several methods for programming .CustomMenu procedures to
operate correctly.

The info("trigger") Function

The info("trigger") function can be used by any procedure to find out how that procedure was trig-
gered. If the procedure was triggered by a custom menu, the info("trigger") function will return the
word Menu followed by the menu name and menu item name, separated by periods.

Menu.<Menu Name>.<Menu Item Name>

For example, suppose you select Yards from the Units menu.

When this item is chosen the info("trigger") function will return the value:

Menu.Units.Yards

If you are ever in doubt about what value the info("trigger") function will contain for a menu item,
temporarily insert the following line into the top of the .CustomMenu procedure.

Chapter 2:Procedures Page 365
Now choose the custom menu item in question. An alert will appear showing you the exact value produced
by the info("trigger") function.

Once you have the value, be sure to go back and remove the temporary line from .CustomMenu procedure.
A handy way to do this is to comment it out so that it can be easily re-activated later (see ““Commenting
Out” Statements” on page 304).

Processing Custom Menus with Simple IF’s

The simplest way to process custom menus is to use the if statement (see “IF Statements” on page 257). In
this technique a similar block of statements is repeated over and over, once for each custom menu item. Each
block starts with an if statement that uses info("trigger") to decode the menu item name. Then there are
one or more statements that perform the actual operations for this menu item. Since we don’t want any fur-
ther actions for other menu items to be performed, this is followed by a stop statement (see “Stopping the
Program” on page 278). The endif statement terminates the entire block.

if info("trigger") = "Menu.<Menu Name>.<Item Name>"
statement1
statement2
statement3
...
stop

endif

The .CustomMenu procedure should contain one of these blocks for each custom menu item. Since each
block of statements is completely self contained, the blocks can be in any order you want. The example below
shows a .CustomMenu procedure written for two custom menus with two menu items apiece.

if info("trigger") = "Menu.Organize.SortByName"
field LastName
sortup
field FirstName
sortupwithin
stop

endif
if info("trigger") = "Menu.Organize.SortByZip"

field Zip
sortup
stop

endif
if info("trigger") = "Menu.Transaction.Add"

AddRecord«
stop

endif
if info("trigger") = "Menu.Transaction.Void"

Description="Void"
Amount=0
stop

endif

Page 366 Panorama Formulas & Programming
Processing Custom Menus with Nested IF’s

If your database has a lot of custom menu items, the technique described in the last section can be slow for
items that are processed toward the bottom of the .CustomMenu procedure. There may be a noticeable delay
as Panorama processes all the if statements. The solution to this delay is to group the blocks together by
menus using nested if statements. For example, suppose your database uses 6 custom menus with 15 items
apiece. Using the simple if statement technique there could be a delay of as many as 90 if statements before
the statements that actually do the work get started. Using nested if statements this delay is reduced to a
maximum of 21 if statements.

The example below shows the previous example rewritten to use nested if statements. The outer level of if
statements selects what menu is being processed, while the inner level selects the individual menu items.

if info("trigger") beginswith "Menu.Organize."
if info("trigger") endswith ".SortByName"

field LastName sortup
field FirstName sortupwithin
stop

endif
if info("trigger") endswith ".SortByZip"

field Zip sortup
stop

endif
endif
if info("trigger") beginswith "Menu.Transaction."

if info("trigger") endswith ".Add"
AddRecord
stop

endif
if info("trigger") endswith ".Void"

Description="Void"
Amount=0
stop

endif
endif

Splitting the Trigger into Menu/Item Names

In some cases it may be advantageous to split the value returned from info("trigger") back into sepa-
rate menu and menu item names. This can be done with the array(function as shown in the example below
(see “Text Arrays” on page 93).

This example assumes that the database contains a field called Carrier, and a custom menu called Airlines
that contains menu items listing airlines: American, Delta, Southwest, etc. When the user selects an airline
the name of the airline is copied into the Carrier field.

local MenuName,MenuItemName
MenuName=array(info("trigger"),2,".")
MenuItemName=array(info("trigger"),3,".")

if MenuName="Airlines"
Carrier=MenuItemName
stop

endif
/* other menu processing continues below */
…

An even easier method for doing this is to use the splitmenutrigger statement. See the Programming
Reference wizard for more information on this statement.

Chapter 2:Procedures Page 367
Menus with Modifier Keys

Sometimes you may want to have a custom menu item perform a different action if a modifier key is pressed
(Shift, Control, Option, Command or Alt). The program can test for these modifiers with the
info("modifiers") function. This function returns the names of all the modifier keys that are pressed
down.

The partial example below uses the info("modifiers") function to create a shortcut for the Void menu
item. This procedure is programmed so that a confirmation alert normally appears before the transaction is
voided, but if the user holds down the Option key the alert is skipped (Alt key on PC systems).

if info("trigger") = "Menu.Transaction.Void"
if (not info("modifiers") contains "option")

alert 1014,"Are you sure you want to void this transaction"
if info("dialogtrigger")="No"

stop
endif

endif
Description="Void"
Amount=0
stop

endif

Since the user has no way to tell that a modifier key affects the operation of a menu item, this technique
should be used with care. Don’t make pressing a modifier key cause a completely different operation. In gen-
eral this technique should only be used for slight variations (like the shortcut above), or to allow for secret
undocumented operations that you don’t want someone to stumble across accidentally.

Building Menus from Arrays

You'll often want to build a menu (or part of a menu) from an array. The arraymenu(function makes this
easy to do. This function turns a carriage return delimited array into a series of menu items. This example
builds a menu that lists all of the currently open databases.

FileMenuBar "Basic",menu("Databases")+arraymenu(info("files"))

This menu will automatically adjust as databases are opened and closed.

The checkedarraymenu(function is similar, but allows one of the menu items to be checked. The second
parameter specifies what item should be checked.

FileMenuBar "Basic",menu("Databases")+checkedarraymenu(info("files"),info("databasename"))

Page 368 Panorama Formulas & Programming
In this case, the currently opened database is checked.

A more useful example uses a menu to set a variable, in this case allowing a color to be selected from a list of
colors. To create the menu place the following statements in the .Initialize procedure:

FileGlobal colorOptions,colorChoice
colorOptions=replace("White;Yellow;Orange;Red;Green;Blue;Violet;Black",";",¶)
define colorChoice,"White"
FileMenuBar "Basic",menu("Color")+checkedarraymenu(colorOptions,colorChoice)

Here’s the code that must be placed in the .CustomMenu procedure to actually operate the menu (see “The
.CustomMenu Procedure” on page 363).

if info("trigger") beginswith "Menu.Color."
 colorChoice=array(info("trigger"),3,".")
endif

That's all there is too it. Now when an item is selected from the Color menu, the item will be checked.

The value of the choice is in the colorChoice variable, where it can be used by other formulas or procedures.

Command Key Equivalents

Within the menuitems(function an item can be followed by the ¬ character an one or more options. Every-
thing before the ¬ is the menu name, with the options after. The / option is used to set up command key
equivalents. This example creates three menu items with corresponding equivalents.

FileMenuBar "Basic",
 menu("Shipping")+menuitems("Mail¬/M;UPS¬/U;FedEx¬/F")

Chapter 2:Procedures Page 369
To select Mail with the keyboard, type Command-M (Control-M on the PC). UPS is Command-U/Control-
U while FedEx is Command-F/Control-F.

Menu Styles

Using the < option, menus can be bold, italic, underline, or a combination of these three choices.

FileMenuBar "Basic",
 menu("Currency")+menuitems("Dollar¬<B<U/D;Euro;Franc¬<I;Lira¬<I;Peso;Pound¬<U;Yen")

Here is the menu created by this statement.

Disabled Menu Items and Separator Lines

To disable a menu item make the first character in the menu name a left parenthesis (.

FileMenuBar "Basic",
 menu("Currency")+menuitems("Dollar;Euro;(Franc;(Lira;Peso;Pound;Yen")

Here is the menu with the disabled items.

To create a divider line the menu item should be (-, like this:

FileMenuBar "Basic",
 menu("Network")+
 menuitems("ABC;CBS;NBC;FOX;(-;BRAVO;CNN;ESPN;USA;(-;HBO;SHOWTIME;CINEMAX")

Page 370 Panorama Formulas & Programming
This menu is divided into three sections: Broadcast networks, basic cable, and premium cable:

Submenus (Hierarchical Menus)

One of the advantages of the Live Menu system is that it makes it easy to attach a submenu to any menu item
(even an item in a submenu for multiple menu levels of submenus. If you use submenus they must be
defined before they are used. Submenus are defined with the submenu(function instead of the menu(func-
tion. To use a submenu you must place (submenu name) in the options area at the end of the menu item
(after the ¬ character).

FileMenuBar "Basic",
 submenu("Broadcast")+menuitems("ABC;CBS;NBC;FOX;WB;")+
 submenu("Basic")+menuitems("A&E;BRAVO;CNN;C-SPAN;COURT;ESPN;MSNBC;TNT;USA;WEATHER;")+
 submenu("Premium")+menuitems("HBO;SHOWTIME;CINEMAX;")+
 menu("Network")+menuitems("Broadcast¬(Broadcast);Basic Cable¬(Basic);Movies¬(Premium)")

This example creates a menu with three submenus.

divider lines

Chapter 2:Procedures Page 371
Multiple Column Menus

On MacOS, a menu that has too many items to fit within the height of the display will scroll. By using the
columnmenu(function you can create a menu that wraps to two , three, four or more columns as needed.
Otherwise this function is the same as the menu(function.

FileMenuBar "Basic",columnmenu("Titles")+arraymenu(listchoices("Title",¶))

Multiple column menus are useful when your menus contain a lot of items.

On Windows computers menus always wrap to multiple columns, so this function is the same as the menu(
function.

Page 372 Panorama Formulas & Programming
The WindowMenuBar Statement

The WindowMenuBar statement works exactly like the FileMenuBar statement except for the fact that it
only specifies the menus for the current window instead of for all windows in the current database. Typically
you would use this statement immediately after opening the window.

OpenForm "Currency Conversions"
WindowMenuBar "Basic",
 menu("Currency")+menuitems("Dollar;Euro;(Franc;(Lira;Peso;Pound;Yen")

You can combine the WindowMenuBar and FileMenuBar statements. In this case the WindowMenuBar
overrides for the windows in which it is used.

Advanced Topic: Live Menus Behind the Scenes

The following sections describes the nitty gritty details of how Live Menus work. For most applications you
won't need to know this information and you can simply skip this section.

Live menus are set up by creating a fileglobal or windowglobal variable named LiveMenuFormula. This vari-
able needs to be filled with a formula that calculates the menus to display. An important distinction is that the
variable must contain with the formula itself -- not the result of the formula. The FileMenuBar and
WindowMenuBar statements automatically create this variable for you and fill it with the formula.

When switching to a new window or clicking on the menu bar Panorama will look for this variable. If the
variable exists, Panorama will calculate the formula result, and use that result to display all of the menus.
This means that all of the menu contents are calculated on the fly as you click on the menu bar!

 The formula in the LiveMenuFormula variable must calculate a carriage return delimited array. Panorama
will scan this array from top to bottom. A line that begins with (and ends with) signals the start of a new
menu. All other lines represent individual menu items.

Menu Titles

Menu titles must begin and end with (and). Here are some examples of menu titles.

(File)
(Message)
(Windows)

A menu title can have one or more options. Options appear after the end of the menu title. A tab character
must appear before the first option, immediately after the). The options available are:

*S - This is a submenu. It will not appear in the menu bar, but may be attached to other menus (see below).

*E - This is the edit menu. When a text or word processing object is clicked on, this menu will be replaced
by the correct editing menu for that object.

*M - This is a multiple column menu. Instead of scrolling if there are too many items to fit on the screen,
the menu will wrap to two or more columns.

Here are some examples of menu titles with options:

(Fields)¬*S*M
(Recent)¬*S

Note: In these examples, the ¬ character represents the tab character. The actual formula to create the titles
above would be:

"(Fields)"+¬+"*S*M"
"(Recent)"+¬+"*S"

Chapter 2:Procedures Page 373
To simplify the examples we'll use ¬ to represent the tab character in the examples in the following sections.

If a menu title is entirely numeric, Panorama will insert the corresponding standard menu into the menu bar
at that location. For example, (1) is the Apple menu, while (27) is the standard File menu for use with a
form. Note: If the user selects an item in a standard menu, the .CustomMenu procedure is not triggered.
Instead, Panorama simply performs the normal action for that menu item. Note 2: A standard menu should
not have any menu items (see below) following it. The standard menu should be immediately followed by
another menu title.

Note: Panorama normally includes the Action and Wizard menus in your menu bar automatically. If you
want to remove either of these menus you can by using the special menu titles (-ACTION) and (-
WIZARDS).

Menu Items

Any line that does not begin with a (and end with) is a menu item. Most menus have one or more items. The
items should be immediately below the corresponding menu title. Here is an example of a simple menu:

(Shipping)
US Mail
UPS Ground
Fedex
DHL

If the first character of a menu item is √ or • the menu will be marked:

(Shipping)
US Mail
√UPS Ground
Fedex
DHL

Note: In this example, the name of the menu item is still "UPS Ground", not "√UPS Ground". This is the value
that will appear in info("trigger") if this menu item is selected.

If the first character of a menu item is (the menu will be disabled (dimmed). In this example both Fedex and
DHL are not available:

(Shipping)
US Mail
√UPS Ground
(Fedex
(DHL

If the first character of a menu item is a tab then special characters in the name are put into the menu name. If
the LiveMenu formula results in the text shown below, the (Alpha menu item will not be dimmed, and the (
character will appear in the menu. The (Beta) menu item is NOT a new menu title, and the (and) will appear
in the menu. (Remember that in these examples ¬ represents the tab character.

¬(Alpha
¬(Beta)

You can combine the √, •, (and ¬ characters. In this example the Gamma menu is dimmed, checked, and
contains the (and) characters.

√(¬(Gamma)

Page 374 Panorama Formulas & Programming
By adding ¬ at the end of the menu item you can specify options

MENU ITEM¬/F - Command-F
MENU ITEM¬/N - Command-N
MENU ITEM¬<B - Bold
MENU ITEM¬<I - Italic
MENU ITEM¬<U - Underline

All of these options can be combined in ways that make sense. The Omega menu item below is checked with
a bullet (•), is bold, italic and has an key equivalent of Command-F.

•¬(Omega)¬/F<B<I

Submenus

A submenu must be defined before it is used. Once it is defined it can be attached to any menu item like this:

MENU ITEM¬(SUBMENU)

Here is an example that shows how to create a Travel menu with three submenus, Air, Car, and Train

(Airlines)¬*S
American
Continental
Delta
Jet Blue
Southwest
United
(Train)¬*S
Amtrak
VIA
(Car Rental)¬*S
Avis
Hertz
National
(Travel)
Air¬(Airlines)
Car¬(Car Rental)
Train¬(Train)

Formula Errors

What if the formula in the LiveMenuFormula variable contains an error? In that case, Panorama simply dis-
plays the standard menus. There is no error message or indication of where the problem occurred. So if your
custom menu doesn't appear you need to start looking very closely at the formula you have set up. (Note:
Another advantage of the WINDOWMENUBAR and FILEMENUBAR statements is that they automatically check
for and display formula syntax errors when you write your procedure. However, it is still possible to have a
formula evaluation error (for example "number when text was expected") even when using these statements.
Often the best approach is to simply remove parts of the formula until it works, then fix the portion that was
most recently removed.)

The menu(, menuitems(, arraymenu(and checkarraymenu(functions

These functions were introduced earlier. Now you can easily see what these function actually do. The menu(
function simply adds () and a carriage return to the menu name. The menuitems(function simply converts
a semicolon separated array into a carriage return separated array. It also converts ¬ characters into tab char-
acters. The arraymenu(functions add a tab to the beginning of each array element so that (,), *, < and /
characters in array values will be displayed properly in the menu.

Chapter 2:Procedures Page 375
Helper Functions for Standard Menus

The following functions help incorporate standard Panorama menus into your live menu bar. By using these
functions you eliminate the need to look up the correct menu numbers. In addition, the functions automati-
cally adjust the menu numbers depending on whether or not the current window is a form or data sheet.

STANDARDFILEMENU() - Generates the specification for the standard File menu (and the Window sub-
menu). The specification will be adjusted depending on whether the current window is a form or a data
sheet.

STANDARDEDITMENU() - Generates the specification for the standard Edit menu. The specification will be
adjusted depending on whether the current window is a form or a data sheet.

STANDARDVIEWMENU() - Generates the specification for the standard View menu.

STANDARDFIELDSMENU() - If the current window is a data sheet, this function generates the specification
for the standard Fields menu.

STANDARDTEXTMENU() - If the current window is a data sheet, this function generates the specification for
the standard Text menu (as well as the Font and Size menus).

STANDARDSEARCHMENU() - Generates the specification for the standard Search menu.

STANDARDSORTMENU() - Generates the specification for the standard Sort menu.

STANDARDMATHMENU() - Generates the specification for the standard Math menu.

STANDARDSETUPMENU() - Generates the specification for the standard Edit menu. The specification will be
adjusted depending on whether the current window is a form or a data sheet.

NOACTIONMENU() - When included in the formula the Action menu is removed from the menu bar.

NOWIZARDMENU() - When included in the formula the Wizards menu is removed from the menu bar.

Page 376 Panorama Formulas & Programming
Buttons

Buttons are an important part of the today’s modern graphic user interfaces. You can use a wide variety of
buttons in any Panorama form. Panorama buttons come in three basic varieties: push buttons, data buttons
(checkboxes and radio buttons), and pop-up menu buttons. All of these types of buttons can trigger a proce-
dure. Use the configuration dialog for the button to select which button will be triggered when the button is
pressed (see “Buttons & Widgets” on page 823 of the Panorama Handbook).

When a button is triggered by a procedure the info(“trigger”) function will return the title of the button.
If you wish you may use a single procedure with many different buttons. For example, consider this form,
which has four different buttons.

All four of these buttons trigger the .ButtonMath procedure. In fact, the only difference between these but-
tons is their titles. Here is the configuration dialog for one of these buttons.

Chapter 2:Procedures Page 377
The .ButtonMath procedure uses the info("trigger") function to decide which button was pressed.

Notice that the name of this procedure starts with a period. This makes this an “unlisted” procedure that
does not appear in the Action menu (see See ““Unlisted” Procedures” on page 361). It wouldn’t make any
sense to trigger this procedure from the menu, so it’s best to make it unlisted.

Page 378 Panorama Formulas & Programming
Hidden Triggers

Hidden triggers activate a procedure automatically when the user performs some normal Panorama action.
Examples of user actions that can cause a hidden trigger to activate include adding new records to a data-
base, deleting records, opening a file, closing a window and many more. The trigger is “hidden” because the
user is not explicitly asking Panorama to activate a procedure by pressing a button or selecting a menu
choice.

Procedures that are activated by hidden triggers can modify (or even override) the way Panorama reacts to
many standard user actions. For example, when a user clicks on a window’s close box, Panorama normally
responds by closing the window. But with a hidden trigger the programmer can activate a procedure when-
ever the close box is clicked. This procedure can do anything the programmer wants. For example, the pro-
grammer may want to save the window position before the window is closed. Or the programmer may not
want to let the user even close the window until all the data on a form is filled in. Of course this kind of flexi-
bility comes with a price. The user expects the window to close—so any other action must be carefully
designed so that it doesn’t confuse or frustrate the user.

Creating Hidden Trigger Procedures

To create a procedure that is activated by a hidden trigger you must give the procedure a special name. For
example, suppose you want to create a procedure that is triggered whenever a window is closed. That proce-
dure must be named .CloseWindow. If a database contains a procedure with that name, it will always be trig-
gered when the user clicks on the close box of a window in that database. To make it easier to create hidden
trigger procedures, the New Procedure dialog contains a pop-up menu of the special procedure names
required for hidden triggers.

Each of these possible hidden trigger procedures is explained in the following sections.

click here to choose from pop-up menu of hidden procedures

Chapter 2:Procedures Page 379
.About

This hidden trigger procedure will be triggered when the user selects About Panorama from the Apple
menu. Normally selecting this menu item displays the “splash screen” and copyright message for Panorama.
Using the .About hidden trigger procedure, you can display your own splash screen with information about
your database. The following example shows a typical .About hidden trigger procedure that opens a form
called Credits. This form would normally include a picture or logo for your database. It should also include a
button that allows the user to close the window and resume normal use of the database (or you could even
flip through multiple credit pages before closing the window).

Warning: Your revised credit screen must include the ProVUE copyright notice in its entirety.

.Note: You can also change the name of the About Panorama menu item. See “..CustomAbout” on page 397.

AutoGrow

The .AutoGrow procedure is designed to work with Elastic forms (see “Elastic Forms” on page 922 of the
Panorama Handbook). To use this procedure you must enabled the option in the auto-grow objects, like this.

When this option is enabled the .AutoGrow procedure will be triggered every time the window changes size.
Here is an .AutoGrow procedure that simply calculates the width and height of the window.

Page 380 Panorama Formulas & Programming
In this database the .AutoGrow procedure is simply used to display the size of the new window.

A more useful application would be to adjust elements of the form depending on the size of the window. See
“Programming Graphic Objects on the Fly” on page 633 to learn how to adjust form elements.

.ClearRecord

This procedure is triggered when you choose the Clear menu item from the Edit menu, but only in a crosstab.
Frankly, we can’t remember why this feature was added!

.CloseWindow

This hidden trigger procedure will be triggered when the user clicks on the close box in the upper left hand
corner of a window. Usually clicking on this box causes the window to close. Using the .CloseWindow hid-
den trigger procedure you can perform extra steps before closing the window, or even prevent the window
from closing. Here is a typical example of how the .CloseWindow hidden trigger procedure is used. If the
Registration form is open, the procedure checks to make sure that the Name field is not empty. If the Name
field is empty, the procedure tells the user that they cannot close the form yet. Otherwise the procedure goes
ahead and closes the window.

Chapter 2:Procedures Page 381
Notice that the last statement in this procedure, closewindow, actually closes the window. It does not trig-
ger the procedure again. Only a user action, such as clicking or pressing a key, can trigger a hidden proce-
dure.

Warning: The .CloseWindow procedure is triggered only by the user clicking on the close box of the window.
It is not triggered by other actions that might close the window, such as closing the entire file or quitting from
Panorama.

.CurrentRecord

This hidden trigger procedure will be triggered when the database shifts to a different record. For example,
this procedure is triggered when you move up or down in the database with the vertical scroll bar, or with
the Find or Find Next commands. (Remember, like other hidden trigger procedures it is not triggered by pro-
cedure statements, only by user actions.) You can use this procedure to perform any special actions that are
necessary to display or work with this record.

.CustomMenu

This hidden trigger procedure will be triggered when the user selects a Custom menu item. For a complete
description of custom menus and the .CustomMenu hidden trigger procedure see “The .CustomMenu Proce-
dure” on page 363.

.DeleteRecord

This hidden trigger procedure will be triggered when the user attempts to delete a record from the database.
This procedure could be triggered by the Delete Record tool, or by pressing the Delete key in data sheet or
view-as-list windows. The example below allows records created today to be deleted immediately, but dou-
ble checks before allowing older records to be deleted.

Notice that the record is not deleted unless the procedure deletes the record. The .DeleteRecord procedure
interrupts the normal deletion process and takes over. This puts you, the programmer, in control.

.DialogKeyDown

This very specialized hidden trigger procedure will be triggered when the user presses a key in a form that
has no drag bar (a form that looks like a dialog). However, this procedure will not be triggered if a Data Cell
or SuperObject Text Editor is currently active. So if you are in a dialog created with a Panorama form, not
editing text, and press a key, the .DialogKeyDown procedure will be triggered. (Another way to intercept
keystrokes is with a hotkey procedure, see “Hot Key Procedures” on page 390.)

The procedure can tell what key was pressed by using the info("trigger") function. For example, if the
user presses Y the info("trigger") functions will return Key.Y.

Page 382 Panorama Formulas & Programming
Here is a .DialogKeyDown procedure that closes the dialog window if the user presses the Enter key. All
other keystrokes will be processed normally.

To process keystrokes normally this procedure uses the key statement. See “.KeyDown” on page 382 for more
information on this statement.

.Help

This hidden trigger procedure will be triggered when the user selects Help from the Apple menu. Normally
selecting this menu item opens the Panorama help system. Using this hidden trigger procedure you can force
Panorama to use your own custom help system for your database. The example shown below will open the
normal Panorama Help if the current window is a procedure or a form in graphics mode. Otherwise it will
open the special Accounting Help database.

.Initialize

This hidden trigger procedure will be triggered when the database is opened, either from the desktop or from
the Open dialog. You can use this procedure to initialize global and permanent variables, open resource files,
set up custom menus, pre-sort or pre-select the database…anything that needs to be done automatically
whenever the database file is opened.

Warning: Most procedures can only be triggered from the data sheet or a form. However, the .Initialize proce-
dure will start running immediately when the file is opened, in whatever window happens to be open. If this
window is not a data sheet or form, the procedure may not operate correctly. Many procedure statements
(sort, group, select, etc.) will not operate properly from a non-data window. If this may happen, the first thing
the .Initialize procedure should do is open a form or the data sheet.

.KeyDown

This very specialized hidden trigger procedure will be triggered when the user presses a key in a form. How-
ever, this procedure will not be triggered if a Data Cell or SuperObject Text Editor is currently active. So if
you are in a form, not editing text, and press a key, the .KeyDown procedure will be triggered. (Another way
to intercept keystrokes is with a hotkey procedure, see “Hot Key Procedures” on page 390.)

Chapter 2:Procedures Page 383
The procedure can tell what key was pressed by using the info("trigger") function. For example, if the
user presses Y the info("trigger") functions will return Key.Y. Special keys will return the special values listed
in this table:

The procedure can use the info("modifier") function to tell what modifier keys have been pressed along
with the primary key: shift, option, control, and command.

Here is a .KeyDown procedure that closes the window if the user presses the Enter key. If the user presses the
$ key Panorama jumps to the Amount data cell and begins to edit it. All other keystrokes will be processed
normally.

local KeyStroke
KeyStroke=info("trigger")[5,-1]
case KeyStroke=chr(3)/* enter key */

closewindow
case KeyStroke="$"

field Amount
editcellstop

defaultcase
key info("modifiers"),KeyStroke

endcase

To process keystrokes normally this procedure uses the key statement. The key statement passes the key-
stroke back to Panorama for normal processing (see “KEY” on page 5461 of the Panorama Reference). This
statement has two parameters: 1) the modifiers associated with the key, and 2) the key itself.

.ModifyRecord

This hidden trigger procedure will be triggered when the user modifies any field in the database. Warning:
The .ModifyRecord procedure will not run if a procedure is already running, or if the field has its own proce-
dure. In those cases you may want the other procedure to call the .ModifyRecord procedure as a subroutine
(more on this in a moment). The .ModifyRecord procedure is also not called if the data is modified with a
command in the Fill menu, see .ModifyFill below.

The .ModifyRecord procedure example below automatically marks the latest date and time when a record
was modified. This example assumes that the database has two fields for time/date tracking: ModifyDate (a
date field) and ModifyTime (a numeric field).

ModifyDate=today()
ModifyTime=now()

Tab † chr(9)

Enter œ chr(3)

Return ¥ chr(13)

Esc Ÿ chr(27)

Delete ƒ chr(8)

Left Arrow ¯ chr(28)

Right Arrow ˘ chr(29)

Up Arrow ˜ chr(31)

Down Arrow ¿ chr(30)

Page 384 Panorama Formulas & Programming
Note: This example illustrates the .ModifyRecord procedure, but a better way to perform this task would be
to create a Time Stamp field in the design sheet. See “Automatic Time/Date Stamping” on page 301 of the
Panorama Handbook for details on this process.

If your database has other procedures that modify the database they should call the .ModifyRecord proce-
dure to make sure that the time stamp is kept up to date. For example, here is a procedure that automatically
subtracts one from the QtyInStock field.

QtyInStock=QtyInStock-1
call .ModifyRecord

.ModifyFill

This hidden trigger procedure will run when the user uses most commands in the Math menu (Fill, Formula
Fill, etc.). The .ModifyFill procedure will not run if a procedure is already running, or if the field has its own
procedure. In those cases you may want the other procedure to call the .ModifyFill procedure as a subrou-
tine (more on this in a moment).

The .ModifyFill procedure example below automatically marks the latest date and time when a fill com-
mand is used. This example assumes that the database has two fields for time/date tracking: ModifyDate (a
date field) and ModifyTime (a numeric field).

field ModifyDate
formulafill today()
field ModifyTime
formulafill now()

If your database has other procedures that use fill statements they should explcitly call the .ModifyFill proce-
dure to make sure that the time stamp is kept up to date. The example below selects all items that have over
500 in stock and have not been touched in 30 days. For those items, it reduces the price by 10%, then marks
the modification date and time.

select QtyInStock>500 and today()-ModifyDate>30
field Price
formulafill Price*0.90
call .ModifyFill

Since the .ModifyFill procedure is not triggered by a FormulaFill statement in a procedure, the procedure
must update the modification date and time itself by explicitly calling .ModifyFill.

Chapter 2:Procedures Page 385
Logging Changes (Audit Trail) with .ModifyRecord, .ModifyFill and info("modifiedfield")

It’s possible to create a log of all changes made to a database, so you can see who changed what when. An
example database included with Panorama illustrates this. The example database is called Simple Journal.

As the illustration above shows the Journal field contains a log of all changes made to the database. This log
is created by the .ModifyRecord and .ModifyFill procedures in the database.

One possible problem with this logging mechanism is that the log quickly becomes larger than the actual
data! We’re sure, however, that some of you will find this a valuable tool.

Page 386 Panorama Formulas & Programming
.NewRecord

This hidden trigger procedure will be triggered when the user attempts to add a new record to the database
with the Add New Record or Insert New Record tool, or by pressing the Return key in the data sheet or a
view-as-list form (see “Adding a New Record” on page 268 of the Panorama Handbook). The
info("trigger") function can be used to determine which of the three possible actions triggered the pro-
cedure:

This sample .NewRecord procedure won’t allow new records to be added if there already at 100 or more
records in the database:

if info("records")≥100
message "Sorry, this database is limited to 100 records."

else
case info("trigger") = "New.Add"

addrecord
case info("trigger") = "New.Insert"

insertrecord
case info("trigger") = "New.Return"

insertbelow
endcase

endif

Here’s another .NewRecord example that only allows new records to be added to the end of the database, not
inserted in the middle. In this example the case for info("trigger") = "New.Insert" has been elimi-
nated, because we know that a new record cannot be inserted. The case for info("trigger") =
"New.Return" has been expanded to also check to see if we are on the last line of the database with the
info("eof") function.

local AddFlag
AddFlag="no"
case info("trigger") = "New.Add

addrecord
AddFlag="yes"

case info("trigger") = "New.Return" and info("eof")
insertbelow
AddFlag="yes"

endcase
if AddFlag="no"

message "Sorry, new records must be added"+
 " to the end of the database, not inserted in the middle."
stop

else
call .ModifyRecord

endif

At the end of this example procedure a message is displayed if the record could not be added. If the new
record has been added this procedure calls .ModifyRecord (see “.ModifyRecord” on page 383). The proce-
dure could also calculate default values at this point.

Warning: The .NewRecord procedure is not triggered when new records are added by appending (with the
Open File command).

"New.Add" Add New Record tool or Add New Record menu item

"New.Insert" Insert New Record tool

"New.Return" Return key

Chapter 2:Procedures Page 387
.OutOfBounds

This very specialized hidden trigger procedure will be triggered when a form that has no drag bar is open (a
form that looks like a dialog) and the user clicks outside of the window. In other words, if you create a dialog
with a Panorama form and the user clicks outside of the dialog, this procedure will be triggered. (If there is
no .OutOfBounds procedure, Panorama will simply beep when this happens.)

If you wish, the .OutOfBounds procedure could simply close the window if the user clicks outside of it:

closewindow

Or, the .OutOfBounds procedure could display a message:

message "Please click inside the dialog."

Of course, this message might make the user feel like they were back in kindergarten (please draw inside the
lines!).

.ZoomFailed

This very specialized hidden trigger procedure will be triggered when the user clicks on the zoom box, but
Panorama cannot zoom the window. The only time this happens is if both the horizontal and vertical scroll
bars are disabled. In that case you can use the .ZoomFailed procedure to make the window zoom, perhaps by
switching to a different form as the example below shows:

case info("formname")="Letter
goform "Full Letter"
setwindow 20,2,760,500,""
zoomwindow

case info("formname")="Full Letter"
goform "Letter"
setwindow 20,2,320,500,""
zoomwindow

endcase

Data Entry Triggers

Panorama can automatically trigger a procedure whenever you enter new data into a database field. Unlike
other hidden trigger procedures, data entry trigger procedures do not have a special name. Instead, the name
of the procedure is specified in the design sheet.

To set up a procedure that is triggered by data entry, first create the procedure. If you don’t want the proce-
dure to be listed in the Action menu the procedure name should start with a period. The procedure name
must be a single word with no spaces. Then open the design sheet and make sure that the Procedure Style
Formulas option is checked in the Special menu. If you have been using Spreadsheet Style formulas you
will need to adjust the other formulas that have been set up in the design sheet (see “Automatic Calculations”
on page 303 of the Panorama Handbook).

Page 388 Panorama Formulas & Programming
Then type the procedure name into the Equation column for the field. If there are already formulas for the
field, the procedure name should be typed after the last formula.

Once the data entry trigger is set up, the procedure will be triggered automatically each time the user presses
Enter, Return or Tab to enter data. The procedure can find out which key was pressed using the
info("trigger") function. If the Return key was pressed, info("trigger") will be Key.Return. If the
Tab key was pressed, info("trigger") will be Key.Tab.

Here is a sample data entry triggered procedure that calculates the new balance for a checkbook. The data
sheet should be set up so that this procedure is triggered whenever the Credit or Debit fields are modified.

To set this procedure up to be triggered you must enter it into the Equation field of the design sheet, like this.

When the user presses the Tab key while editing data, Panorama normally skips to the next field. However, if
the procedure uses the field statement to switch to a different field, Panorama’s normal tab order is aborted. If
you want to abort the tab order without moving to a different field, use the stoptab statement. Here is a
sample data entry triggered procedure that filters out negative values in the Price field.

if Price < 0
message "Negative prices are not allowed"
stoptab

endif

Chapter 2:Procedures Page 389
If a data entry triggered procedure is triggered, the .ModifyRecord procedure (if any) for the database will
not be triggered. If necessary, you should call to .ModifyRecord somewhere in your data entry triggered pro-
cedure. Here’s a revised version of our check balance procedure.

local NewBalance
NewBalance=Credit-Debit
UpRecord
NewBalance=Balance+NewBalance
DownRecord
Balance=NewBalance
call .ModifyRecord

Another option is to get rid of the data entry triggered procedures completely and do all the work in the
.ModifyRecord procedure. That option is described in the next section.

Data Entry Triggers (Part Two)

Instead of using separate data entry trigger procedures for each field as described in the last section, you
combine all of the data entry procedures for the entire database into a single procedure: the .ModifyRecord
procedure. Remember, this procedure is triggered whenever any field is modified. This procedure can use the
info("fieldname") function to determine which field was modified, and take appropriate action. Here’s
an example of a .ModifyRecord procedure that performs special actions for the Date, Credit, and Debit fields
in a checkbook database.

case info("fieldname")="Date"
if Date>today()

Date=today()
stoptab
message "Post-dated checks not allowed!"

endif
case info("fieldname")="Credit" or info("fieldname")="Debit"

local NewBalance
NewBalance=Credit-Debit
UpRecord
NewBalance=Balance+NewBalance
DownRecord
Balance=NewBalance

endcase
ModifyDate=today()

This procedure also time stamps the ModifyDate field in the current record whenever any field is modified.
With this technique it’s all in one procedure and easy to keep track of. Another advantage of this technique is
that it will work just fine with the Spreadsheet Style Formulas option.

Page 390 Panorama Formulas & Programming
Hot Key Procedures

Panorama can be configured so that an action is triggered automatically when a particular key or key combi-
nation is pressed. Unless you want a special effect (for example a hotkey that only works in a single window)
the easiest way to set that up is to use the Hotkey wizard, which is in the Preferences submenu of the Wizard
menu. Using this wizard you can set up a hotkey (or multiple hotkeys) that triggers a procedure in your data-
base. The wizard automatically manages the necessary permanent variables for you. See “Hotkey Manager”
on page 99.

If you do need a special effect that is not supported by the Hotkey wizard you can set up hotkeys in a proce-
dure. Every time a key is pressed Panorama looks for a special variable. This variable is named HotKey[xx],
where xx is the hexadecimal value of the keycode for the key that is pressed (see table below). For example, to
create a hotkey procedure for the F1 key the variable must be named HotKey[7A] If Panorama finds such a
value it takes the contents of the variable and executes them, just as if the variable was part of an execute
statement (see “Building Subroutines On The Fly (The Execute Statement)” on page 280). The table below
lists the codes for 96 different keys (the keys in green are on the numeric keypad).

The procedure below sets up a hotkey procedure for the F1 key. After this procedure has been used pressing
the F1 key will open the Favorite Databases wizard.

global «HotKey[7A]»
«HotKey[7A]»={

openfile folderpath(info("panoramafolder"))+"Wizards:Favorite Databases"
}

Because this hotkey procedure was set up as a global variable it will be active no matter what database is cur-
rently open. If you want to restrict the hotkey procedure to a particular database you should use a fileglobal
variable. If you want to restrict the hotkey procedure to a particular window you should use a windowglobal
variable.

If you define a hotkey procedure with a global or fileglobal variable keep in mind that the procedure may be
triggered at any time in any window, so you must not make any assumptions about what window or even
what type of window will be active when the procedure is triggered. It could be a procedure window,
crosstab window, input window, you name it. Also, if you used a global variable you cannot even assume
that the original database is still open.

Hotkey procedures do not work in Panorama dialogs. For example, pressing a hot key has no effect when
you are using the Find/Select dialog, or the Print dialog, or any other dialog that is built into Panorama.
However, hot keys do work in dialogs that you have created with a form (see “Custom Dialogs” on
page 489).

A 00 M 2E Y 10 ˚ 37 0 1D 2 54 * 43 F9 65

B 0B N 2D Z 06 ˙ 31 - 1B 3 55 + 4E F10 6D

C 08 O 1F [21 \ 2A = 18 4 56 - 45 F11 67

D 02 P 23] 1E 1 12 ƒ 33 5 57 ESC 35 F12 6F

E 0E Q 0C ; 29 2 13 ` 32 6 58 F1 7A F13 69

F 03 R 0F ‘ 27 3 14 ¥ 24 7 59 F2 78 F14 6B

G 05 S 01 , 2B 4 15 ˜ 7E 8 5B F3 63 F15 71

H 04 T 11 . 2F 5 17 ¿ 7D 9 5C F4 76 Ó 73

I 22 U 20 / 2C 6 16 ¯ 7B œ 4C F5 60 “ 74

J 26 V 09 ß 38 7 1A ˘ 7C „ 47 F6 61 ” 79

K 28 W 0D ç 3B 8 1C 0 52 = 51 F7 62 END 77

L 25 X 07 å 3A 9 19 1 53 / 4B F8 64 HELP 72

Chapter 2:Procedures Page 391
To disable a hotkey procedure you can either set the hotkey variable to "" or you can destroy the variable
with the undefine statement (see “Destroying a Variable” on page 249).

HotKeys with Modifiers

If you want to assign an action to a key with a specific modifier key combination, create a variable named
HotKey[kkmm], where kk is the hexadecimal value of the keycode for the key that is pressed (see table
above) and mm is sum of the hexadecimal values for each modifier key. The table below lists the hex values for
the four modifiers keys. (Please keep in mind that these are hexadecimal, not decimal values. You can use the
RPN Programmer's Calculator wizard to calculate the sum of two or more hexadecimal numbers.)

For example, to create a hotkey procedure for Shift-F1 key the variable must be named HotKey[7A02]. To
create a hotkey procedure for Command-Option-A the variable must be named HotKey[7A09].

Universal HotKey Procedure

If Panorama does not find a hotkey for the specific key that has been pressed it will check to see if there is a
variable named HotKey[*]. If there is, Panorama will execute the code it finds inside. Be very careful with this
variable. For example, the procedure below will completely disable the keyboard until you Quit from Pan-
orama. No matter what database you are in pressing the keyboard will no longer have any effect. Usually
you will want to selectively apply a universal hotkey with a fileglobal or windowglobal variable.

global «HotKey[*]»
«HotKey[*]»="rtn"

The .KeyDown and .DialogKeyDown procedures provide another method to intercept keystrokes and pro-
cess them yourself. See “.KeyDown” on page 382 and “.DialogKeyDown” on page 381.

Triggering a Procedure Every Second

Once every second Panorama checks for a special variable named ExecuteEverySecond. If it finds this vari-
able, Panorama takes its contents and executes them, just as if the variable was part of an execute statement
(see “Building Subroutines On The Fly (The Execute Statement)” on page 280). The most common use for this
feature is to create animation within a form. For example, you could use this feature to make an item on the
form blink, or you could use it to update a stopwatch display every second.

The ExecuteEverySecond variable may be a global, fileglobal, or windowglobal variable. If it is a windowglo-
bal variable, the procedure will only be executed when that window is the front window. If it is a fileglobal
variable the procedure will only be executed when that file is the active file (one of its windows is on top). If
it is a global variable the procedure will be executed no matter what database is active, even if the original
database that created the variable is no longer open. It’s possible to have more than one ExecuteEverySecond
variable active at a time, for example a windowglobal and a global. In that case Panorama will execute both
of the procedures every second.

Hex Macintosh Windows

01 Command Control

02 Shift Shift

08 Option Alt

10 Control Right Click

Page 392 Panorama Formulas & Programming
Here is an example that will cause a bullet to blink on and off once per second. The form Blink Demo should
contain a Text Display SuperObject that displays the blinkValue variable, or a Flash Art object that uses this
value as part of the formula. The nowatchcursor statement makes sure that the mouse arrow doesn’t flip
into a watch once per second as the procedure runs (see “Disabling the Watch Cursor” on page 310).

openform "Blink Demo"
windowglobal ExecuteEverySecond,blinkValue
blinkValue="•"
ExecuteEverySecond={

nowatchcursor
if blinkValue="•"

blinkValue=""
else

blinkValue="•"
endif
showvariables blinkValue

}

Because the ExecuteEverySecond variable was defined as a windowglobal variable the object will only blink
when that window is the front window. When another window comes to the front the blinking will pause. It
will resume when the Blink Demo window is brought to the front again.

Since this example uses a windowglobal variable the procedure can assume that the Blink Demo window is
on top when the procedure executes each second. If you use a fileglobal or global variable there is no guaran-
tee what window will be on top. If you need to access a specific database you should use the secret window
feature to temporarily activate it during the procedure (see “Temporary “Invisible” Windows” on page 454).

If you use a global variable you should be careful to be a good neighbor, since other databases may also be
using the same variable. Instead of simply assigning the text of your procedure to the ExecuteEverySecond
procedure you should append it. When you are done you should remove your code while leaving any other
code. In addition, your procedure should not assume that the original database that activated it is still open
— it may have been closed.

Panorama includes a Stopwatch wizard that can be used as a timer.

The three buttons in this form are tied to a single procedure which is listed below. When the Start button is
pressed the procedure appends the code in StopwatchCode to the ExecuteEverySecond variable. This code
will execute every second, causing the form to update as the timer runs. (Notice that the procedure also
checks to make sure that the original database is still open using the arraysearch(and info("files")
functions.) When the Stop button is pressed the procedure uses the replace(function to remove the code
that it added without touching any other code that may have been added by other databases. In fact, you can
make copies of this Stopwatch database and run them all at the same time. Each will keep its own time, and
they will all keep running no matter what database is currently active.

global ExecuteEverySecond
fileglobal ElapsedTime,CumulativeTime,StartTime
local StopwatchCode
define ElapsedTime,0
define ExecuteEverySecond,""

StopwatchCode=
{/* }+info("databasename")+{ Wizard */
nowatchcursor
if arraysearch(info("files"),}+"{"+info("databasename")+"}"+{,1,¶)<>0

local wasWindow
wasWindow=info("windowname")

Chapter 2:Procedures Page 393
window }+"{"+info("databasename")+"}"+{+":SECRET"
ElapsedTime=CumulativeTime+now()-StartTime
showvariables ElapsedTime
window wasWindow

endif
}

if info("trigger") contains "Reset"
ElapsedTime=0
showvariables ElapsedTime
rtn

endif
if info("trigger") contains "Start"

if ExecuteEverySecond notcontains StopwatchCode
CumulativeTime=ElapsedTime
StartTime=now()
ExecuteEverySecond=ExecuteEverySecond+StopwatchCode

endif
endif
if info("trigger") contains "Stop"

ExecuteEverySecond=replace(ExecuteEverySecond,StopwatchCode,"")
endif

If the code you assign to the ExecuteEverySecond variable contains an error Panorama will display an alert
with the error message. It will then wait 20 seconds before it trys to execute the variable again. This delay
gives you a chance to do something (perhaps simply quitting Panorama) before the error occurs again.

By the way, Panorama is not guaranteed to execute the procedure in the ExecuteEverySecond variable every
single second. The procedure will not be executed when you are editing data, graphics, or a procedure. The
procedure will not be executed when you hold down the mouse for an extended time, or if an operation like
sorting, selecting or opening a file takes more than a second. Also, the procedure will not be executed if Pan-
orama is not the frontmost program (in other words, if another program is on top).

Triggering a Procedure Every Minute

Once every minute Panorama checks for a special variable named ExecuteEveryMinute and executes the con-
tents, if any. This variable is just like ExecuteEverySecond except that it only runs once per minute. At that
rate this variable isn’t much use for animations, but it can be used to check for reminders. This example beeps
and displays the time once per hour.

fileglobal ExecuteEveryMinute
ExecuteEveryMinute={

if timepattern(now(),"mm")="00"
beep
message "It’s "+timepattern(now(),"hh")+" o’clock"

endif
}

Panorama will execute this procedure as close to the top of the hour as possible. If it cannot execute the proce-
dure exactly at the top of the hour (because another program is on top, or you are editing data, graphics or a
procedure) it will execute the procedure as soon as possible after the hour.

Triggering a Procedure As Soon As Possible

The ExecuteASAP variable is similar to the ExecuteEverySecond and ExecuteEveryMinute variables. To use
this variable, create it and then fill it with the text of a procedure. The procedure will run as soon as possible
when the current procedure is finished. This is especially handy in Handler procedures to allow them to trig-
ger things they normally couldn't do, like open or close windows (see “Event Handler Procedures” on
page 394).

Page 394 Panorama Formulas & Programming
The ExecuteASAP procedure should undefine the variable itself as part of the procedure. Otherwise the pro-
cedure will run over and over again. Just make sure the following line appears somewhere within the proce-
dure.

undefine ExecuteASAP

To see an example of the ExecuteASAP variable in action, check out the CLOSEWINDOWKEEPSECRET
statement in the _UtilityLib Library.

Event Handler Procedures

Panorama procedures are usually triggered by relatively "hi-level" events like clicking on a button or choos-
ing from a menu. However there is a special type of procedure that is triggered by more low level events like
simply bring a window to the front. These “event handler” procedures (also called simply “handler proce-
dures”) let you control how Panorama responds to these low level events.

Internally, event handler procedures work slightly differently than regular procedures. When an event han-
dler procedure is triggered, Panorama stops everything and runs that procedure immediately. If a regular
procedure causes the event handler procedure to trigger, the regular procedure will pause and wait for the
event handler procedure to finish before continuing.

Event handler procedures are intended for changing the way Panorama responds to various low level events.
An event handler procedure cannot contain any statements that would cause more low level events. In prac-
tical terms this means that an event handler procedure cannot change the arrangement of windows on the
screen in any way—it cannot bring another window to the top, open a new window, close a window, or open
or close any files. You cannot use the debugger with event handler procedures, because the debugger itself
generates low level events. An error dialog will appear if your event handler procedure attempts to perform
a statement that would cause another low level event. Event handler procedures should not pause for user
input unless you really want to annoy your users. (However, it can sometimes be convenient to use a
message statement to help debug an event handler procedure.)

Event handler procedures should be as short as possible. Extra delays in processing low level events will be
very noticeable. The event handler procedure should only deal with the event in question and should not
contain any other logic for your application. If possible an event handler procedure should be written with
one or two simple statements or formulas.

Sometimes the same procedure may be triggered in different ways — sometimes as a normal procedure,
sometimes as an event handler procedure. In that case the procedure can use the
info("runninghandler") function to determine what mode the procedure is currently running in. This
function returns true if the procedure is running as an event handler, false if the procedure is running as a
normal procedure.

Most event handler procedures have names that begin with two periods (..ActivateForm, ..CustomAbout,
etc.) to help distinguish them from ordinary procedures. The following sections describe each type of event
handler procedure in detail.

Chapter 2:Procedures Page 395
Text Editor SuperObject ..Handler Option

The text editor SuperObject has always been able to trigger procedures when various events occur: pressing a
key, pressing most keys, and terminating the editing of the object (see “Text Editor Options” on page 643 of
the Panorama Handbook). However, users of early versions of Panorama encountered problems with this fea-
ture, since it would not work properly when other procedures were running, and would not work properly if
the user terminated editing by clicking on another window. In addition, there was no way to automatically
run a procedure when editing started. The ..Handler option (in the Text Editor SuperObject Object Properties
dialog) solves all of these problems.

When the ..Handler option is turned on, all procedures triggered by the Text Editor SuperObject are treated
as event handler procedures. The benefit of using event handler procedures is that these procedures are guar-
anteed to trigger and work properly under all conditions, no matter how the user started or stopped editing
and whether or not another procedure is currently running. The only downside is that event handler proce-
dures cannot open or close windows (see the previous section). To retain compatibility with databases cre-
ated with earlier versions of Panorama you are allowed to turn the ..Handler option off.

Focus Procedure

Panorama 3.1 added a new condition that may cause the Text Editor SuperObject to trigger a procedure. This
condition is called Focus. When the Focus option is turned on, the text editor will trigger its procedure when-
ever you start editing that field. In other words, when you click on the field or tab into the field, the proce-
dure will be triggered. When the procedure is triggered this way, the info("trigger") function will begin
with Focus. followed by the name of the object, for example Focus.TimeEditor or Focus.HTML.

Page 396 Panorama Formulas & Programming
One use for a focus procedure is to implement Undo for editing. (Of course as of Panorama V this would be
redundant, since Panorama already has Undo for editing within a cell.) Here is a procedure that saves the
data in the field as the editing begins.

if info("trigger") beginswith "Focus."
undoCell=«» /* «» is the current field */
undoField=info("fieldname")

endif

The Undo procedure would look like this.

if undoField≠""
set undoField,undoCell

endif

For completeness you may wish to add the following line to your .CurrentRecord procedure. This line
ensures that you cannot undo after moving to a different record.

undoField=""

Another use for the Focus procedure is to memorize the selection point when editing was terminated and re-
set the selection when editing resumes again. This example assumes that the database has two numeric fields
named textStart and textEnd.

if info("trigger") contains "focus"
activesuperobject "setselection",textStart,textEnd

else
activesuperobject "getselection",textStart,textEnd

endif

The Focus option cannot be used if the ..Handler option is turned off. This is not a big handicap, since you
obviously don’t want to change window just as editing begins. You should also keep the procedure as short
as possible to minimize delay.

..OpenForm

The ..OpenForm event handling procedure is triggered when any form in the same database as the procedure
is opened. It doesn’t matter how the form is opened—manually by the user, in a procedure, or automatically
as part of opening the database. The most common uses for the ..OpenForm procedure are initializing win-
dow variables and initializing SuperObjects. The ..OpenForm procedure below will automatically open the
Text Editor or Word Processing SuperObject named Letter when the Editor form is opened.

if info("formname")="Editor"
superobject "Letter","open"

endif

..ActivateForm

The ..ActivateForm event handling procedure is triggered when any form in the same database as the proce-
dure is activated (brought to the front). It doesn’t matter how the form is activated—manually (by clicking on
it) or as part of a procedure (usually the window statement).

The example below shows how this procedure can be used with clone windows (see “Window Clones” on
page 457). It assumes that your database contains a field called ID with unique values for each record. When
a clone window is activated (brought to the front), the procedure automatically searches for the record that
corresponds to that window.

windowvariable windowID
if info("formname") beginswith "Clone"

find ID=windowID
endif

Chapter 2:Procedures Page 397
The careful reader may wonder if opening a form also activates it. The answer is yes. When a form is opened,
both the ..OpenForm and ..ActivateForm procedures will be triggered (if they exist), in that order.

..CustomAbout

The ..CustomAbout procedure allows you to change the name of the About Panorama item in the Apple
menu (Mac) or Help menu (PC). This item normally says About Panorama… or About Panorama Direct…,
but you can customize it to display any text you want when your database is active, for example About This
Database… .

The first step in customizing the About menu item is to create a new procedure in the database called ..Cus-
tomAbout. You must spell this name exactly as shown, including upper and lower case.

The ..CustomAbout procedure should only have a single statement in it: SetAboutMenu. This statement is
followed by a text parameter, which could contain a formula, that specifies what text should be displayed.
For example, if you want the Apple Menu to display About Office 97…, the ..CustomAbout procedure
should look like this:

setaboutmenu "About Office 97…"

Panorama runs the ..CustomAbout procedure every time you click on a form or data sheet window. This
means that you can adjust the Apple Menu for changing conditions. Here is a ..CustomAbout procedure that
displays the name of the current form:

setaboutmenu "About "+info("formname")+"…"

The ..CustomAbout procedure only applies to the forms and data sheet in the same database. As you click
from window to window, the About item in the Apple Menu may change. When a procedure, flash art, or
design sheet window is open the Apple Menu will display the standard About Panorama… or About Pan-
orama Direct… message. The standard message will also be displayed when a window from any other data-
base is active (unless that database also has a ..CustomAbout procedure).

Note: By using the ..CustomAbout and .About procedures (see “.About” on page 379) you can almost com-
pletely hide the fact that your application is created in Panorama. (However, on the Macintosh the Applica-
tion Menu in the upper right hand corner of the screen will always show the name Panorama, while on the
PC the master window and the task bar will always show the name Panorama.) Don’t forget that you must
include the Panorama copyright message in any custom About window that you create with the .About pro-
cedure!

..CloseDatabase

The ..CloseDatabase procedure allows you to customize the actions that occur when a database is closed.
Whenever a database is closed (either by clicking on the close box of the last open window, using the Close
File command, or the Quit command), Panorama checks to see if the database contains a procedure called
..CloseDatabase. If this procedure exists it will be called as a "handler" procedure.

If the procedure contains a ContinueClose "yes" or ContinueClose "no" statement, Panorama will
not display the normal "Do you want to save changes" dialog, and will not save the database. Instead it is up
to the procedure to decide what to do and to go ahead and do it. For example, if you just want to close the
database without saving it the procedure can be simply one line:

ContinueClose "yes"

Please note that if the procedure contains a ContinueClose "no" statement, Panorama may ignore this
under certain situations. For example, if a Quit has been requested by an Apple Event, the Quit will continue
no matter what.

If necessary, the procedure can use the info("quitinprogress") to check whether Panorama is in the
process of shutting down.

Page 398 Panorama Formulas & Programming
We've written some custom statements that automate the most common ways of handling database closing.
The CLOSEWINDOWKEEPSECRET statement (in the _UtilityLib Library) doesn't allow Panorama to close the
database. Instead, it makes the database secret (all windows closed) but leaves it in memory. However, the
database will close when Panorama quits. This statement also saves the database. (Note: a ..CloseDatabase
procedure with this statement has been added to any custom statement library database created by the Cus-
tom Statement wizard. This is why the custom library is saved automatically when you close all of the win-
dows.)

The STANDARDCLOSEALERT statement mimics the normal way Panorama closes a database. It displays the
dialog asking the user whether they want to save, not save, or cancel, then does the appropriate operation.
This statement is useful if you want the standard operation but with some additional processing before or
after.

Chapter 3: Programming Techniques

The previous chapter covered the basics of working with procedures - how to create and edit procedures, set
up and use variables, and basic control flow. This chapter builds on these basics and shows how to automate
a wide variety of tasks within Panorama.

The structure of this chapter is a miniature version of the entire manual. We’ll start with Chapter One and
show how to automate file handling, then work our way through the entire manual showing how to auto-
mate all of the different operations available in Panorama.

Although this chapter is quite extensive, Panorama is so rich that there are many statements, functions and
techniques that are not covered here. You’ll find a gold mine of additional information in the Programming
Reference wizard (see “Programming Reference Wizard” on page 237) and in the wizards and example files
included with Panorama. You’ll also find a very vibrant on-line community of Panorama developers on the
“QNA” e-mail discussion list. See the tech support page on www.provue.com for information on subscribing
to this list.

Accessing Files

A Panorama procedure has a wide variety of statements available for working with disk files. A procedure
can open and close database files, import and export data to/from a database, or even read and write disk
files directly (including resource files and registry entries).

Files and Folders

On both Macintosh and Windows PC systems files are contained in folders, which may themselves be nested
inside other folders. There are two different methods that Panorama uses to identify the name and location of
a file. Method 1 is to combine both the name and location in a single string of text. Method 2 is to specify a
separate file name and folder ID separately. Some statements and functions use method 1, some use method
2. Panorama also include functions that can convert back and forth between these two methods.

Page 400 Panorama Formulas & Programming
Combined Folder Location and File Name

On the Macintosh, the exact location of any file can be specified by stringing together the name of the volume
(disk) and the folders, each separated by a colon.

Windows systems are similar, but backslashes (\) are used instead of colons, and drive names always consist
of letters followed by a colon (A:, B:, C:, etc.).

For cross platform compatibility, Panorama also allows you to use colons when using Panorama for Win-
dows, like this:

C::Work in Progress:Ontario:Schedule.pan

A file’s location may also be specified relative to the current database. For example, suppose the current data-
base was in the Work in Progress folder. In that case you could specify the location of the Shedule.pan file by
simply leaving off left hand portion of the specification. The specification must begin with a colon or back-
slash to indicate that it is relative to the current folder and not an absolute location.

Alaska:Work in Progress:Ontario:Schedule.pan

C:\Work in Progress\Ontario\Schedule.pan

:Ontario:Schedule.pan

Chapter 3:Programming Techniques Page 401
On PC systems you can specify this relative location like this:

However, keep in mind that on PC systems Panorama will accept : instead of \. Therefore, the specification

:Ontario:Schedule.pan

will work on both Windows and MacOS based computers. You should use colons if your database might ever
be used on both Macintosh and Windows computers.

Folder ID’s and Paths

A folder’s path is simply a list of folders within folders, each separated by a colon (Macintosh) or backslash
(Windows PC). The list always starts with the name of the disk drive. Here are some examples of folder
paths:

GigDrive:Work In Progress:

F:\Clients\Taco Bell\

HD:System Folder:Preferences:

C:\Windows\

A folder ID is a 6 byte binary value that uniquely identifies a folder. Folder ID’s are used by several of the
Panorama functions and statements. Panorama can convert a path to a folder id with the folder(function,
like this:

folder("MyDisk:Clients:")

The folderpath(function converts a folder ID back into a path, for example:

folderpath(dbinfo("folder"),"Checkbook"))

Panorama has numerous functions for working with folders and paths. See “Disk Files and Folders” on
page 165 for detailed information on these functions.

Tip: Most functions or statements that use a folder ID will accept "", which means “the folder that contains
the current database.”

\Ontario\Schedule.pan

Page 402 Panorama Formulas & Programming
Locating a File with Standard Dialogs

Both the Macintosh and Windows PC’s have standard dialogs for locating a file. With the openfiledialog
and savefiledialog statements, your procedures can use these dialogs also.

The openfiledialog statement allows the user to select the file using a standard file open dialog (see
“OPENFILEDIALOG” on page 5574 of the Panorama Reference). This illustration shows what this dialog looks
like on both Windows PC and Macintosh computers (the exact appearance may vary depending on what
operating system version and extensions you are using).

The file may be anywhere on any disk drive mounted on the computer. The openfiledialog statement has
four parameters.

openfiledialog folder,file,type,typelist

The folder parameter is a folder ID (see “Folder ID’s and Paths” on page 401). This specifies what folder
should be listed when the dialog first opens.

The file parameter is the name of the file the user selected. If this parameter is empty the user pressed the
Cancel button.

The type parameter is the type of the file the user selected. This is a four letter descriptor, for example TEXT
for text files or ZEPD for Panorama database files.

Chapter 3:Programming Techniques Page 403
The typelist parameter specifies what kind of files you want listed in the file dialog. If this parameter is
empty (""), then all files will be listed. Otherwise, this should be one or more 4 letter “file type” descriptions.
Here are two file type descriptions you may find useful.

The file type must be entered exactly as shown. Only files whose types match exactly (including upper/lower
case) will be shown.

Here is an example of a procedure that allows the user to select a Panorama file, then appends that file to the
current file.

local fileFolder,fileName,fileType
openfiledialog fileFolder,fileName,fileType,"ZEPD"
if fileName="" stop endif ; user pressed cancel
openfile "+"+folderpath(fileFolder)+fileName

To change this example so that it can be used for importing text files, change "ZEPD" to "TEXT". Or, to allow
either choice, change this parameter to "ZEPDTEXT" (or "TEXTZEPD").

Type Description

ZEPD Panorama database

TEXT Text file

Page 404 Panorama Formulas & Programming
The savefiledialog statement allows the user to select a file using a standard file save dialog (see “SAVE-
FILEDIALOG” on page 5698 of the Panorama Reference). This illustration shows what this dialog looks like on
both Windows PC and Macintosh computers (the exact appearance may vary depending on what operating
system version and extensions you are using).

The user may type in the name of the file, and can select what folder the file will be saved into. The file may
be anywhere on any disk drive mounted on the computer. The savefiledialog statement has three
parameters.

savefiledialog folder,file,prompt

The folder parameter is the ID of the folder the user selected.

The file parameter is the name of the file the user entered. If this parameter is empty, the user pressed the ˘
button.

The prompt parameter is a short phrase that you supply. When using MacOS Panorama will display this
phrase in the dialog title, for example Enter file name.

Chapter 3:Programming Techniques Page 405
Here is an example of a procedure that allows the user to specify a file name and location, then exports to that
file.

local fileFolder,fileName
fileName=""
savefiledialog fileFolder,fileName,"Export file name:"
if fileName="" stop endif ; user pressed cancel
export folderpath(fileFolder)+fileName,replace(exportline(),¶,chr(11))+¶

If the user specifies a file that already exists, Panorama will warn them and ask if they really want to erase the
existing file.

Customizing the Standard File Dialogs

Versions of Panorama prior to 5.0 allowed you to customize the dialog that appears when the
openfiledialog and savefiledialog statements are used. However, this only worked on Macintosh
computers, and only with the older OS 6/7 style dialogs. Since Panorama now uses Apple (relatively) new
File Navigation Services system, the open and save dialogs can no longer be customized on either the Macin-
tosh or on Windows.

Opening a Panorama Database

To open a Panorama database use the openfile statement (see “OPENFILE” on page 5572 of the Panorama
Reference). If the database to be opened is in the same folder as the current database you can simply supply
the filename.

openfile "Contacts"

If the file is in a different folder you must supply a combined path and file name (see “Combined Folder
Location and File Name” on page 400).

openfile "C:\My Documents\Organizer\Contacts"

On a Windows PC system the file would actually be named Contacts.pan, but you may omit the .pan from
the name.

Here is an example of a procedure that allows the user to select a Panorama file and then open it (see “Locat-
ing a File with Standard Dialogs” on page 402).

local fileFolder,fileName
openfiledialog fileFolder,fileName,"ZEPD"
if fileName="" /* user pressed cancel */

stop
endif
openfile folderpath(fileFolder)+fileName

Suppressing the Default Extension

On Macintosh systems the behavior of the openfile statement changes slightly if the current database
name ends with .pan. In that case the openfile statement will automatically add .pan to any file name that
doesn’t already have an extension. This makes it easier to set up a set of database files that can work on both
the Macintosh and the PC. However, this also means that you will not be able to open a database that doesn’t
have any extension at all with this statement (of course you can always open such a file manually using the
Open File dialog in the File menu).

Page 406 Panorama Formulas & Programming
If you need to use the openfile statement to open a file without an extension when the current file does
have the .pan extension you must use the nodefaultextension statement just before the openfile state-
ment. Here is a modified version of the procedure from the last section that allows the user to select any Pan-
orama file (with or without the extension) and then open it.

local fileFolder,fileName
openfiledialog fileFolder,fileName,"ZEPD"
if fileName="" /* user pressed cancel */

stop
endif
nodefaultextension
openfile folderpath(fileFolder)+fileName

Appending Databases End-to-End

If you have two database files with identical field structures (the same fields in the same order), it’s easy to
append them together. Essentially appending sticks the second database right onto the end of the current
database. To append a database use the openfile statement, but put a + symbol in front of the name of the
database. The example below appends the file MoreCustomers to the end of the current database. (Note: The
MoreCustomers file does not have to be open, but it’s ok if it is.)

openfile "+MoreCustomers"

If the file you want to append doesn’t have identical field order, but the field names are the same, use two +
symbols, like this:

openfile "++MoreCustomers"

Only fields with matching names will be appended together (this is the same as checking the Match Fields by
Name option in the Open File dialog, see “Appending One Database to Another” on page 78 of the Panorama
Handbook). If there are any extra fields in the current database that do not match, they will be left blank in the
new appended data.

The openfile statement can also be used to append a text file to the current database. See “Importing Text
Files” on page 409.

Eliminating Duplicates in Appended Data

If you need to eliminate duplicates between the newly appended data and the original data, you can use the
sortup statement to bring the duplicates together, followed by the unpropagate statement to clear out the
duplicate company names (see “Using UnPropagate to Eliminate Duplicates” on page 470 of the Panorama
Handbook). The select and removeunselected statements actually eliminate the duplicate records. The
example below appends to the customer file, then eliminates any duplicates that were appended. Newly
appended records that are not duplicates of the existing data will be kept.

openfile "+MoreCustomers"
field Company
sortup
unpropagate
select Company<>""
removeunselected

If you want to keep the newly appended data and remove the original data when a duplicate is found, use
the unpropagateup statement instead of the unpropagate statement. For example, you would do this if
you felt the newly appended data was more up-to-date or more reliable than the original data.

Chapter 3:Programming Techniques Page 407
Replacing the Data in a Database

Occasionally you may want to throw out all the data in the current database and replace it with the data in
another database. For example, the data in the current database may be out-of-date. To do this use the
openfile statement and put an & symbol in front of the file name:

openfile "&NewCustomerList"

You may be wondering, if the data is already in a database, “Why not use that database instead of replacing
the data in the current database?” Usually it’s because the file that contains the correct data does not have the
forms and procedures set up they way you want them. You can easily transfer the data, transferring forms
and procedures is a much more tedious job.

If the database file you want to load doesn’t have the fields in the same order, but the field names are the
same, use two & symbols in a row.

openfile "&&NewCustomerList"

Only fields with matching names will be loaded with data (this is the same as checking the Match Fields by
Name option in the Open File dialog, see “Appending One Database to Another” on page 78 of the Panorama
Handbook). If there are any extra fields in the current database that do not match, they will be left blank in the
newly loaded data.

The openfile statement can also be used to replace the current data with data from a text file (see “Import-
ing Text Files” on page 409). The & option becomes very handy because you can load the raw text into a pre-
prepared database that contains ready-to-use forms and procedures.

Saving a Panorama Database

To save the current database use the save statement (see “SAVE” on page 5692 of the Panorama Reference).
This procedure adds a new record and then saves the database.

addrecord
save

To save all open databases use the saveall statement (see “SAVEALL” on page 5694 of the Panorama Refer-
ence).

To save the current database with a new name or in a new location use the saveas statement (see “SAVEAS”
on page 5695 of the Panorama Reference). The new file becomes the current version of the file. The procedure
below will save the current file under the name Monday, Tuesday, Wednesday, etc. depending on the day of
the week.

saveas datepattern(today(),"DayOfWeek")

The saveacopyas statement also saves the database with a new name or location, but the new file does not
become the current version of the file (see “SAVEACOPYAS” on page 5693 of the Panorama Reference). This
procedure saves a backup copy of the current file in a folder named Backups.

saveas "C:\Backups\"+info("databasename")

A procedure can also save the current file as a text file, this is called exporting the file. See “Exporting Text
Files” on page 413 to learn how to do this in a procedure.

A procedure can use the revert statement to revert to the last previously saved copy of the database (see
“REVERT” on page 5676 of the Panorama Reference).

Closing a Database

To close the current database use the closefile statement (see “CLOSEFILE” on page 5109 of the Panorama
Reference). All windows associated with the current file will also be closed.

Page 408 Panorama Formulas & Programming
If the closefile statement is in the middle of a procedure it will immediately close the file without stop-
ping to ask if you want to save the file. For example, this procedure will close the Checkbook and Payments
databases immediately, without saving them, and then open the Bills database.

window "Checkbook"
closefile
window "Payments"
closefile
openfile "Bills"

A safer version of this procedure might look like this.

window "Checkbook"
save
closefile
window "Payments"
save
closefile
openfile "Bills"

There is one exception to this rule. If the closefile statement is the very last statement in the procedure
Panorama will stop and ask if the file should be saved. If you don’t want that to happen, add a nop statement
(see “Doing Nothing for a While” on page 280) after the closefile statement, like this.

closefile
nop

Shutting Down Panorama

To shut down Panorama use the quit statement. The quit statement will not normally ask the user if they
want to save changes in any open databases before stopping Panorama. However, if the quit statement is
the last statement in the procedure, or is followed by a stop statement, it will ask the user if he or she wants
to save each file, and if they say yes, save the files for them.

Chapter 3:Programming Techniques Page 409
Importing Text Files

Panorama cannot directly access information in files created by other database or spreadsheet programs.
Exchanging information between Panorama and other programs requires an intermediate file which is called
a “text” or “ASCII” file (see “Working with Text Files” on page 81 of the Panorama Handbook). A text file is
very basic because it contains just the data—no forms, procedures, formulas, pictures or anything else.
Because text files are so simple they provide a common interchange format for different programs. Virtually
all database, spreadsheet, and word processing programs on both the Macintosh and the PC can read and
write text files.

Like the Panorama data sheet, a text file is divided into records and fields. Each line in the text file is a single
record. The fields may be separated by commas or by tabs. You will often hear that a file is “tab delimited” or
“comma delimited,” because the tab or comma character delimits the boundaries between each field. When
you export from Panorama you must specify whether to use commas or tabs. When Panorama imports a text
file it automatically checks for tabs. If it doesn’t find any, it assumes that this text file is comma delimited.

Carriage Returns in the Data

One complication with using text files is handling carriage returns that are actually part of the data in a cell.
Usually a carriage return signals the end of the record and the start of a new record. If a carriage return is in a
cell, Panorama thinks a new record is starting, and the rest of the import will be misaligned.

The best solution to this problem is to convert carriage returns in cells into vertical tabs (ASCII value 11) in
the exported text file. Many programs do this automatically. When the data is imported into Panorama the
vertical tabs are automatically converted back into carriage returns again.

If you are manually exporting data from Panorama (using the Save As command, see “Exporting a Text File”
on page 105 of the Panorama Handbook) and want the carriage returns converted to vertical tabs, make sure
the Tabs w/o quotes option is turned on, and the Output Patterns option is turned off.

Importing a Text File into an Existing Database

The openfile statement can also be used to import a text file into the current database (the text can either be
appended to or replace the current data). This is called importing the text. In a procedure, the technique for
importing text is exactly the same as appending or replacing two Panorama databases. Panorama checks the
file you have specified to see if it is a database or text file, and automatically imports it if it is a text file.

This example will append the data in a text file named RawData.txt to the end of the current database.

openfile "+RawData.txt"

This example will erase all the data in the current database, then import the data in a text file named
NewRawData.txt.

openfile "&NewRawData.txt"

Both of these examples have shown files with the .txt extension. On the Macintosh this is optional. On Win-
dows PC systems this extension is required. If you need to import a text file that does not have the .txt exten-
sion you can use the opentext statement (see “OPENTEXTFILE” on page 5585 of the Panorama Reference).
This statement is the same as the openfile statement except that it treats all files as text files, no matter what
extension they have.

The text file must be separated into columns with either tabs or commas, and into rows with carriage returns
or carriage return/line feed pairs. (If the first line of the file contains a tab Panorama assumes the file is tab
delimited, otherwise comma delimited.) If any vertical tab characters are encountered (character value: 11)
they are converted to carriage returns within the actual cell (in other words, this allows you to import car-
riage returns within a cell without starting a new record.)

Page 410 Panorama Formulas & Programming
Importing from a Variable

If the filename begins with the @ symbol the openfile statement will import from a variable instead of from
a text file. For example, the procedure below will import the text contents of the variable MyData into a new
database.

openfile "@MyData"

Adding the + symbol causes the text contained in the variable to be appended to the end of the current data-
base.

openfile "+@MyData"

Adding the & symbol causes the text contained in the variable to replace all of the data in the current data-
base.

openfile "&@MyData"

A useful technique is to build an array of data from one database (see “Building an Array from a Database”
on page 594) and then import that data directly into another database.

Importing HTML Tables

When the openfile statement imports a text file (or variable) it checks the text to see if it contains one or
more HTML <table> tags. If a <table> tag is found the other text is ignored and Panorama simply imports the
data inside the table. The text will be divided into rows and columns based on the <tr> and <td> tags within
the table. Here’s an example of how to import a table.

openfile "Financial_News.html"

If the text file (or variable) contains more than one table only the first will be imported. Any additional tables
will be ignored. If you need to import a different table the procedure can use the fileload(function to read
the text into a variable (see “Reading Data Files” on page 422), then use the tagdata(function to extract the
table you want to import (see “Tag Parameter Functions” on page 103). The example procedure below
imports the 2nd table from the HTML file (instead of the 1st).

local rawHTML,theTable
rawHTML=fileload("","Financial_News.html")
theTable="<table"+tagdata(rawHTML,"<table","</table>",2)+"</table>"
openfile "@theTable"

Re-Arranging the Order of Imported Data

Panorama normally imports text directly into the database, column for column. In other words, the first col-
umn in the text file goes into the first field in the database, the second column into the second field, etc. This
is great if the text file is set up the same way as your database. If not, you’ll need to process the data as it
comes in, possibly re-arranging and combining data as you go. This processing is done with a formula you
design. The formula is set up by the importusing statement (see “IMPORTUSING” on page 5355 of the
Panorama Reference), which should be the statement immediately before the openfile statement. The
importusing statement has one parameter, the formula for processing the data. Here’s the general idea of
how these statements must be used together (several more specific examples follow below).

importusing formula
openfile "+MyTextFile.txt"

Chapter 3:Programming Techniques Page 411
By itself, the importusing statement doesn’t do anything except stash the formula you provide where the
openfile statement can find it. Here’s what happens. First openfile statement reads one line from the text
file. But it doesn’t actually import the line into the database. Instead, it evaluates the importusing formula.
The formula takes the line of data and re-arranges it. The openfile statement then takes the result of this
formula and imports that result into the database. This process is repeated over and over again for each line
in the text file: read, calculate, import.

To process the line that the openfile statement has read in, the formula needs to be able to access the data in
that line. There are two special functions that allow you to read this line. The import() function (see
“IMPORT(” on page 5352 of the Panorama Reference) accesses the entire line that has been read in. The
importcell(columnNumber) function (see “IMPORTCELL(” on page 5353 of the Panorama Reference)
accesses an individual cell in the line (tab or comma delimited). The columnNumber starts with 0 for the first
column, 1 for the second column, etc.

Suppose you have a text file named Sam’s Contacts.txt that contains data like this (each column of data repre-
sents fields separated by a tab):

Smith John World Widgets 124 W. Olive St San Jose CA 95134
Lee Susan Industrial Metals 2347 N. Riverside Cambridge MA 02139
Marklee Lance Zipper Technologies 687 E. Dorothy Lane Bothell WA 98011
Anders Fred Acme Fireworks 5672 Lakewood Drive Salinas CA 93908

You want to import this data into a database that contains these fields:

Here’s a procedure that will append the data in Sam’s Contacts.txt into this database. The tabs (¬) in the for-
mula divide the output into separate columns again so it can be imported (see “Special Characters” on
page 57).

importusing importcell(2)+¬+importcell(1)+¬+importcell(0)+¬+¬+
importcell(3)+¬+importcell(4)+¬+importcell(5)+¬+importcell(6)

openfile "+Sam’s Contacts.txt"

The formula re-arranges the incoming data so that third column in the input text goes into the first field, the
2nd column goes into the 2nd field, the first column goes into the 3rd field, the 4th field is empty, the 4th col-
umn goes into the 5th field, the 5th column goes into the 6th field, the 6th goes into the 7th field and the 7th
column goes into the 8th field.

In this example, each column in the input corresponds with one field in the final database. However, you
could split up a column into multiple fields, or combine multiple columns in the input text into a single field
in the final database. For example, suppose your Address Book database only had five fields, like this.

Page 412 Panorama Formulas & Programming
Here is a procedure that imports Sam’s Contacts.txt into this version of the Address Book database.

importusing importcell(1)+" "+importcell(0)+¬+
importcell(3)+¬+importcell(4)+¬+importcell(5)+¬+importcell(6)

openfile "+Sam’s Contacts.txt"

This formula simply concatenates the first and last names with a space, but you can use any function you
want, including the ?(, sandwich(, upper(, lower(, even lookup(functions.

Building the ImportUsing Formula on the Fly

The importusing formula is usually hard-coded into the procedure. What if however, you don’t know how
the data should be re-arranged in advance? In that case you might want to design a dialog that would allow
the user to configure how the data is re-arranged. The dialog would build the formula for importusing. To
pass the formula to the importusing statement, you must put the formula into the clipboard and then use the
following statement:

importusing clipboard

Warning: You must enter this statement exactly as shown here. Do not put () after the word clipboard. Do
not add anything else at all to this statement.

Here is a very simplified example that shows how it is done. First the procedure asks for the name of the file
to import, then it asks for the order of the fields. The field order should be entered as numbers separated by
spaces, for example 4 1 2 3 8 9 10.

local importFile,importOrder,importFormula,X
importFile="" importOrder="" importFormula=""
gettext "Import what file?",importFile
gettext "Field order? (ex: 4 1 2 3)",importOrder
X=1
loop

importFormula=sandwich("",importFormula,"+¬+")+
"importcell("+array(importOrder,X," ")+")"

X=X+1
while X<=arraysize(importOrder," ")
clipboard=importFormula
importusing clipboard
openfile "+"+importFile

As the program goes through the loop it builds up the formula. For example, if the user entered 3 2 4 the pro-
cedure would generate the formula:

importcell(3)+¬+importcell(2)+¬+importcell(4)

When the formula is completely assembled it is placed into the clipboard, and then the text file is appended
to the current file.

Although this example illustrates how the technique works, the user interface is lousy. Instead of having the
user type in the field order, you’ll probably want to let the user choose the list order with a List or Pop-Up
SuperObject.

Chapter 3:Programming Techniques Page 413
Exporting Text Files

You can manually export a database to a text file with the Save As command (see “Exporting a Text File” on
page 105 of the Panorama Handbook). To export a database from a procedure, use the export statement. This
statement has two parameters:

export file,formula

The file parameter is the name of the text file to export. If this file already exists, it will be erased and the
new file will replace it. If the file needs to be in a different folder than the current database then a combined
folder and file must be supplied (see “Combined Folder Location and File Name” on page 400).

The formula parameter is a formula that controls how the data is formatted as it is exported. To do its job, the
export statement scans each visible (selected) record in the database. For each record it calculates the result
of the formula, and adds that result to the text file being exported.

Usually the export formula consists of a series of fields separated by tabs and ending with a carriage return.
Remember, in a formula ¬ represents a tab and ¶ represents a carriage return (see “Special Characters” on
page 57).

Here is a typical formula that exports a name and address list.

export "Addresses.txt",Name+¬+Address+¬+City+¬+State+¬+Zip+¶

Numeric and date fields must be converted to text before they can be exported. The functions listed in this
table can perform these conversions.

Here is a function that exports data from a checkbook database using these functions.

export "Checks Archive.txt",str(«Check#»)+¬+datepattern(CheckDate,"MM/DD/YY")+¬+
PayTo+¬+Category+¬+str(Debit)+¬+str(Credit)+¶

Function Reference
Page Description

exportcell(value) Page 5209

This function converts a value into text without any special formatting.
For numeric values this function is the same as the str(function (see
below). The advantage of this function is that it works with any kind of
value - text, numeric or date. Use this function when for some reason you
don’t know what kind of data you need to convert.

pattern(number,string) Page 5599

This function converts a number into text, using the string as an output
pattern. For example the formula pattern(Price,"$#.,##") will convert the
price 3458.23 into the string $3,458.23. The pattern adds the $ and the
comma. For more information on numeric output patterns see “Numeric
Output Patterns” on page 250 of the Panorama Handbook.

str(number) Page 5799
This function converts a number into text without any special formatting.
If you want to format the number (add commas, set # of digits, etc.) use
the pattern(function.

datepattern(number,pattern) Page 5148

This function converts a number representing a date into a formatted text
string. The pattern parameter is an output pattern telling the function
how to format the date. For more information on date output patterns,
see “Date Output Patterns” on page 255 of the Panorama Handbook.

Use the datepattern(function to store a date in a text field, or to display a
formatted date in an auto-wrap text object or Text Display SuperObject.
For example, the formula:

datepattern(«Ship Date»,"Month ddnth, yyyy")

can be used to display the date an order was shipped in the format May
12th, 2003.

Page 414 Panorama Formulas & Programming
If one or more data cells might contain carriage returns, you may wish to convert the carriage returns into
vertical tabs as they are being exported. The generic formula for this conversion is
replace(<text>,¶,chr(11)) (see “REPLACE(” on page 5665 and “CHR(” on page 5099 of the Panorama
Reference). Here’s a specific example.

export "Addresses.txt",replace(Name+¬+Address+¬+City+¬+State+¬+Zip,¶,chr(11))+¶

If you simply want to export all the fields in the same order that they appear in the data sheet, use the
exportline(function (see “EXPORTLINE(” on page 5210 of the Panorama Reference). This function pro-
duces tab delimited output of all the fields.

export "GenericText",replace(exportline(),¶,chr(11))+¶

Don’t forget the ¶ on the end of the formula. Without this the exported text file will all be on a single line!

Exporting Line Items as Separate Records

Usually when Panorama exports data there is one line in the exported text file for each selected record in the
database. So if the database has 67 records, the exported text file will have 67 lines.

This one-to-one correspondence does not apply if the export formula contains one or more line item fields
with the Ω symbol (see “Special Characters” on page 57), for example QtyΩ or PriceΩ. If the formula contains
line items, the export file will contain multiple lines for each record—one line for each line item.

For example, consider an invoice database with 6 line items: Qty1, Qty2, … Qty6, Description1, Description2,
… Description6, Price1, Price2, … Price6 etc. The procedure below can be used to export the line items from
this database:

export "Items",«Invoice#»+¬+
str(QtyΩ)+¬+DescriptionΩ+¬+str(PriceΩ)+¬+str(TotalΩ)+¶

The text file (Items) will contain 6 lines for each invoice. The first line will contain the invoice number, Qty1,
Description1, Price1, and Total1. The second line will contain the invoice number, Qty2, Description2, Price2,
and Total2. The output continues for each line item, then starts over at Qty1 for the next record.

Here’s a sample of how the exported data might look. This shows the data from three invoice records. Invoice
17882 has three line items. The remaining 3 line items are blank. The next two invoices have two line items
each.

178822 Widget 4.00 8.00
178821 Mini Widget 2.50 2.50
178824 Modern Widget 5.00 20.00
17882
17882
17882
178831 Art Deco Widget 7.50 7.50
178833 Thingy 3.00 9.00
17883
17883
17883
17883
178841 Modern Widget 5.00 5.00
178842 Micro Thingy 4.00 8.00
17884
17884
…
…

Chapter 3:Programming Techniques Page 415
Warning: The line item export feature will only work if all the line item fields in the database have the same
number of line items. If some line item fields have more line items than others, only a single record will be
exported. For example if the database contains Address1, Address2, Qty1, Qty2, Qty3, Qty4, Qty5 the line
item export feature will not work. The solution is to rename Address1 and Address2 to names that don’t end
with a number (perhaps Address and Suite, for example).

Analyzing Line Items

One great application for exporting line items as separate records is that you can re-import them into another
database and analyze them. For example, from the invoice database it is very difficult to find out how many
widgets or doo-dads you’ve sold. The information is split across all the line item fields. But if you export the
line items as separate records and re-import this file into another database, it’s easy to sort or select line item
data.

The procedure below assumes you have set up a database called Line Item Analysis in advance. This data-
base has five fields: Invoice#, Qty, Description, Price and Total. The procedure exports the line item data from
the Invoice database, then re-imports it into the Line Item Analysis database.

export "Items",«Invoice#»+¬+str(QtyΩ)+¬+DescriptionΩ+¬+str(PriceΩ)+¬+str(TotalΩ)+¶
window "Line Item Analysis"
openfile "&Items"
select Description≠""
removeunselected
field Description groupup
field Qty total
field Price average
field Total total
outlinelevel 1

After the data is imported, the procedure removes all of the empty records (with the select and
removeunselected statements). Then the procedure uses Panorama’s standard analysis tools (groupup,
total, average, etc.) to calculate how many of each type of item has been sold at what average price.

Exporting Array Elements as Separate Records

Usually when Panorama exports data there is one line in the exported text file for each selected record in the
database. So if the database has 67 records, the exported text file will have 67 lines.

This one-to-one correspondence does not apply if the export formula contains one or more arrayscan(
functions. This function allows you to export the contents of arrays (see “Text Arrays” on page 93) with one
element per exported line. The arrayscan(function (see “ARRAYSCAN(” on page 5052 of the Panorama
Reference) has two parameters:

arrayscan(field,separator)

The field parameter is the name of a database field that contains an array. (A variable will also work, but usu-
ally doesn’t make sense.) The separator parameter is the separator character for this array (see “Picking a
Separator Character” on page 93).

For example, suppose your database has a Phones field which contains an array of one or more phone num-
bers, separated by a carriage return. Each array element contains the type of phone number, a comma, and
the phone number itself, like this:

home,(714) 555-1212
office,(714) 555-8932
fax,(714) 555-8938

The procedure below will export the phone numbers with one record per phone number:

export "Phone List",
Name+¬+array(arrayscan(Phones,¶),1,",")+¬+array(arrayscan(Phones,¶),2,",")+¶

Page 416 Panorama Formulas & Programming
This procedure will output a text file something like this:

Joan Selbyhome(714) 555-1212
Joan Selbyoffice(714) 555-8932
Joan Selbyfax(714) 555-8938
Sally Rogersoffice(508) 777-8922
Sally Rogersfax(508) 777-8910
Chris Robertsoffice(909) 874-1234

Notice that, unlike the line item example in a previous section (see “Exporting Line Items as Separate
Records” on page 414), no blank lines are exported. Panorama counts the number of elements in the array,
and outputs exactly that number of lines. If you use multiple arrayscan(functions in the formula, Pan-
orama will export enough lines to handle the largest array.

The arrayscan(function can also be used in the formula for the arraybuild, arrayselectedbuild, or
arraylinebuild statements (see “ARRAYBUILD” on page 5038 of the Panorama Reference). The
arrayscan(works exactly the same as it does with the export statement, but the final result is an array
instead of a text file.

Opening a Document in Another Application

You can use the openanything statement to open any document on your hard drive in its native applica-
tion. For example, you can use this statement to open a .doc file in Microsoft Word, or a .pdf file in Adobe
Acrobat (or Apple’s Preview program, if that is the default viewer for .pdf files on your system.

This example opens the Adobe Acrobat document Manual.pdf in the folder My Documents.

openanything folder("C:\My Documents"),"Manual.pdf"

This example opens the HTML document Roadshow.html in the folder My Test Site. The HTML document
will be opened using your default web browser, which is usually Internet Explorer on Windows computers
and Safari on Macintosh computers.

openanything folder("My Drive:My Test Site"),"Roadshow.html"

You can also use openanything to directly open an application without opening any document, like this:

openanything folder("My Drive:Applications"),"Marine Aquarium.app"

This opens the applications just as if you had double clicked on it.

Chapter 3:Programming Techniques Page 417
Smart Merge Synchronization

If you have the same database on more than one machine (for example on a desktop computer and a portable
computer) you may sometimes wonder which contains the most up-to-date information. If you build smart
merge into the database, you won’t have to wonder anymore. Panorama will keep track of which informa-
tion is most up-to-date on a record by record database. When you run a special merge procedure, Panorama
will merge the two databases, picking the most up-to-date information from each. It’s quite easy to add this
feature to almost any Panorama database.

(Note: If you are using Panorama’s multi-user Partner/Server capabilities, you do not need to add separate
smart merge synchronization—Panorama automatically synchronizes all copies of the database using the
server.)

How Smart Merge Synchronization Works

Smart merge works by comparing two database files record by record, keeping only the most recently modi-
fied version of each record. To do this it must be able to match up the corresponding records in the two data-
base files, even if the database files have been sorted or otherwise rearranged. To do this it uses a special ID
field. This field contains a unique ID value for every record in the database. The unique ID value is assigned
when the record is first created, and never changes no matter how many times the record is modified or cop-
ied to other computers. To guarantee that the ID value is unique it is created by combining the name of the
person creating the record along with a serial number, for example Lisa267 or John3091. Because of this,
every computer you plan to use must have a different user name configured.

Adding Smart Merge to Your Database

The first step is to add two new fields to your database. We usually call these fields ID and Modified. This
illustration shows these fields added to the design sheet of an address book database.

The ID field will contain the unique ID value for each record, and should be a text field. The Modified value
will contain the most recent modification date and time for each record, and should be a numeric field. You
may also want to have a creation date field, but this is not necessary for the operation of the smart merge fea-
ture.

Page 418 Panorama Formulas & Programming
The Modified Field

Panorama can automatically update the Modified field with the current date and time whenever the database
is modified. This feature is called time stamping. To enable this feature, open the design sheet for your data-
base. Choose the Time Stamp Field command from the Special menu (see “Automatic Time/Date Stamping”
on page 301 of the Panorama Handbook). This opens a dialog box with a pop-up menu. The pop-up menu lists
all the integer fields (Numeric 0 digits) in your database — use the menu to select the Modified field.

(If you don’t see the Modified field listed, close the dialog, press the New Generation tool, then open the
Time Stamp Field dialog again.)

Once you have designated the Modified field as the time stamp field, Panorama will automatically place a
SuperDate containing the latest date and time into the field every time a new record is added, or whenever
any other cell in the record is modified (see “SuperDates (combined date and time)” on page 118).

Adding New Records

Whenever a new record is added to your database, you must make sure that the ID field is filled in. The best
way to do this is to add a .NewRecord automatic procedure to your database (see “.NewRecord” on
page 386). The line shown below will fill in the proper value in the ID field.

ID=uniqueid("ID",info("user"))

Although you may find other uses for it, the uniqueid(function was designed specifically for creating
unique smart merge serial numbers (see “UNIQUEID(” on page 5870 of the Panorama Reference). This func-
tion has two parameters: the name of the field containing the ID serial numbers and a root name. You can get
the root name by using the info("user") function. The uniqueid(function will scan the ID field to find
the next serial number available. For example, if you are using a computer belonging to Sam and the highest
Sam serial number is 296, the uniqueid(function will return the value Sam297.

Creating an .NewRecord procedure may not be enough to insure that the ID field is always filled in. If your
database has procedures that create new records, the .NewRecord procedure will not automatically be called.
You must modify these procedures to call the .NewRecord procedure (using the call statement).

Another possible problem area is imported data. When you import data into the database you must make
sure that the ID and Modified fields are filled in. The procedure listed below will do the job. You should also
run this procedure when you first add smart merge to your database, so that all your existing data will be
properly identified.

select ID=""
field Modified
formulafill superdate(today(),now())
field ID
formulafill uniqueid("ID",info("user"))
selectall

use menu to select field

Chapter 3:Programming Techniques Page 419
When you first run this procedure after adding the ID and Modified fields it will initialize the fields some-
thing like this.

The Smart Merge Procedure

Once the ID and ModDate fields are set up, you’re ready to build the actual smart merge procedure. This pro-
cedure performs three basic operations.

The first step is to append the file you want to merge with the current file. A procedure can do this with the
openfile command by putting a plus sign in front of the file name, for example,
openfile "+"+MergeFile (see “Appending Databases End-to-End” on page 406). The big question is,
what file do you want to merge with? If you know the filename in advance, you can simply enter the name
into the procedure itself. For example, if you always want to merge with a file named Invoices on a floppy
named Data, the procedure should contain the statement

openfile "+Data:Invoices"

Usually you’ll want to let the user choose what file he or she wants to merge with. The example below shows
how this can be done with the openfiledialog statement (see “Locating a File with Standard Dialogs” on
page 402).

The next step is to sort the database (see “Sorting” on page 551). The database must be sorted by both the
Modified field and the ID field. If two records have the same ID value they will now be right next to each
other, with the more up-to-date record closer to the bottom.

 1. Append second file to the current file.

 2. Sort by ModDate within ID.

 3. Remove records with duplicate ID’s

Page 420 Panorama Formulas & Programming
The final step is to remove the duplicates (see “Using UnPropagate to Eliminate Duplicates” on page 584).
The unpropagateup statement identifies the duplicate records (see “UnPropagate” on page 469). If the
same ID value occurs more than once in a row, this statement will clear all but the last value. Once the dupli-
cates are identified, the select and removeunselected statements delete the duplicates from the file.

local PathFile,mergeFile, mergePath,mergeType, DoneID
openfiledialog mergePath,mergeFile,mergeType,"ZEPD"
if mergeFile=""

stop /* user pressed cancel */
endif
PathFile=pathstr(mergePath)+mergeFile
if mergeFile<>info("databasename")

alert 1014,"Are you sure you want to merge "+
mergeFile+" with "+info("databasename")+"?"
if info("dialogtrigger") contains "no"

stop
endif

endif
DoneID=ID ; so we can go back to this record when finished
openfile "+"+PathFile
noshow
field Modified
sortup
field ID
sortup
unpropagateup
select ID<>""
removeunselected
field SortName
sortup
find ID=DoneID
showpage
endnoshow

This Smart Merge procedure will work for any database that has the ID and Modified fields properly set up.
To use this procedure simply select Smart Merge from the Action menu.

Chapter 3:Programming Techniques Page 421
Directly Reading and Writing Disk Files

Disk files are used for permanent storage of information. Panorama normally takes care of saving informa-
tion in disk files, and reading it back in again later as needed. However Panorama also gives you the flexibil-
ity of accessing disk files directly.

Your disk may contain hundreds or thousands of files. When you create a new file, the operating system
(MacOS or Windows) allocates a space on the disk for it. As the file grows, more space is made available as
needed (until the disk is full). The operating system keeps track of the exact location and size of each file for
you, and makes sure that each file is kept separately and doesn’t interfere or overlap with any other file.

What’s in a File?

Before launching into the actual business of reading and writing files a little background is in order. Different
types of files contain different types of information. A particular file may contain a program, a picture, text, a
database a spreadsheet, etc. When reading and writing files it’s often important to know what kind of file it is
and what it is supposed to contain. On Windows PC systems a file’s type can be surmised from the three or
four letter extension at the end of the file name — .exe for programs, .txt for text files, etc. On the Macintosh
file extensions are not used for this purpose. Instead, each file has two invisible tags that identify what type
of file is, and how the file was created. Each invisible tag is four characters long, for example TEXT, APPL, or
KASX. You cannot normally see or modify these invisible tags, but you can access them via program state-
ments and functions.

There are literally thousands of different tags and extensions for identifying different types of files. On the
Macintosh the tag that identifies the type of file is called the file type tag.This table lists a few of the exten-
sions and corresponding file type tags that you may encounter. (Note: Some of these tags, for example PDF,
are only three characters long - in that case a space must be added to the end.)

Extension
(PC)

Tag
(Mac) File Contents

.exe APPL Application (program)

.txt TEXT Text file

.pan ZEPD Panorama Database

.pnz KSET Panorama File Set

.pwp paig
Panorama Word Processing document (see “Word

Processor Document Storage Strategies” on page 696
of the Panorama Handbook)

.pct PICT Macintosh PICT graphic (image)

.png PNGf Portable Network Graphic (image)

.jpg JPEG JPEG image

.tif TIFF TIFF image

.eps EPSF Encapsulated Postscript image (EPS)

.pdf PDF Adobe Acrobat Document

.mov MOOV Quicktime Movie

.wav WAVE Sound file

.aif AIFF Sound file

.sit SITD Stuffit Archive (compressed file)

Page 422 Panorama Formulas & Programming
Files on a Macintosh also include an additional four character tag that identifies what application created the
file. This is called the file creator tag. Windows doesn’t really have a corresponding information. The com-
puter uses this tag to decide what application to launch when you double click on the file. Here are a few of
the file creator tags you may encounter.

Many Panorama functions use the type and creator tags to select files to be displayed or processed.

Reading Data Files

Panorama has three functions for getting information from data files: fileload(, fileloadpartial(,
and filesize(.

The fileload(function reads an entire file. The data in the file can be copied directly into a field or vari-
able, or processed further using the formula. The function has two parameters: a folder ID (see “Folder ID’s
and Paths” on page 401) and a file name. This example loads the contents of the system Note Pad into a field
or variable named Notes.

local Notes
Notes=fileload(info("systemfolder"),"Note Pad File")

The fileload(function can read the data in any file on your disk. It’s up to you to interpret what the data
means, however—the fileload(function simply reads the raw data, exactly as it appears on the disk.
Many files (if not most) will contain unintelligible gobbledygook.

If Panorama cannot read the file because of an error, the function will result in an error. In a procedure, this
error can be trapped with the if error statement (see “Error Handling with if error” on page 258).

The fileloadpartial(function is similar to fileload(, but it reads only a section of the file. It has two
additional parameters, the starting and ending positions within the file. These positions are measured in
characters from the beginning of the file, with 0 being the first character. The example below reads the first
500 characters from the file My Data in the current folder, then extracts the first line from the data.

local LineOne
LineOne=array(fileloadpartial("","My Data",0,500),1,¶)

This same example of extracting the first line would also work with the fileload(function, but only if
there is enough scratch memory to load the entire file. By using fileloadpartial(this procedure requires
only 500 bytes of scratch memory no matter how large the file My Data is.

Tag Application

KASX Panorama (3.5 or later)

KAS1 Panorama (3.1 or earlier)

ttxt SimpleText (text editor)

R*ch BBEdit (text editor)

CWIE CodeWarrior (text editor)

MPS Macintosh Programmers Workshop

ToyS AppleScript Editor

8BIM Adobe Photoshop

XCEL Microsoft Excel

WDBN Microsoft Word

SIT! Stuffit Archive

Chapter 3:Programming Techniques Page 423
The filesize(function calculates the size of a file. It has two parameters, the folder id (see “Folder ID’s
and Paths” on page 401) and file name.

if filesize("","Sample File")=0
message "The file is empty!"

endif

Note: If a file named Sample File does not exist in the current folder, the procedure above will display the
error message File not found. Use the if error statement to trap this error if you want to display your own
error or handle the error differently (see “Error Handling with if error” on page 258).

local size
size=filesize("","Sample File")
if error

message "Sample File does not exist!"
rtn

endif
message "Sample File contains "+str(size)+" bytes."

Reading Really Big Data Files

The fileload(function works fine for files up to about 2 to 3 megabytes in size. When you go beyond that
you may find that you need to expand the “expression stack.” The expression stack is a section of memory
that Panorama reserves for processing data within formulas. Panorama normally allocates 5 megabytes of
memory for the expression stack, which is far more than is needed for ordinary numeric and text calculations.
If you are directly working with large files, however, your needs can easily exceed this limit.

To change the size of the expression stack use the expressionstacksize statement.

expressionstacksize bytes

You can use the expressionstacksize statement to increase the available memory up to 250 megabytes.
Keep in mind, however, that increasing this allocation reduces the amount of memory available for other
applications. The new memory allocation is semi-permanent, remaining in effect until you change it again or
until Panorama quits.You can find out the current allocation using the info("expressionstacksize")
function. (Keep in mind that although the expressionstacksize statement allows you to manipulate
large amounts of data you cannot store more than 4 megabytes of data in a Panorama data cell.)

This example allows the myFile variable to be loaded with a very large amount of data. If the expression
stack isn't large enough, it is expanded automatically. However, if there is not enough memory available on
the system then an error message is displayed.

local myFile,myFileSize
myFileSize= filesize("","MyPicture.jpg")
if myFileSize > info("expressionstacksize") * 2
 expressionstacksize myFileSize * 2
 if error
 message info("error")
 rtn
 endif
endif
myFile= fileload("","MyPicture.jpg")

Another method for handling large amounts of data is to use the extendedexpressionstack statement.
This statement allows a formula to use free database memory for formula calculations. For example, if you
have 50 megabytes free, you'll be able to use all 50 megabytes for your formula data. When you are done with
whatever operations require the extra large amount of memory you should use the
normalexpressionstack statement.

Page 424 Panorama Formulas & Programming
Unlike the expressionstacksize statement, the extendedexpressionstack statement is temporary:
it applies to formulas until you use the normalexpressionstack statement or until you move to a different
record, move to a different database, edit a cell, use a fill command, or use the clipboard. In general we rec-
ommend that you use the normalexpressionstack statement as soon as possible after the
extendedexpressionstack statement. Another difference is that the extendedexpressionstack
statement does not apply to formulas that are in procedures that run as handlers, or to formulas that are
embedded in form objects, while the expressionstacksize statement. For most applications the
expressionstacksize statement should be the first choice.

This example uses the extendedexpressionstack statement to allow the myFile variable to be loaded
with a very large amount of data. Keep in mind that if you later want to access this variable you'll need to use
the extendedexpressionstack statement again.

local myFile
extendedexpressionstack
myFile= fileload("","MyPicture.jpg")
normalexpressionstack

Remember, none of this applies unless you are working with data that is more than 2 or 3 megabytes in size.

Writing Data Files

The filesave statement copies data into a file. If the file does not already exist, it is created. If the file
already contained information, that information is lost.

The filesave statement has four parameters

filesave folder,file,type,data

The first parameter, folder, is the folder ID where the file is to be saved. The second parameter is the name of
the file.

The third parameter, type, is an 8 character text item combining the file type tag and file creator tag for the
file (see “What’s in a File?” on page 421). If you are using a Windows PC you can simply use "" for this
parameter. If you are using a Macintosh the type and creator tags determine what icon, if any, this file will
have, and what application will be launched when you double click on this file. If you use an empty string
("") for this parameter, the file will be set up as a SimpleText text file. Although you can create any type of
file the most common application is to create a text file, as shown in this table.

The fourth parameter, data, is a formula that produces the data to be saved into the file. This may be a field,
variable, or more complex formula.

Icon Type/Creator Description

TEXTttxt SimpleText text file

TEXTR*ch BBEdit text file

TEXTCWIE CodeWarrior text file

TEXTMPW MPW text file

Chapter 3:Programming Techniques Page 425
Here is an example that saves the contents of the Notes field (the current record only) into a text file called
Notes.txt.

filesave "","Notes.txt","TEXTR*ch",Notes

The fileappend statement adds data to the end of an existing file. If the file does not already exist, it is cre-
ated. If the file already contained information, that information is retained and the new information is added
to the end of the file. The procedure below adds a line to the end of the file Deleted Records Log.txt every
time it is triggered.

fileappend "","Deleted Records Log.txt","","Record "+str(ID)+" deleted on "+
datepattern(today(),"Month, ddnth, yyyy")+" at "+timepattern(now(),"hh:mm:ss am/pm")+¶

deleterecord

If this procedure is named .DeleteRecord it will be triggered every time a record is deleted (see “.DeleteR-
ecord” on page 381). As records are deleted a log file will be created that looks something like this.

Record 4738 deleted on June 4th, 2001 at 3:12:47 PM
Record 392 deleted on June 4th, 2001 at 4:45:02 PM
Record 6133 deleted on June 5th, 2001 at 9:23:20 AM

As more records are deleted the log file will get bigger and bigger and bigger.

Copying Data Files

Panorama has several built in statements for copying files or parts of files. To learn more about these com-
mands see the copyfile and copyfork statements in the Programming Reference wizard.

Using FileSave and ArrayBuild to Export Data

Earlier in this chapter we learned how to use the export statement to export data from the database (see
“Exporting Text Files” on page 413). Another technique is to use the arraybuild statement to scan the data-
base and build an array (see “ARRAYBUILD” on page 5038 of the Panorama Reference) and then use
filesave to export the array into a file. The advantage of this technique is that it is more flexible than using
export because it allows you to add headers and footers to the data. When using Mac OS 9 the disadvantage
is that this technique requires at least enough scratch memory to contain the entire exported file, so it will not
work for exporting large databases. On Windows and Mac OS X Panorama can take advantage of virtual
memory for this, so it is less of a problem.

To illustrate this technique we will use it to export a file as an HTML table. We’ll start with a database of fruit
nutrition.

Page 426 Panorama Formulas & Programming
Here is the procedure that takes this database and creates an HTML page. The heart of the procedure is the
arraybuild statement, which scans the database and creates each line of the table. See “ARRAYBUILD” on
page 5038 of the Panorama Reference to learn about the parameters to this statement.

local webPage,webTable

arraybuild webTable,¶,"",
"<tr><td>"+Fruit+"</td>"+
"<td align=right>"+str(Calories)+"</td>"+
"<td align=right>"+str(«Total Fat»)+"g</td><tr>"

webPage={<html><head><title>Fruit Nutrition</title></head><body bgcolor="FFFFFF">
<center>
<h2>Fresh Fruit Nutrition Facts</h2>
<table border=1>
<tr>

<td width=100>Fruit</td>
<td width=70 align=right>Calories</td>
<td width=70 align=right>Fat</td>

</tr>
<DATA>
</table>
</center>
</body></html>}

filesave "","Fruit_Nutrition.html","TEXTR*ch",replace(webPage,"<DATA>",webTable)

The middle section of the procedure places a web page template into the variable webPage. Notice how the {
and } characters are used around the text so that " may be used within the text (see “Constants” on page 49).
The final line uses the replace(function to merge the table body into the web page template and then saves
the file, which will look something like this.

Chapter 3:Programming Techniques Page 427
When displayed in a web browser the finished result looks like this.

This example used the arraybuild statement to export the entire file. If you wanted to export only the cur-
rently selected records you would need to use the arrayselectedbuild statement.

Page 428 Panorama Formulas & Programming
Reading and Writing Resource Forks

On the Macintosh each file may consist of two separate partitions called forks, the data fork and the resource
fork. The resource fork is normally accessed only indirectly through special statements (see “Working with
Resources” on page 433) and not through the standard file i/o statements and functions. However, some-
times it is necessary to read and write the resource fork directly (for example to copy a file you must copy
both forks). To do this you must use the resourefork statement to switch Panorama into resource fork
mode (see “RESOURCEFORK” on page 5668 of the Panorama Reference). In this mode all of Panorama’s nor-
mal file i/o statements and functions access the resource fork instead of the data fork. To go back to normal
data fork mode use the datafork statement (see “DATAFORK” on page 5141 of the Panorama Reference).

Here is a procedure that makes a copy of a file named My File. The copy is called Copy of My File, and
includes both the data and resource forks from the original file.

local theOriginalFile,typecreator,data

theOriginalFile="My File"

typecreator=array(fileinfo("",theOriginalFile,2,¶)

datafork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data

resourcefork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data

datafork

On Windows PC systems files do not have resource forks and the resourcefork statement does absolutely
nothing. If you want your program to work on both Mac and PC systems you must check which system you
are using and only copy the resource fork if the database is on a Macintosh. Here is a revised copy of the pro-
cedure which shows one way to perform this check.

local theOriginalFile,typecreator,data,computerType

computerType="Macintosh"
if folderpath(dbinfo("folder","")) match "?:*"

computerType="Windows"
endif

theOriginalFile="My File"

typecreator=array(fileinfo("",theOriginalFile,2,¶)

datafork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data

if computerType="Macintosh"
resourcefork
data=fileload("",theOriginalFile)
filesave "","Copy of "+theOriginalFile,typecreator,data
datafork

endif

Chapter 3:Programming Techniques Page 429
Erasing a File

A procedure can erase any file by using the filetrash statement. This statement has two parameters: the
folder ID (see “Folder ID’s and Paths” on page 401) and the name of the file to be erased. (If you use "" as the
folder ID, the folder containing the current database is assumed.) This procedure will erase the file Temp
Data File.txt in the System folder.

filetrash info("systemfolder"),"Temp Data File.txt"

Keep in mind that the filetrash statement is the same as dragging the file into the trash can or recycle bin,
then choosing the Empty Trash or Empty Recycle Bin command. Once a file has been deleted with this state-
ment, you cannot get it back, so be careful.

Changing a File’s Name

A procedure can change the name of any file by using the filerename statement. This statement has three
parameters: the folder ID (see “Folder ID’s and Paths” on page 401), the original name of the file, and the new
name of the file. (If you use "" as the folder ID, the folder containing the current database is assumed.) This
procedure will rename the file Temp Data File.txt in the same folder as the current database, giving it the new
name Permanent Data File.txt.

filerename "","Temp Data File.txt","Permanent Data File.txt"

If there is already a file named Permanent Data File.txt, this statement will not be able to rename the file.

Changing a File’s Type and Creator

On the Macintosh each file has two four character tags that identify what type of file it is and what applica-
tion it belongs to (see “What’s in a File?” on page 421). A procedure can change these tags by using the
filetypecreator statement (see “FILETYPECREATOR” on page 5240 of the Panorama Reference). This
statement has three parameters: the folder ID (see “Folder ID’s and Paths” on page 401), the name of the file,
and the new tags for the file. (If you use "" as the folder ID, the folder containing the current database is
assumed.)

The procedure below examines a file that has been transferred from a PC computer to a Macintosh. Depend-
ing on the three character "extension" at the end of the filename, it converts the file into a text file, a Panorama
file, or a Photoshop picture file.

case myfile endswith ".txt"
filetypecreator myfolder,myfile,"TEXTttxt"

case myfile endswith ".pan"
filetypecreator myfolder,myfile,"ZEPDKASX"

case myfile endswith ".pct"
filetypecreator myfolder,myfile,"PICT8BIM"

endcase

Since PC files do not have type/creator tags the filetypecreator statement is simply ignored when used
on a Windows PC.

Creating a New Folder

If it is necessary for a procedure to create a new folder it can do so with the makenewfolder statement. This
statement has one parameter, the full path of the new folder. Here is an example. This example creates a
folder named Project Foo.

makenewfolder "C:\Plans\1999\Project Foo"

If you want to check whether or not a folder already exists you can use the folderexists(function.

Page 430 Panorama Formulas & Programming
Getting Information about a File

Your computer keeps track of a number of attributes for each file on the disk, including the size of the file, the
time and date when it was created, the time and date when it was last modified, and (on the Macintosh) the
file type tag and file creator tag. Panorama has several functions for accessing this information:
fileexists(, filedate(, filetime(, filetypecreator(and fileinfo(. Each of these functions
have two parameters: the folder ID (see “Folder ID’s and Paths” on page 401) and the filename.

The fileexists(function returns true or false depending on whether the file exists or not.

The filedate(function returns the date when this file was last modified (see “Date Arithmetic” on
page 106).

The filetime(function returns the time when this file was last modified. This time is the number of sec-
onds after midnight (see “Time Arithmetic” on page 113).

The filetypecreator(function returns the 8 characters defining the type tag and creator tag for the file (4
characters each - see “What’s in a File?” on page 421). You can use this information to determine the type of
file. For example, a Panorama database is ZEPDKASX. On PC systems Panorama will attempt to simulate the
type and creator tags for some types of files based on the file’s extension (.txt, .pan, etc.)

The fileinfo(function returns a text array with 8 items of information. The eight items are combined
together in an array with carriage return separators, so you can use the array(function to extract the infor-
mation you want.

The first element in the array returned by fileinfo(is the type of item, which may be either File or Folder.

The second element in the array returned by fileinfo(is 8 characters defining the type tag and creator tag
for the file (4 characters each - see “What’s in a File?” on page 421). You can use this information to determine
the type of file. For example, a Panorama database is ZEPDKASX. On PC systems Panorama will attempt to
simulate the type and creator tags for some types of files based on the file’s extension (.txt, .pan, etc.)

The third element in the array returned by fileinfo(is a number representing the creation date of the file.
The formula below displays the creation date of the file named Sample.

datepattern(val(array(fileinfo("","Sample"),3,¶)),"Month ddnth YYYY")

The fourth element in the array returned by fileinfo(is a number representing the creation time of the
file. The formula below displays the creation time of the file named Sample.

timepattern(val(array(fileinfo("","Sample"),4,¶)),"HH:MM:SS AM/PM")

The fifth element in the array returned by fileinfo(is a number representing the modification date of the
file. The sixth element in the array returned by fileinfo(is a number representing the modification time of
the file.

The seventh element in the array returned by fileinfo(is the size of the file.

The eighth element in the array returned by fileinfo(is the status of the file, either Locked or Unlocked.

Here is a typical array returned by the fileinfo(function for the file Panorama (the application itself).

File‹ Type of item (File or Folder)
APPLKASX‹ File type tag (APPL) and file creator tag (KASX)
2450070‹ Creation date. Use val(function to convert to number.
54233‹ Creation time. Use val(function to convert to number.
2450075‹ Modification date. Use val(function to convert to number.
71028‹ Modification time. Use val(function to convert to number.
1092657‹ File size (just over 1 megabyte)
Unlocked‹ File options (Locked or Unlocked)

Chapter 3:Programming Techniques Page 431
Here is another example of information for a Panorama database file:

File‹ Type of item (File or Folder)
ZEPDKASX‹ File type tag (APPL) and file creator tag (KASX)
2450035‹ Creation date. Use val(function to convert to number.
401‹ Creation time. Use val(function to convert to number.
2450035‹ Modification date. Use val(function to convert to number.
923‹ Modification time. Use val(function to convert to number.
2320‹ File size (just over 1 megabyte)
Unlocked‹ File options (Locked or Unlocked)

Getting and Setting Additional File Information

The getfilefinderinfo statement retrieves a collection of information about a file, including when it was
created and last modified and its position within the window.

getfilefinderinfo folderID,filename,type/creator,position,flags,creationdate,moddate

The first two parameters, folderID and filename, tell Panorama which file you are interested in. See “Folder
ID’s and Paths” on page 401 for more information about folder ID’s.

The next five parameters are all filled in by the statement. You should supply variables for each of these val-
ues. Type/Creator is the two four character tags that identify what type of file this is. See “What’s in a File?”
on page 421 for more information about these tags. Position is the visual x-y position of this file within the
folder (see “Points” on page 147). Flags contain a number of operating system specific options for this file. If
bit 14 of this value is set then the file is invisible. CreationDate and ModDate contain the creation date/time
and modification date/time of the file. Both of these values are SuperDates (see “SuperDates (combined date
and time)” on page 118).

The setfilefinderinfo statement modifies a collection of information about a file, including when it was
created and last modified and its position within the window.

setfilefinderinfo folderID,filename,type/creator,position,flags,creationdate,moddate

The first two parameters, folderID and filename, tell Panorama which file you want to modify. See “Folder
ID’s and Paths” on page 401 for more information about folder ID’s.

The next five parameters specify the new values for each file option. The parameter descriptions are the same
as for the getfilefinderinfo statement (see above). If you don’t want to change the type/creator value
you can simply specify "". If you don’t want to change the position, flags, creationdate or moddate value
specify 0. The procedure below sets the creation date/time and modification date/time to 9 am today.

setfilefinderinfo "","Sunset.jpg","",0,0,
superdate(today(),time("9am")),superdate(today(),time("9am"))

All of the other file options (type/creator, position and flags) are left undisturbed.

Accessing and Modifying File Permissions

The MacOS X operating system is based on UNIX, and uses UNIX style file permissions. File permissions
allow the system administrator to control who can read and write any file or folder. Panorama can access and
modify these permissions with the getfilepermissions and setfilepermissions statements. To
learn more about these statements see the Programming Reference wizard.

Building a List of Files or Folders

The filecatalog statement can build a list of files in folders and subfolders. This statement has four
parameters: Path, WildCard, TypeCreator and Files.

The Path parameter is the path of the primary folder to be cataloged, for example "Com-
puter:Alpha:Gamma:Zed:Foo". The statement will scan this folder, along with any subfolders inside that
folder (and any subfolders inside the subfolders, etc.).

Page 432 Panorama Formulas & Programming
The WildCard parameter lets you specify for matching file names that you want to catalog. The * character
will match any sequence of characters, while the ? character will match a single character. For example if you
wanted to catalog only JPEG images you could use *.jpg, while if you wanted to catalog only web pages you
could use *.html. The default is *, which matches all files.

The TypeCreator parameter is another method for specifying the types of files you want to catalog. For exam-
ple, if this parameter is TEXT???? then only text files will be included in the final list, if this parameter is
????KASX then only files created by Panorama will be included. The default is ????????, which matches all
files.

The Files parameter must be a field or variable. This is where the final list of files will be placed. Each line
contains the file path and file name of a single file.

This example will create a list of all JPEG images inside the My Images folder (including subfolders), then
displays that list in a dialog.

filecatalog "My Drive:My Documents:My Images:","*.jpg","",jpegArray
displaydata jpegArray

The listfiles(function builds a list of the files in a single folder. It is not as flexible as the filecatalog
statement, but since it is a function it can be used to display information in forms. The list is a text array with
a carriage return separator between each file name (see “Text Arrays” on page 93). The listfiles(function
has two parameters.

listfiles(folder,tags)

The folder parameter is a folder ID (see “Folder ID’s and Paths” on page 401) that identifies what folder you
want to list the contents of.

The tags parameter specifies what types of files you want to list. Leave this parameter empty if you want to
list all files and folders regardless of type.

If you wish, you may use the tags parameter to specify one or more types of files to include in the list. Each
type of file is specified by an 8 character combination of type and creator tags (see the previous section). For
example, to list Panorama database files the tags parameter should be ZEPDKASX. You may use the ? charac-
ter in the tags parameter when you don’t need to match. For example, many different applications can create
text files. To list all text files no matter what application created them, use the tags parameter TEXT????. You
can combine multiple tag specifications to list more than one type of file, for example ZEPDKASXTEXT????
to list both Panorama databases and text files.

The listfiles(function does not normally include folders in the list of files. However, there are two cases
where folders will be listed: 1) if the tags parameter is empty, or 2) if the tags parameter starts with the ƒ char-
acter (see “Special Characters” on page 57). For example, to list Panorama databases and folders use the tags
parameter ƒZEPDKASX. If you want to list only folders without any files, use type creator tags that are not
used by any kind of file, for example ƒZZZZZZZZ.

Since listfiles(is a function, it can be used in any formula in a procedure, auto-wrap text object, or
SuperObject formula. Here is an example formula that lists all the picture files in the same folder as the cur-
rent database:

listfiles(dbinfo("folder",""),"PICT????")

Building a List of Disks (Volumes)

The info("volumes") functions creates a list of disks (volumes) that are currently mounted (active). The
list is a text array with a carriage return separator between each file name (see “Text Arrays” on page 93). The
example below uses this function to check to see if the World Facts Reference CD is currently available.

if 0=arraysearch(info("volumes","World Facts Reference",1,¶)
message "World Facts Reference CD is not currently available."

endif

Chapter 3:Programming Techniques Page 433
Working with Resources

On the Macintosh files are split into two partitions, called forks. These forks are the data fork and the
resource fork. The data fork corresponds to a normal file as used on other operating systems (Windows,
UNIX, etc.) The resource fork, however, is not handled like a normal file. Instead, the operating system fur-
ther subdivides this fork into components called resources. These resources are like miniature “files within a
file” and are used to hold objects needed by programs like menus, images, text, templates, and even program
code. Instead of accessing the resource fork directly as a file, programs use the operating system to access
these components. Each resource component may be anything from a single character to tens of thousands of
bytes of information.

Because resources play such an important part in the operation of Macintosh programs (including Panorama)
we have created a mechanism by which resources can be used on Windows PC systems as well. Since Win-
dows PC files do not have two forks the resources must be kept in a separate file. This file must have a name
ending with the extension .rsr, for example My Menus.rsr. Unless specified otherwise, all of the functions and
statements described in this section work equally well on both the Macintosh and the PC.

Just as a file is identified by its location (folder) and filename, each resource is identified by its type and ID
number. The type is a four letter designation that identifies what type of data is stored in that resource. There
are hundreds of different types of resources, with more new types being created all the time. However, the
most common types were defined by Apple in 1984 and are still in use today. This table describes some of the
most common types.

The resource ID is simply a number between 0 and 65535.

Just as a file is identified by its folder and file name, a resource is identified by its type and ID. For example,
you may refer to a resource as MENU 97 or ICON 2544.

In addition to a type and ID, a resource may also have a name. However, the name is completely optional. If
a resource does have a name, you can identify the resource by its type and name as well as by its type and ID.
For example you may refer to a resource as ICON 2544 or as ICON Empty Trash Can.

Type Contents

CODE Machine code (a program)

MENU List of items in a menu

STR A single item of text

STR# Multiple items of text

DLOG Template describing a dialog

DITL List of items within a dialog

PICT Picture

ICON A single icon

ICN# Multiple icons

cicn Color icon

CURS Cursor design (mouse pointer)

Page 434 Panorama Formulas & Programming
On the Macintosh resource files may be created and edited with resource editing programs. The most popu-
lar such program is ResEdit, a freeware utility written by Apple and distributed by the Apple Programmers
and Developers Association (APDA). ResEdit has appeared in several different versions since the Macintosh
was released in 1984. If you’d like to learn more about ResEdit, we recommend that you get Zen and the Art
of Resource Editing, available from many sources, including amazon.com. The book includes a CD with a
copy of ResEdit along with many example files.

If you do a lot of resource editing you might want to check out another resource editor, Resorcerer, from
Mathemaesthetics (http://www.mathemaesthetics.com/).

Unlike ResEdit, Resorcerer is not free, but it does have advanced features that are not included in ResEdit. We
use Resorcerer instead of ResEdit here at ProVUE.

Chapter 3:Programming Techniques Page 435
There are no resource editor programs available for Windows PC’s. However, you can still create and modify
resources using Panorama statements and functions.

Opening and Closing Resource Files

Before a Panorama procedure can access the objects inside a resource file it must open the resource file. This
can be done with the openresource or openresourcerw statements.

The openresource statement opens a resource for read only access — you cannot modify resource objects
when a file is opened this way. The openresource statement requires one parameter—the name of the
resource file to open. For example, if the resource file containing your text is called Background Items then
the procedure should contain the statement

openresource "Background Items"

This statement may be used on both Macintosh and Windows PC computers. On Windows PC computers the
filename extension of .rsr is assumed, so the example above will actually open the resource file Background
Items.rsr if used on a PC computer.

If the resource file is not in the same folder as the current database you must specify the location as well as
the name of the resource file, like this (see “Combined Folder Location and File Name” on page 400).

openresource "C:\Accounting\Background Items"

The openresourcerw statement also opens a resource file, but allows both reading and writing.

Unlike opening a database window, there is no visible indication when a resource file is opened.

To close a resource file use the closeresource statement. The statement must be followed by the name of
the resource to close.

closeresource "Background Items"

If the resource was opened from a different folder you must specify the entire path, like this.

closeresource "C:\Accounting\Background Items"

It’s often not necessary to bother with closing a resource file. If you leave any resource files open Panorama
will automatically close them when you exit (Quit) from Panorama. If you attempt to re-open a resource file
that is already open Panorama simply leaves it open and continues. (However, if a resource is open for read-
ing only you must close it if you want to open it for read/write access.)

It is possible to open more than one resource file at once. In fact, there is always more than one resource file
open, because the system has a resource file open, and Panorama has its own resource file open. If two differ-
ent resource files contain resources with the same type and ID, Panorama will use the copy of the resource
from the most recently opened resource file.

To get a list of currently open resource files use the info("openresourcefiles") function.

Opening a Resource File in the .Initialization Procedure

If a resource file is required for operation of the database (for example for custom menus), we recommend
that you place the openresource statement in the .Initialize procedure for the file (See “.Initialize” on
page 382 more information on the .Initialize procedure).

Simply creating the .Initialize procedure does not open the resource file. The first time you create this proce-
dure you must save the database, then close and re-open the database. The .Initialize procedure will open
the resource file when you re-open the database, and you can begin using the resources immediately. From
then on the resource file will be opened automatically every time the database is opened.

Page 436 Panorama Formulas & Programming
Reading a Resource

The getresource(function gets a resource from an open resource file and copies it into a field or variable.
You can read any resource with this function, although making sense of the contents of the resource is up to
you.

The getresource(function has two parameters: type and ID. The type is the resource type. This must be a
four letter text item (see “Working with Resources” on page 433). Standard resource types include "STR "
(Pascal String), "STR#" (multiple strings), "DLOG" (dialog template), "DITL" (dialog items), "MENU"
(menu). The ID is the identification for the resource. The resource ID can be a number (from 0 to 65535) or a
name (a text item).

This example loads the contents of TEXT resource number 415 into the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT",415)

Remember, all resource have numbers, but they do not all have names. If the resource does have a name, you
can use the name for the ID. This example loads the contents of the TEXT resource named Thank You #2 into
the field LetterBody.

openresource "Letter Templates"
LetterBody=getresource("TEXT","Thank You #2")

Reading STR and STR# Resources

Panorama has three special functions for reading with string resources: getstring(, getnstring(and
getstringmatch(.

To read a STR resource (which contains one text item up to 255 characters long), use the getstring(func-
tion. This function has two parameters: type and ID. Type is the resource type. This must be a four letter text
item (see “Working with Resources” on page 433). You can specify any resource type you like here, but
strings are usually stored in resources of type "STR " (Pascal String). (If you specify "" for the type, Pan-
orama will assume "STR ".) The ID parameter is the identification for the resource. The resource id can be a
number (from 0 to 65,535) or a name (a text item).

This example displays the contents of STR resource number 1296.

message getstring("",1296)

All resource have numbers, but they do not all have names. If the resource does have a name, you can use the
name for the ID. This example displays the text in the resource named Overflow Error.

message getstring("","Overflow Error")

To access a STR# resource(which contains multiple text items, each up to 255 characters), use the
getnstring(function. STR# resources hold multiple text items, so the getnstring(function extracts one
of them. This function has three parameters: type, ID and number. The type is the resource type. This must be
a four letter text item. You can specify any resource type you like here, but strings are usually stored in
resources of type "STR#" (multiple Pascal Strings). (If you specify "" for the type, Panorama will assume
"STR#".) The ID is the identification for the resource. The resource id can be a number (from 0 to 65,535) or a
name (a text item). The number is the number of the string item within the collection. For example, if the col-
lection contains 6 strings they will be numbered 0, 1, 2, 3, 4, and 5.

This example displays the contents of STR# resource #693 item 12.

message getnstring("",1296,11)

Here is another example that displays the 12th item in the Errors STR# resource.

message getnstring("","Errors",11)

Chapter 3:Programming Techniques Page 437
Another function that access STR# resources is the getstringmatch(function. The getstringmatch(
function searches through a collection of multiple strings in a STR# resource. If it finds a match with the text
you supply, it returns the number of the text item within the collection.

The getstringmatch(function has three parameters: type, ID and text. The type and ID are the same as for
the getnstring(function (see above). The text parameter is the text you want to search for. For a match,
this text must be exactly the same as one of the text items in the STR# collection.

This function returns a number. If the text does not match any of the text items in the STR# collection, the
function will return 0. If there is a match, the function will return the number of the item that matched, start-
ing with 1 for the first item. (Notice that this numbering system is different than the getnstring(function,
which starts with 0 for the first item.)

One application for this function is looking up commands or keywords. Suppose you have a STR# resource
number 320 that contains the following text items.

DIAL
APPOINTMENT
TODO
LETTER
CHECK

Now suppose the database has a global variable called CommandLine. The user types a command into this
variable with a Text Editor SuperObject™. Here is part of a procedure that can process these commands using
the STR# 320 resource.

local commandWord, commandNumber, commandExtras
openresource "Accounting Extras"
commandWord=upper(strip(CommandLine[1," "]))
commandExtras=strip(CommandLine[" ",-1])
commandNumber=getstringmatch("",320,commandWord)
if commandNumber=0 stop endif
if commandNumber=1

dial commandExtras
endif
if commandNumber=2

…
endif
if commandNumber=3

…
…

Notice that the example converts the text the user types in into all upper case. This is to make sure that the
text will match the commands in the STR# resource. Remember, the text must match exactly, including upper
and lower case.

Writing a Resource

If a resource file has been opened with the openresourcerw statement a procedure can use the
writeresource statement to create and/or modify a resource object. The writeresource statement has
three parameters: type, ID and data. The type is the resource type. This must be a four letter text item (see
“Working with Resources” on page 433). The ID is the identification for the resource. The resource id can be a
number (from 0 to 65,535) or a name (a text item). The data parameter is the data to be placed in the resource.
The data should be text, not a number. (The text may represent a binary value, see “Raw Binary Data” on
page 156.)

Here is a procedure that writes some text (for example Last update: 10/18/02) into STR resource number
2000. If the resource does not exist it will be created.

writeresource "STR ",2000,string255("Last update: "+datepattern(today(),"mm/dd/yy")

Page 438 Panorama Formulas & Programming
If there is more than one resource file open the resource will be written into the file that was most recently
opened (see “Working with Multiple Resource Files” on page 440).

Deleting a Resource

If a resource file has been opened with the openresourcerw statement a procedure can use the
deleteresource statement to permanently remove a resource .

deleteresource type,id

The type is the resource type. This must be a four letter text item (see “Working with Resources” on
page 433). The ID is the identification for the resource. The resource id can be a number (from 0 to 65,535) or a
name (a text item).

Renumbering a Resource

If a resource file has been opened with the openresourcerw statement a procedure can use the
renameresource statement to change the number of a resource and/or change its name (see
“RENAMERESOURCE” on page 5659).

renameresource type,id,number,name

The type is the resource type. This must be a four letter text item (see “Working with Resources” on
page 433). The ID is the original identification for the resource. The resource id can be a number (from 0 to
65,535) or a name (a text item). The number is the new number for the resource. The name is the new name for
the resource. This procedure changes resource MENU 498 into MENU 1917, and gives the resource the name
Option Menu.

renameresource "MENU",498,1917,"Option Menu"

If the name is "" Panorama will leave the name alone (no change). This procedure changes resource MENU
498 into MENU 8367 while leaving the name alone (as Option Menu in this case).

renameresource "MENU",1917,8367,""

If you want to change the name to empty text then use ¶ as the menu name (see “Special Characters” on
page 57). This procedure erases the name from resource MENU 8367.

renameresource "MENU",8367,8367,¶

Listing Resources

Panorama has two functions that can help you build a list of the resources available in the currently open
resource files: resourcetypes(and resources(.

The resourcetypes(function creates a text array containing a list of the resource types in the currently
open resource files. The function has no parameters.

The resourcetypes(function returns a carriage return delimited text array (see “Text Arrays” on page 93).
Each element in the array contains a resource type. Each resource type is a four letter text item, for example
"STR " (Pascal String), "STR#" (multiple strings), "DLOG" (dialog), "DITL" (dialog items), "MENU" (menu)
(see “Working with Resources” on page 433).

You can use this function to check if a particular resource type exists, or you can use the function with a pop-
up menu or List SuperObject™ to allow the user to select a type of resource for any reason. The procedure
below will create a text array with resource types.

local rezTypes
rezTypes=resourcetypes()

Chapter 3:Programming Techniques Page 439
The rezTypes variable will be filled with a list of resource types, like this:

CNTL
CURS
FKEY
INIT
KCAP
KCHR
LDEF
MACA
PACK
PTCH
ROv#
TPLT
SIZE
LBAR
octb
DLGX
dctb
cocm
TEXT
STR#
PICT
PAT#
PAPR
MENU
MDEF

As you can see, the resource types are not listed in any particular order.

The resources(function creates a text array containing a list of resources of a particular types. This func-
tion has one parameter: type, which is the resource type. This must be a four letter text item (see “Working
with Resources” on page 433).

The resources(function returns a text array containing a carriage return delimited list of all the resources
of the specified type. Each element of this list is itself a tab delimited array. The first item is the resource item
number. The second item is the resource name (if any).

This example builds a list of the TEXT resources in the currently open resource files. (The currently open
resource files include Panorama itself and the Macintosh system file, as well as any resource files you have
opened with the openresource statement.)

local rezStrings
rezStrings=resources("TEXT")

This will fill rezStrings with an array like this. (There is a tab between the number and the first character of
the resource name, if any.)

2001Error Messages
2002Command List
2003Conversion Options
2100
2103
2104
2140Day
2141Month
2142Year

The resourcetypes(and resources(functions normally list all resources in all open resource files. See
the next section to learn how to make these function list only the resources in a single file.

Page 440 Panorama Formulas & Programming
Working with Multiple Resource Files

It’s possible to open and work with multiple resource files at once. For example you could open three
resource files like this.

openresourcerw "alpha"
openresourcerw "beta"
openresourcerw "gamma"

When reading resources Panorama always searches the most recently opened file first. For example, if a pro-
cedure contained the statement

temp=getresource("DATA",2000)

Panorama would start by searching for this resource object in the gamma resource file. If it didn’t find it there
it would look in the beta resource file, and if not there then it would look in the alpha file.

When writing resources Panorama always writes in the most recently opened file. For example if a procedure
contained the statement

writeresource "DATA",2000,"This is not a test"

Panorama would always write this resource in the gamma resource file.

Sometimes it may be necessary to focus in on only a single resource file, temporarily disabling the other open
files. This can be done with the activeresource statement. This statement temporarily makes only one
resource file active. For example, the program below will write a resource into the beta resource file instead of
the gamma file.

activeresource "beta"
writeresource "DATA",2000,"This is not a test"
activeresource ""

The second activeresource statement (with the "" parameter) re-enables the other resource files.

The activeresource statement can also be used for reading resources. The program below will only read
the DATA 2000 resource from the beta file, not alpha or gamma.

activeresource "beta"
temp=getresource("DATA",2000)
activeresource ""

Finally, the activeresource statement can also be used when listing resources. The resourcetypes(
and resources(functions normally list all resources in all open resource files (see “Listing Resources” on
page 438). When an activeresource statement is in use they will only list resources and resource types in
the active resource file, ignoring the other files.

Chapter 3:Programming Techniques Page 441
Accessing the Windows Registry

The Registry is a master database that Windows uses as kind of a giant system-wide preferences file. If you'd
like to learn about what's in the registry and how to work with it, I recommend that you pick up a copy of
“Inside the Windows 95 Registry” by Ron Petrusha.

Be sure you know what you are doing before you mess with the Registry. You can easily disable your system
beyond repair if you are not careful.

Getting Information About Registry Items

The registryinfo(function allows you get a directory of subkeys, a directory of values within a registry
key, or a specific value within a key. For example, this formula returns a list of control panels.

registryinfo("HKEY_CURRENT_USER\Control Panel")

To get a directory of the values contained in a key (instead of the subkeys), add a colon to the end of the path.
This example will list three values: MouseSpeed, MouseThreshold1, and MouseThreshold2.

registryinfo("HKEY_CURRENT_USER\Control Panel\Mouse:")

To retrieve a specific value, add the value name to the end of the path.

registryinfo("HKEY_CURRENT_USER\Control Panel\Mouse:MouseSpeed")

Page 442 Panorama Formulas & Programming
To get the default value for the key, use the name <DEFAULT>. This example will tell you that a .aif file is a
QuickTime movie file (if you have QuickTime installed).

registryinfo("HKEY_CLASSES_ROOT*\.aif:<DEFAULT>")

Panorama allows the six root keys to be abbreviated, as shown in the table below.

Using these abbreviations the examples given previously above could be rewritten as shown below:

registryinfo("HKCU\Control Panel")
registryinfo("HKCU\Control Panel\Mouse:")
registryinfo("HKCU\Control Panel\Mouse:MouseSpeed")
registryinfo("HKCR*\.aif:<DEFAULT>")

Modifying Registry Entries

The registrywrite statement allows you to create registry keys and registry values, or to modify an exist-
ing registry value. This statement has three parameters.

RegistryWrite path,type,data

The first parameter is a registry path. This path uses the same format as the registryinfo(function (see
“Getting Information About Registry Items” on page 441).

The second parameter is the type of data being written. The possible choices are shown below. If you specify
"", Panorama will default to REG_SZ (text).

The third parameter is the actual data being written. No matter what data format you are writing, this should
be text. For other data types you can fill the text item with binary values (see “Raw Binary Data” on
page 156).

Root Abbreviation

HKEY_CLASSES_ROOT HKCR

HKEY_CURRENT_USER HKCU

HKEY_LOCAL_MACHINE HKLM

HKEY_USERS HKUS

HKEY_CURRENT_CONFIG HKCC

HKEY_DYN_DATA HKDD

0 REG_NONE

1 REG_SZ

2 REG_EXPAND_SZ

3 REG_BINARY

4 REG_DWORD

5 REG_DWORD_BIG_ENDIAN

6 REG_LINK

7 REG_MULTI_SZ

8 REG_RESOURCE_LIST

9 REG_RESOURCE_LIST

10 REG_RESOURCE_REQUIREMENTS_LIST

Chapter 3:Programming Techniques Page 443
This example changes the mouse speed. Notice that this statement supports the same abbreviations allowed
by the registryinfo(function (see “Getting Information About Registry Items” on page 441).

registrywrite "HKCU\Control Panel\Mouse:MouseSpeed","","2"

You can also change the default value associated with a registry key.

registrywrite "HKCR*\.aif:<DEFAULT>","","Quick Time Movie"

This example creates a registry entry named Acme, but does not create or modify any values associated with
that key.

registrywrite "HKLM\Software\Acme","",""

Deleting a Registry Entry

The registrydelete statement may be used to delete a registry key or registry value. This statement has
one parameter, the path of the registry item to be deleted (see “Getting Information About Registry Items” on
page 441).

This example deletes a registry value:

registrydelete "HKLM\Software\Acme\SuperWidget:WindowLocation"

This example deletes a registry key, along with any values associated with it:

registrydelete "HKLM\Software\Acme\SuperWidget"

Page 444 Panorama Formulas & Programming
Monitoring Memory Usage

Since Panorama is a memory based program memory usage can be very important. Several statements allow
you to monitor memory usage.

The info("freememory") function returns the amount of memory available for additional data. This cor-
responds to the value shown by the Memory Usage window (see “Monitoring Memory Usage” on page 137
of the Panorama Handbook).

To learn how to change Panorama’s overall memory allocation see “Adjusting Panorama’s Memory Alloca-
tion” on page 140 of the Panorama Handbook.

The info("scratchmemory") function returns the amount of scratch memory available. On Macintosh OS
X and Windows PC systems there is no scratch memory (this is a relic of OS 9), so this function always
returns 1,000,000 (one million).

Chapter 3:Programming Techniques Page 445
Windows

Windows are where the action is. Except for the menu bar, everything Panorama does happens inside of win-
dows. A procedure can open windows, close them, move them around and control their appearance.

Opening a Window

Opening a window in a procedure generally requires at least two statements. The first statement sets up the
location of the window on the screen, along with any window options. The second statement actually opens
the window.

There are six primary statements that open a new window: opensheet, openform, opendialog,
opencrosstab, openprocedure and opendesignsheet. The procedure can specify exactly where the
new window will open (see the next section) or it can simply allow Panorama to open the window using the
default location and size.

The opensheet statement opens the data sheet for the current database in a new window. If the data sheet
window is already open, that window will simply be brought to the front (no new window will be opened).

The openform statement opens a form in a new window. The specified form must be a form in the current
database, not some other database. The openform statement has one parameter, the name of the form to
open. The procedure below opens a form in a new window, prints a report, then closes the new window.

openform "Monthly Report"
field PayTo
groupup
field Amount
total
print dialog
removesummaries 7
closewindow

If the specified form is already open in a window, that window will simply be brought to the front (no new
window will be opened).

A procedure can use the dbinfo(function to find out what forms (or crosstabs or procedures) are in a data-
base. The procedure below opens up every form in the current database.

local windowCount,formCount,nextForm
windowCount=arraysize(listwindows(""),¶)
formCount=arraysize(dbinfo("forms",""),¶)
if windowCount+formCount>23

message "Too many forms, cannot open them all"
formCount=23-windowCount

endif
nextForm=1
loop

openform array(dbinfo("forms",""),nextForm,¶)
nextForm=nextForm+1

until nextForm>formCount

The opendialog statement also opens a form in a new window. However, this statement opens the window
without any drag bar, tool palette, or scroll bars. In other words, the new window will look (and act) like an
old style, non-movable dialog window. Since this type of dialog is now obsolete we recommend that you
avoid the opendialog statement. When a form is opened with the opendialog statement, Panorama will
not allow any other window to be moved on top of the dialog window. Panorama simply ignores clicks in
other windows, as well as clicks on the desktop. The only way to close this window is with the

Page 446 Panorama Formulas & Programming
closewindow statement. The form should have at least one button that triggers a procedure that will close
the window.The example below opens a dialog window, then pauses. In this case the window should contain
at least one button that has a resume pState statement in it, and it should have SuperObjects™ for editing
the PrintStartDate and PrintEndDate global variables.

global pState
setwindowrectangle rectangle(100,150,300,450),""
opendialog "Print Options"
pause pState
closewindow
select Date>=PrintStartDate and Date≤PrintEndDate
print dialog

For information on a better way to create dialogs with Panorama forms see “Custom Dialogs” on page 489.

The opencrosstab statement opens a crosstab in a new window. The specified crosstab must be a crosstab
in the current database, not some other database. The opencrosstab statement has one parameter, the
name of the crosstab to open.

The openprocedure statement opens a procedure in a new window, so that the procedure can be edited.
The procedure must be a procedure in the current database, not some other database. The openprocedure
statement has one parameter, the name of the procedure to open.

The opendesignsheet statement opens the design sheet for the current database in a new window. If the
design sheet window is already open, that window will simply be brought to the front (no new window will
be opened). Once the design sheet is open the procedure can modify the structure of the database (be care-
ful!). A procedure can also modify the structure of the database with the fieldname, fieldtype,
addfield, insertfield and deletefield statements (see “Modifying Field Structure Directly” on
page 506).

Specifying the New Window Location

There are three statements that can define the location and options for a new window:
setwindowrectangle, setwindow and windowbox. The setwindowrectangle statement has two
parameters: a rectangle defining the location of the new window (relative to the upper left hand corner of the
main screen, see “Rectangles” on page 149), and the window options. (The window options will be discussed
in the next section, but if you use "" you will get a standard window.)

Here is a procedure that opens a 100 by 200 pixel form window in the upper left hand corner of the main
screen.

setwindowrectangle rectangle(25,2,125,202),""
openform "Status"

If you want the new window to fill the entire screen you can use the info("screenrectangle") function,
like this:

setwindowrectangle info("screenrectangle"),""
openform "Status"

The setwindowrectangle statement will allow you to open the window partially or completely off the
screen, where it won’t be visible. If you don’t want that to happen you can use the fitwindow statement in
between the setwindowrectangle statement and the statement that opens the new window (openform,
opensheet, etc.). The fitwindow statement adjusts the new window position to make sure that it is com-

Chapter 3:Programming Techniques Page 447
pletely visible on the screen. The procedure below positions the Status window in the lower right hand cor-
ner of an XGA (1024 by 768) monitor. But on an older 640 by 480 monitor the window would be partially off
the screen. The fitwindow statement adjusts the window location so it will be completely visible even on
these small monitors.

setwindowrectangle rectangle(568,624,768,1024),""
fitwindow
openform "Status"

You’ll often want to center a new window on top of the current, window, or center a new window on the
screen. The subroutine procedure below, called .CenterRectangle, is handy for these situations.

local newRect,oldHeight,oldWidth,newHeight,newWidth
local newTop,newLeft
oldHeight=rheight(parameter(1))
oldWidth=rwidth(parameter(1))
newHeight=parameter(2)
newWidth=parameter(3)
newTop=max(20,rtop(paramter(1)+int((oldHeight-NewHeight)/2))
newLeft=rleft(parameter(1)+int((oldWidth-newWidth)/2)
newRect=rectanglesize(newTop,newLeft,newHeight,newWidth)
setparameter 1,newRect

Once you’ve added the .CenterRectangle procedure to your database you can use it to open windows. Here’s
a procedure that centers a new 200 pixel high by 450 pixel wide window in the middle of the screen.

local myWindowBox
myWindowBox=info("screenrectangle")
call .CenterRectangle,myWindowBox,200,450
setwindowrectangle myWindowBox,""
openform "Schedule"

This next procedure will center the new window in the middle of the current window.

local myWindowBox
myWindowBox=info("windowrectangle")
call .CenterRectangle,myWindowBox,200,200
setwindowrectangle myWindowBox,""
openform "Options"

The setwindow statement is similar to setwindowrectangle, but uses four separate numbers as parame-
ters instead of using a rectangle. The windowbox statement also uses four numbers, but they are combined
into a single text item. (Also, the windowbox statement only has one parameter, so you cannot set the win-
dow options.) The following three statements will work identically to each other.

setwindowrectangle rectangle(100,120,250,400),""
setwindow 100,120,250,400,""
windowbox "100 120 250 400"

You may wonder why Panorama has three statements for doing the same thing. The answer is that as newer
statements are added to Panorama in new versions, the older statements are retained for compatibility with
existing procedures. In general, the setwindowrectangle statement is the best for new procedures
because of all the functions Panorama now has for manipulating rectangles as a single unit (instead of having
to deal with four separate numbers). See “Rectangles” on page 149 to learn more about these functions.

Page 448 Panorama Formulas & Programming
New Window Options

Normal Panorama windows have a drag bar across the top, a tool palette down the left hand side, and two
scroll bars down the right and bottom edges of the windows. Using the setwindowrectangle or
setwindow statement, a procedure can open a window with or without any or all of these elements. The sec-
ond parameter of these statements is a text argument that allows you to suppress these four window ele-
ments. The text may include any combination of these four components nodragbar, nopalette, novertscroll
and nohorzscroll. Here are some examples of combinations of these options.

Option Example

""

"nohorzscroll"

"nohorzscroll novertscroll"

Chapter 3:Programming Techniques Page 449
Here is a procedure that opens a 100 by 200 pixel form window in the upper left hand corner of the main
screen. The window has no tool palette and no scroll bars.

setwindowrectangle rectangle(25,2,125,202),"nopalette novertscroll nohorzscroll"
openform "Status"

You can use these options to open a form as a dialog window with no drag bar, no tools, and no scroll bar.
Another way to do this is with the opendialog statement, which is described later in this chapter. If a win-
dow is opened with the opendialog statement Panorama will treat it as a dialog and will not allow any
other window to be brought on top of it (including windows of other currently running applications).

Non Standard Window Styles

In addition to standard windows Panorama supports several custom window styles. In fact, if you are using
a Macintosh computer and you are an advanced C, Pascal or assembly language programmer you can even
create your own window types. The windowproc statement allows you to override the normal default win-
dow type and use any type of window.

The windowproc statement should be placed just in front of the statement that actually opens the window
(see the example below). The windowproc statement has one parameter—a window type number.

Window type 2 is a plain dialog box with no border and no drop shadow.

"nopalette nohorzscroll novertscroll"

"nodragbar nopalette nohorzscroll
novertscroll"

NON-MOVABLE WINDOWS ARE
NO LONGER RECOMMENDED!

Option Example

Page 450 Panorama Formulas & Programming
Window type 3 is also a plain dialog with no border. However, type 3 windows do have a drop shadow.

In previous versions of Panorama window type 16 was a rounded corner window with a black drag bar. This
window type is no longer available.

Once a window has been opened, the window type is permanent. The only way to change a window type is
to close the window and then re-open it with a new type.

Changing a Window’s Position/Options

If a window has a drag bar, the user can move the window around on the screen. If you just want to change
the size of a window without moving it use the sizewindow statement. This statement has two parameters:

zoomwindow height,width

Using the zoomwindow statement a procedure can also move a window, and/or change the display options
for that window. The zoomwindow statement has five parameters:

zoomwindow top,left,bottom,right,options

These are the exact same options used by the setwindow statement.

The procedure below moves the current window to the right by 50 pixels. (The example assumes the current
window has standard window options.)

local deltaV,deltaH
deltaV=0
deltaH=50
zoomwindow

deltaV+rtop(info("windowrectangle")),
deltaH+rleft(info("windowrectangle")),
deltaV+rbottom(info("windowrectangle")),
deltaH+rright(info("windowrectangle")),
"" /* change this line to use non-standard window options */

If the window was originally close to the right hand edge of the screen, this procedure may push the window
partially off the screen. If you want to prevent this, place a fitwindow statement just in front of the
zoomwindow statement.

Chapter 3:Programming Techniques Page 451
Changing a Window’s View

A procedure can change what is inside a window at any time. There are five primary statements that change
what appears in the current window: gosheet, goform, gocrosstab, goprocedure and
godesignsheet. These statements are the same as opensheet, openform, etc. except that instead of open-
ing a new window, they simply open the requested form, crosstab, etc. inside the current window. If the
requested view is already open in another window (or even the current window) the go commands simply
bring that window to the front. In that case, the original window will continue to display whatever it was dis-
playing before.

The procedure below switches the current window to a form named List.

goform "List"

Changing the Name of a Window

Panorama windows usually have a name that combines the database name with the name of the form,
crosstab, or procedure being displayed. However, using the windowname statement a procedure can rename
any window to anything you want.

The windowname statement has one parameter, the name for the window. The only restriction is that the
name must be less than 31 characters long.

Suppose you have a database named Team with a form named Status. Normally the name of this window
would be Team:Status. The procedure below opens the Status window and renames it to Status Display.

openform "Status"
windowname "Status Display"

The new window name is only temporary. Panorama will forget the new window name if the window is
closed, or if the contents of the window are changed to a different view (either with the View menu or with a
goform, gosheet, or other go<view> statement.)

Scrolling Inside a Form Window

If a form is larger that the window, the user can scroll to different parts of the form using the scroll bars.
Using the formxy statement, a procedure can also scroll the form within the window. This statement has two
parameters, the vertical and horizontal position:

formxy vertical,horizontal

The vertical parameter is the vertical spot on the form that you want to appear at the very top of the window.
If you want to see the top of the form this should be zero. The position is specified in pixels (1 pixel = 1/72
inch).

Before windoname statement… After windoname statement.

Page 452 Panorama Formulas & Programming
The horizontal parameter is the horizontal spot on the form that you want to appear at the very left edge of
the window. If you want to see the left edge of the form, this should be zero.

This simple example procedure makes sure that the upper left hand corner of the form is visible.

formxy 0,0

The next procedure slides the form down 1/2 inch.

formxy 72/2,0

Sometimes the formxy statement may not seem to slide the form to the exact position you specified. There
are two possible reasons for this. First of all, the form cannot be scrolled farther than the bottom right object
on the form. Once this object is visible, the form cannot be scrolled any farther.

The other possible discrepancy is that forms are always scrolled in increments of 8 pixels. This insures that
patterns (which repeat every 8 pixels) are always displayed consistently. The formxy statement will always
round the position you specify to the nearest multiple of 8.

Closing a Window

The user can usually close a window by clicking on the close box (in the upper left hand corner of the drag
bar). A procedure can close a window with the closewindow statement. This statement has no parame-
ters—it simply closes the current (top) window.

Chapter 3:Programming Techniques Page 453
When Panorama closes the last window associated with a database, it normally asks the user if he or she
wants to save changes before closing the database. However, the closewindow statement does not usually
do this. It simply closes the window and the database without saving any changes. Sometimes this is very
convenient. A procedure can open a database, sort it, select, etc., then print a report and close the database,
throwing away the temporary changes it has made. However, if you want the procedure to ask the user if
they want to save changes, there are two ways to do this. The first is to write this into the procedure itself.

if info("changes")>0 and arraysize(listwindows(info("databasename")),¶)=1
alert 1013,"Do you want to save changes?"
if clipboard() contains "yes"

save
endif

endif
closewindow
…
… procedure continues

The second method is simply to make sure that the closewindow statement is either the last statement in the
procedure, or that it is immediately followed by a stop statement. In either case Panorama will check for
changes and ask the user if they want to save changes if necessary. (If closewindow is the last statement and
you don’t want Panorama to ask to save changes, simply put an extra nop statement (no-operation) after the
closewindow statement.)

Trapping the Close Box

If the window has a drag bar, the user can close the window at any time simply by clicking on the close box.
You may want to prevent the user from closing the window under certain conditions, or you may want to
perform some special operation before the window is closed. These situations call for a .CloseWindow proce-
dure (see “.CloseWindow” on page 380). Whenever the user clicks on a close box, Panorama checks to see if
there is a .CloseWindow procedure in this database. If there is, Panorama triggers the procedure instead of
closing the window.

For example, suppose you want to allow the user to close any window except for the data sheet window. This
.CloseWindow procedure will do the trick:

if info("windowname")=info("databasename")
message "Sorry, you cannot close the data sheet"

else
closewindow

endif

Notice that if it wishes to close the window, the .CloseWindow procedure must explicitly use the
closewindow statement.

It’s important to keep it mind that the only time the .CloseWindow procedure is triggered is when the user
clicks on the close box. It is not triggered when the user selects the Quit or Close File commands from the
File menu, or by the closewindow statement.

In addition to trapping the close box, you may wish to trap the action of closing the entire database. You can
do this with the ..CloseDatabase procedure, see “..CloseDatabase” on page 397.

Changing The Window Order (Who’s on Top?)

The user can bring any window to the front by clicking on the window. A procedure can bring a window to
the front with the window statement. This statement has one parameter, the name of the window that needs
to be brought to the front. The name must be spelled and capitalized exactly as it appears in the window title
at the top of the window.

window "Price List:Report"

Page 454 Panorama Formulas & Programming
If there is no such window, the procedure will normally stop and display an error. The procedure can trap
and respond to this error with the if error statement, like this (see “Error Handling with if error” on
page 258).

window "Price List:Report"
if error

openfile "Price List"
openform "Report"

endif

Use the info("windowname") function to get the name of the currently active (top) window. One applica-
tion for this function is when you want to jump to a different window, then jump back to the original win-
dow. This example jumps to the price list window, sorts the price list, then jumps back to the original
window.

local wasWindow
wasWindow=info("windowname")
window "Price List:Prices"
field Description
sortup
window wasWindow

Use the info("windows") function to get a text array listing of open windows. The text array is carriage
return separated (see “Text Arrays” on page 93), and it lists the windows in order from front to back (the top
window is array element 1, the next window is element 2, etc.) The procedure below swaps the order of the
top and second from top window.

window array(info("windows"),2,¶)

Here is another procedure that brings the bottom window to the front. Using this procedure over and over
again will cycle through all of the windows.

local windowCount
windowCount=arraysize(info("windows"),¶)
window array(info("windows"),windowCount,¶)

The listwindows(function is similar to info("windows") but allows you to list only the windows that
belong to a particular database. This function has one parameter, the name of the database. (If you leave the
database name as an "" empty string, the listwindows(function will list all windows, just like the
info("windows") function.) The procedure below displays the number of open Price List windows.

local windowCount
windowCount=arraysize(listwindows("Price List"),¶)
message "The Price List has "+str(windowCount)+" windows open."

The windowtoback statement is the opposite of the window statement. It sends a specified window all the
way to the bottom of the pile.

window "Price List:Report"
print dialog
windowtoback "Price List:Report"

When the procedure is done with the Price List:Report window, it moves it out of the way, below all of the
other windows. (Of course another option would be to close the window.)

Temporary “Invisible” Windows

Often a procedure needs to flip back and forth between windows in different databases. Although this gets
the job done, it is very annoying and slow if the windows overlap each other.

Chapter 3:Programming Techniques Page 455
To get around this problem a procedure can work with secret windows. From a procedure’s point of view, a
secret window is just like any other window that contains a form. The good news is that secret windows are
invisible! A procedure can flip to a secret window in another database, perform some operation on that data-
base (search, sort, etc.), then go back to the original window—all without the flashing and updating that usu-
ally occurs when you flip from window to window.

Secret windows are temporary. A secret window can be created by the window statement. The secret window
ceases to exist as soon as the procedure brings another window to the top (or as soon as the procedure stops).

To create a secret window and make it the current window, use the window statement with the parameter
<database>:secret. For example, to open a secret window for the Price List database use this statement:

window "Price List:Secret"

The Price List database must be open or this statement will not work. The word secret may be capitalized any
way you want: secret, Secret, or even SECRET.

Here is a procedure that opens the price list in a secret window, sorts the price list, then goes back to the orig-
inal window (all without any flashing).

local wasWindow
wasWindow=info("windowname")
window "Price List:Secret"
field PartDescription
sortup
window wasWindow

(Note: If your database actually contains a form named Secret (or secret or SECRET) and it is open, the win-
dow statement will bring this window to the front instead of creating a secret invisible window.)

Databases Without Windows

Most Panorama databases have at least one window at all times. However, it is possible to create a database
that has no windows at all. Such a database can be used for lookups, or it can be used with secret windows
(see “Temporary “Invisible” Windows” on page 454).

To create a database that has no windows, use the Save As command and check the No Windows option (see
“Saving Window Positions” on page 64 of the Panorama Handbook). The next time you open this database
(either by double clicking on it or with the Open File dialog) it will open without any windows.

To temporarily open a database without its normal windows use the opensecret statement. This statement
is identical to the openfile statement (see “Opening a Panorama Database” on page 405), but it does not
open the windows. (It also does not trigger the .Initialize procedure, see “.Initialize” on page 382.) The exam-
ple below opens the Price List database without any windows.

opensecret "Price List"

If you open a database with opensecret and then later decide that you want the windows after all you can
use the openfile statement to open the windows. This will also trigger the files .Initialize procedure if it
has one (see “.Initialize” on page 382).

opensecret "Price List" /* open file without windows */
…
…
…
openfile "Price List" /* file is already open, just open the windows */

Page 456 Panorama Formulas & Programming
The makesecret statement makes all the windows for the current database vanish. The database is still
open and can be used for lookups or with secret windows. (Note: Since all the windows for the current data-
base vanish, some other database will be the top window after this statement.) Here is an example
.CloseWindow procedure that makes the database invisible if the user closes the last window:

if arraysize(listwindows(info("databasename")),¶)=1
makesecret

else
closewindow

endif

If this is not the last window for this database, the procedure simply closes the window. If it is the last win-
dow, it closes the window with makesecret, so the database is still open in memory.

To re-open a window in a database that has no visible windows you need to use a secret window. The proce-
dure below opens the Distributor window in the Price List database.

window "Price List:Secret"
setwindowrectangle rectanglesize(20,20,300,180),""
openform "Distributor"

If you want to actually close a file with no windows you must again use a secret window. This procedure
removes the Price List file from memory.

window "Price List:Secret"
closefile

Using secret windows, a procedure can access an invisible database just as easily as a visible database. The
procedure can read, modify, sort, or even save the database. There’s no need to open a visible window unless
the user needs to see the database.

“Magic” Windows

Panorama has a number of info(functions and graphic statements that work with the currently active win-
dow. In some circumstances you may want to use one of these functions or statements to work with one of
the other open windows. Panorama’s “magic window” feature allows you to temporarily designate any open
window as the currently active window for use with these info(functions (see “Window, Form and Report
Information” on page 188) and graphic statements (see “Programming Graphic Objects on the Fly” on
page 633). The designated window doesn’t actually move to the front, so you can use this feature without
unnecessary window “flashing.”

There are two statements available for designating an open window as the “magic” active window.

magicwindow windowname

magicformwindow database,form

In either case the window or form must already be open. From this point on in the program all info(func-
tions and graphic commands will refer to this window, instead of the “real” current window. To remove the
magic window designation and go back to the “real” current window use the statement

magicwindow ""

Chapter 3:Programming Techniques Page 457
The info("magicwindow") function can be used to check the name of the currently designated “magic”
window, if any. For example this little program will update the People List list object in the window Con-
tacts:List. The if statement is used in case the specified window is not open at all.

magicwindow "Contacts:List"
if info("magicwindow")<>""

superobject "People List","Fill List"
magicwindow ""

endif

You may confuse this “magic window” feature with the “secret window” feature, but they are quite different.
The “secret window” feature creates a virtual, invisible window that is not tied to any actual window or
form. This secret window may be used for any database operation, including data entry, searching, sorting,
etc. The “magic window” feature does not create an invisible window, but works only with windows that are
actually open. It does not affect most database operations (these still take place in the “real” active window),
but only affects info(functions (see “Window, Form and Report Information” on page 188) and graphic
statements (see “Programming Graphic Objects on the Fly” on page 633).

Window Clones

Panorama normally allows only a single window per form. However a form can be designed to be opened
over and over again into multiple windows. This is called window cloning. To allow a form to be cloned you
must open the Form Preferences dialog and select the Allow Clones option.

Page 458 Panorama Formulas & Programming
A window clone cannot be opened manually…clone windows must be created with the openform statement
in a procedure. Here is a typical procedure that opens a slightly offset clone of the current window:

setwindowrectangle rectangleadjust(info("rectangle",10,10,10,10))
openform info("formname")

This procedure will not create a clone window unless the Allow Clones option is turned on.

Designing A Clone Window Application

Although any form can be cloned if the Allow Clones option is turned on, most forms will not work very
intelligently if they are cloned. In general, a form that is designed to be cloned should not contain any fields
or global variables, only windowglobal variables (see “Variable Accessibility” on page 250). If your form
contains Text Editor, Data Button, Pop-Up Menu or List SuperObjects and the Allow Clones option is turned
on, these SuperObjects will automatically create windowglobal variables instead of global variables. Since
the windowglobal variables can be manipulated separately for each clone window you can control each
clone window individually, even though all the clone windows use the same form template.

To illustrate clone windows we’ll use this database that contains a list of books. Here is the data sheet.

Chapter 3:Programming Techniques Page 459
In this database we’ve created a form called Detail that displays the information from a single record in the
database.

This form doesn’t display the information directly from the database fields (Title, Authors, Publisher, etc.).
Instead it has been set up to display information from a series of variables with the same name as the fields
but with an x added to the beginning (xTitle, xAuthors, xPublisher, etc.). These variables are created in this
procedure which opens the clone form, creates the variables and fills them with the data from the database
fields.

local dRect
/* open the clone window */
dRect=rectanglesize(

100+rtop(info("windowrectangle")),200+rleft(info("windowrectangle")),340,520)
setwindowrectangle dRect,"noVertScroll noHorzScroll nopalette"
fitwindow
openform "Detail"
/* create new variables for THIS window */
windowglobal xTitle,xAuthors,xISBN,xPages,xBinding,xPublisher,xDescription
/* fill the variables with the data from the current record */
xTitle=Title
xAuthors=Authors
xISBN=ISBN
xPages=Pages
xBinding=Binding
xPublisher=Publisher
xDescription=Description
/* display the variables */
showvariables xTitle,xAuthors,xISBN,xPages,xBinding,xPublisher,xDescription

Page 460 Panorama Formulas & Programming
Let’s see how this procedure works. Start by selecting a record in the data sheet.

Now select the procedure from the Action menu (we have called it Open Clone, but you can call it anything
you want). The procedure will open a new window which displays the information for Danny Goodman’s
Applescript Handbook.

Chapter 3:Programming Techniques Page 461
Now click on the data sheet to bring it back to the front and then click on another record. Usually when you
do this any open forms will automatically synchronize to show the new record. But in this case, the form is
not displaying the information directly from the database but instead is displaying the data we have stored in
the windowglobal variables. These variables have not changed, so the form continues to display the data
from the original record.

Page 462 Panorama Formulas & Programming
Now if we select the Open Clones procedure again the procedure will open a second copy of the Detail form.
This new copy shows the information from the current record, while the original Detail window continues to
show the information from the original window.

Chapter 3:Programming Techniques Page 463
Using the Open Clone procedure we can continue to open additional “clone” copies of the form — as many
as we want up to Panorama’s 32 window limit.

There is no special handling necessary for closing clone windows. The window simply closes when you click
on the close box. All of the windowglobal variables associated with the window are destroyed when the win-
dow is closed.

Page 464 Panorama Formulas & Programming
Alerts

Alerts are very simple dialogs that simply display a message and allow the user to press a button. Alerts are
usually used to “alert” the user of a situation (a problem, perhaps). Panorama has several off-the-shelf alerts.
(You can also create your own alerts with a form, just like any other dialog.)

The simplest way to alert the user to a situation is to use the beep statement. This statement, which has no
parameters, simply causes the computer to make its standard beep sound.

Displaying a Message

The simplest way to display a short piece of text is with the message statement. This simply displays an alert
with any message you want. The alert stays on the screen until the user presses the OK button. The message
statement has one parameter, the text of the message to be displayed. The example below displays the num-
ber of records in the database.

message "Total records: "+str(info("records"))

Here is what this alert looks like when this procedure runs.

Chapter 3:Programming Techniques Page 465
There are also three variations on the Message statement — BigMessage, GiantMessage and
TallMessage. If you use these, keep in mind that you can only display 256 characters in these dialogs. So
the TallMessage statement, for example, is useful for a narrow list of items, but you definitely can’t fill the
dialog with text (the DisplayData and SuperAlert statements described below will allow that).

If you really want to display a lot of text use the DisplayData statement. For example, this program will ask
you to select a file, then display the entire file.

local folder,file,type,filetext
openfiledialog folder,file,type,""
if file="" rtn endif
filetext=fileload(folder,file)
displaydata filetext

Page 466 Panorama Formulas & Programming
This statement will allow you to display up to 32,768 characters. The dialog normally takes up most of what-
ever screen size you have available (the illustration below has been reduced to 60%) and has a scroll bar so
that you can view additional text.

There are three buttons at the bottom of the dialog. To simply continue, press the OK button. To stop the pro-
cedure, press the Stop button. Press the Copy button to copy the text that is displayed to the clipboard (this
also stops the procedure).

The displaydata statement has an optional second parameter that allows you to customize the appearance
of the dialog. You can change the size, title, font, text size, color and many other options. For more informa-
tion see “The SuperAlert Statement” on page 472.

Alerts With Multiple Buttons

Panorama has several statements for creating standard alerts with multiple buttons. After this statement the
program can use the info("dialogtrigger") function to find out what button was pressed. This function will
return the text of the button, for example, Yes, No, Cancel, etc.

Code Sample

alertyesno "Do you want to make
my day?"

Chapter 3:Programming Techniques Page 467
alertnoyes "Do you want to make
my day?

alertyesnocancel "Do you want to
make my day?"

alertokcancel "Activate photon
beam in 60 seconds?"

alertcancelook "Activate photon
beam in 60 seconds?"

alertdeletecancel "Are you
really sure you want to delete

this priceless data?""

Code Sample

Page 468 Panorama Formulas & Programming
alertcanceldelete "Are you
really sure you want to delete

this priceless data?"

alertsavecancel "My Important
File"

alertrevertcancel "Do you want
to revert to the previous

version?"

alertok "This is identical to
the message statement except for

the icon."

alertoksmall "When you have very
little to say, this one is

perfect!"

Code Sample

Chapter 3:Programming Techniques Page 469
The Alert Statement

The alert statement allows you to build your own custom alerts with ResEdit (see “Working with
Resources” on page 433). However, we no longer recommend this statement — use the SuperAlert state-
ment instead (see “The SuperAlert Statement” on page 472) . The alert statement has two parameters: id
and message. The id is the resource number of the alert template you have built. The message is the text you
want to display in the alert. Like the statements above, to find out what button was pressed use the
info("dialogtrigger") function.

There are several alert templates built into Panorama that you can use with the alert statement.

Code Sample

alert 1000,"Testing 1, 2, 3"

alert 1001,"Testing 1, 2, 3"

alert 1002,"Testing 1, 2, 3"

alert 1003,"FILE"

alert 1005,"Testing 1, 2, 3"

Page 470 Panorama Formulas & Programming
alert 1008,"Testing 1, 2, 3"

alert 1009,"Testing 1, 2, 3"

alert 1010,"Testing 1, 2, 3"

alert 1012,"Testing 1, 2, 3"

alert 1013,"Testing 1, 2, 3"

alert 1014,"Testing 1, 2, 3"

Code Sample

Chapter 3:Programming Techniques Page 471
The example below uses the alert statement instead of the noyes statement.

alert 1014,"Do you really want to remove the old data?"
if info("dialogtrigger")="Yes"

select Date>today()-90
removeunselected

endif

If you create your own alert templates with ResEdit, make sure the resource file is open (use the
openresource statement) before you attempt to use the alert (see “Opening and Closing Resource Files” on
page 435).

Obsolete Alert Statements

Since Panorama was first released in 1988 it has evolved and improved in many ways. For compatibility, we
usually leave in older features even when new features make them obsolete, as is the case with the statements
described in this section. However, they are still described here because you may encounter them in older
databases. These statements display a message and allow the user to make a choice: Yes or No, Ok or Cancel,
etc. The statements that display these alerts are yesno, noyes, okcancel, and cancelok. These statements
all display an alert with two buttons. For example, the yesno statement displays a dialog with Yes and No

alert 1015,"Testing 1, 2, 3"

alert 1018,"Testing 1, 2, 3"

alert 1101,"Testing 1, 2, 3"

Code Sample

Page 472 Panorama Formulas & Programming
buttons. Notice that the first button is the default button, so the difference between yesno and noyes is
which button is the default. All of these statements have one parameter: the text of the message to be dis-
played. The statements will put the name of the button clicked into the clipboard. The example below uses
the noyes statement to confirm that the user really wants to delete data from the database.

noyes "Do you really want to remove the old data?"
if clipboard()="Yes"

select Date>today()-90
removeunselected

endif

When this procedure is run the alert looks like this.

Using the newer alertnoyes statement, this procedure would look like this:

alertnoyes "Do you really want to remove the old data?"
if info("dialogtrigger")="Yes"

select Date>today()-90
removeunselected

endif

The advantage of the alertnoyes statement is that it doesn’t disturb the clipboard.

Suppressing Alerts

In some applications (particularly web servers) you may want to suppress all alerts so that the program never
stops and waits for someone to do something. You can do this with the alertmode statement. This state-
ment has one parameter, which controls whether alerts will appear. If the parameter is "yes", "true", or "on",
alerts will be displayed. If the parameter is "no", "false", or "off", alerts will not be displayed. The program
will simply continue as if the default button had been pressed.

The SuperAlert Statement

Panorama V introduced this new statement that displays a configurable alert. You can control over a dozen
different options, including the overall alert size (height and width), the font, text size, title, color, back-
ground color, and more. You can even place images on the alert and specify up to three buttons on the alert.
In addition, the alert may display up to 32,768 characters (it is not limited to 255 characters like the other
alerts described in this section) and can even have a scroll bar.

The SuperAlert statement has two parameters

superalert message,options

Message is simply whatever text you want to display in the alert. Options is a text parameter that uses a syn-
tax similar to an HTML tag to specify one or more options. If you just want to use the default options you
don’t have to specify any options at all.

superalert "This is a plain alert",""

Chapter 3:Programming Techniques Page 473
This plain alert looks like this:

Each option is specified as an option=value pair, for example height=4in, color=red, etc. Here is an
example of a dialog with several options set. (Tip: If you enclose the entire option parameter in “smart
quotes” as shown below you will be able to use regular " quotes for the individual options, if necessary.)

superalert "WARNING!",
 “height=4in font=helvetica size=36 color=red style=bold textalign=center buttons=Danger”

This alert should get some attention!

Page 474 Panorama Formulas & Programming
The table below describes each of options available with this statement.

Option Examples Description

title= title="Latest Information" With this option you can set the title of the alert. This
appears in the title bar at the top of the alert window.

height=

height=400
height=5in
height=4.5"

height=10cm
height=80%
height=-50

height=-2cm

This option specifies the height of the alert. The default is
200 pixels. If you supply just a number then the height is
specified in pixels (72 pixels = 1 inch). If the number is fol-
lowed by in or " then it is specified in inches. If the number
is followed by cm it is specified in centimeters. If the num-
ber is followed by % it is specified as a percentage of the
screen height, for example 50% is 1/2 of the screen height.
If the height is negative then this value is the distance of the
border between the top of the screen and the alert (also the
bottom of the alert and the bottom of the screen). For exam-
ple if your screen is 8 inches high then a height of -1in will
make the alert 6 inches high (one inch at the top and one
inch at the bottom).

width=

width=600
width=7in
width=5.5"

width=12cm
width=80%
width=-50

width=-2cm

This option specifies the width of the alert. The default is
500 pixels. If you supply just a number then the width is
specified in pixels (72 pixels = 1 inch). If the number is fol-
lowed by in or " then it is specified in inches. If the number
is followed by cm it is specified in centimeters. If the num-
ber is followed by % it is specified as a percentage of the
screen width, for example 50% is 1/2 of the screen width. If
the width is negative then this value is the distance of the
border between the left of the screen and the alert (also the
right edge of the alert and the right side of the screen). For
example if your screen is 10 inches wide then a width of -
1in will make the alert 8 inches wide (one inch on the left
and one inch on the right).

font=
font=Tekton

font="Comic Sans"
font=Verdana

This option specifies the font to be used. The default is
whatever the system font is on your system.

size= size=9
size=18

This option specifies the text size (in points). The default is
whatever the default system text size is on your system.

style=
style=italic
style=bold

style="bold italic"

This option specifies the text style. You can choose one or
more options from bold, italic, underline, outline and
shadow. All of the text in the alert will be displayed in the
same style, you cannot mix styles within the alert.

textalign= textalign=center

This option specifies how the text will be positioned within
the alert. The default is topleft. The available choices are:
topleft, topcenter, topright, leftcenter, center, rightcenter, bottom-
right, bottomcenter, and bottomleft.

scroll= scroll=yes
scroll=thin

This option enables a scroll bar to allow viewing of large
quantities of text. The options are yes, thin and no.

buttons= buttons="Yes;No;Cancel"
buttons="One:50;Two:50"

This option allows you to specify up to three buttons (the
default is two buttons: Ok and Cancel). Each button is sepa-
rated by a semicolon, and the first button listed is the
default button. The default button width is 80 pixels, you
can also specify a button width in pixels by placing a colon
followed by the width after the button name. In the second
example to the left the buttons will be 50 pixels wide.

timeout= timeout=20

If this option is used the alert will close automatically after
the specified number of seconds. If the user doesn’t press a
button before the specified time the alert will automatically
press the default button so the procedure can continue.

Chapter 3:Programming Techniques Page 475
color=
color=#00FF00

color=red
color=royalblue

This option specifies the text color (the default is black). If
the color begins with # then you can specify any color
using HTML style color tags (#RRGGBB, for example
#00FF00 for green). You can also choose from this list of col-
ors: aliceblue, antiquewhite, aqua, aquamarine, azure, beige,
bisque, black, blanchedalmond, blue, blueviolet, brown, burly-
wood, cadetblue, chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, dark-
gray, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkor-
ange, darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkturquoise, darkviolet, deeppink,
deepskyblue, dimgray, dodgerblue, firebrick, floralwhite, forest-
green, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray,
green, greenyellow, honeydew, hotpink, indianred, indigo, ivory,
khaki, lavender, lavenderblush, lawngreen, lemonchiffon, light-
blue, lightcoral, lightcyan, lightgoldenrodyellow, lightgreen,
lightgrey, lightpink, lightsalmon, lightseagreen, lightskyblue,
lightslategray, lightsteelblue, lightyellow, lime, limegreen, linen,
magenta, maroon, mediumaquamarine, mediumblue, mediumor-
chid, mediumpurple, mediumseagreen, mediumslateblue, medi-
umspringgreen, mediumturquoise, mediumvioletred,
midnightblue, mintcream, mistyrose, moccasin, navajowhite,
navy, oldlace, olive, olivedrab, orange, orangered, orchid, pale-
goldenrod, palegreen, paleturquoise, palevioletred, papayawhip,
peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown,
royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell,
sienna, silver, skyblue, slateblue, slategray, snow, springgreen,
steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white,
whitesmoke, yellow, yellowgreen.

Option Examples Description

Page 476 Panorama Formulas & Programming
bgcolor=
bgcolor=#FFDDFF

bgcolor=lightskyblue
bgcolor=##983

This option specifies the background color (the default is
gray). If the color begins with # then you can specify any
color using HTML style color tags (#RRGGBB, for example
#FFCCFF for lite pink). You can also choose from the same
list of colors available for the color= option (see above). A
third option is to use ## followed by a resource number to
display a background image from Panorama’s resources.
You can use the Icons & Backgrounds wizard to find out
what background images are available.

icon=
icon=stop

icon=caution
icon=note

This option will display a stop sign, caution sign, or note
icon in the alert.

image= image="Smiley Face"

This option allows you to display any image you want
within the alert. The image may be in a disk file or in the
flash art gallery of the current database. If the image is in a
disk file the default location is the folder containing the cur-
rent database, but you can specify any folder you want by
specifying the complete path.

imageedge=

imageedge=top
imageedge=left

imageedge=both
imageedge=none

This option specifies how the image should placed relative
to the text. Left means that the image will be placed to the
left of the text. Top means that the image will be placed
above the text. Both means the text will be placed both
below and to the right of the image (the image in the upper
left corner with the text in the lower right corner). None
means that the text will be drawn on top of the image,
essentially making the image a background. For all of these
options the alert will adjust the text location based on the
size of the image.

imagealign= imagealign=topcenter
imagealign=leftcenter

This option specifies how the image should be aligned rela-
tive to the edges of the alert. The options are topleft (the
default), topcenter, topright, leftcenter and bottomcenter.

texttopadjust= texttopadjust=10

The text position is automatically adjusted based on the
image size. If the image is placed at the top (imageedge-
=top) the text is normally placed 3 pixels below the image.
This option allows you to change that spacing.

Option Examples Description

Chapter 3:Programming Techniques Page 477
Here are some examples illustrating the use of the superalert statement.

 superalert "Are you talking to me?",
 {height=120 width=200 font="Verdana" size=9 color="red" buttons="Yes:60;No:60"}

superalert "This alert is short and wide (half the width of your screen).",
 {height=2in width=50% buttons="Ok"}

superalert "Look Out!",{image="Stop Sign"}

Page 478 Panorama Formulas & Programming
superalert "Look Out!",{image="Stop Sign" imageedge=top bgcolor=white}

superalert "Look Out!",{image="Stop Sign" imagealign=topcenter imageedge=top bgcolor=white}

Chapter 3:Programming Techniques Page 479
superalert Joke,“Title="Joke of the Day" height=6in width=7in scroll=thin size=12
bgcolor=white buttons="Ok;Save"”

The DisplayData Alert

The DisplayData alert (see “Displaying a Message” on page 464) is based on the SuperAlert statement.
The second parameter to the DisplayData statement can take all of the same options as the SuperAlert
statement, but has different default values. You can override these defaults by supplying a second parameter
with the options you want changed.

displaydata myFile,“title=”My File” font=Courier size=12”

The default options are white background, Monaco 9 point font, window height 100 pixels less than screen
height, width 80% of screen width, with three buttons: Ok, Stop and Copy. (You can eliminate the Stop and/
or Copy buttons, but if you add other buttons they will not work. Use the superalert statement directly if
you need to add other buttons.)

Page 480 Panorama Formulas & Programming
Dialogs

Dialogs are a special type of window. A dialog window is usually temporary, and usually modal. In other
words, the dialog must be filled in and dismissed before the user can continue with his or her work.

Basic Text Entry Dialogs

The most basic dialog prompts for a single item of text. Panorama has several options for easily creating this
type of basic dialog, starting with the gettext statement. This statement has two parameters.

gettext prompt,input

The prompt parameter should be a short message that will be displayed in the dialog. This message should
explain what needs to be entered. The input parameter must be the name of a field or variable that contains
text. The value in this field or variable will be displayed in the dialog—the user can use it as is, edit the value,
or erase it completely and type in a new value. The example below uses gettext to find out what area code
to search for. The default area code is 909.

local whatArea
whatArea="909"
gettext "Select what area code?",whatArea
select Phone match "("+whatArea+")*"

When this procedure is run a dialog like this is displayed.

You can customize the appearance of this basic dialog by using the customdialog statement. This state-
ment has one parameter, the resource ID number of a dialog template. You can create dialog templates with
ResEdit (see “Working with Resources” on page 433), or you can use one of several templates supplied with
Panorama. Here’s a procedure that uses one of Panorama’s built in templates.

customdialog 3103
gettext "Describe your entry in 50 words or less",Description

Here is the alert that will appear.

Chapter 3:Programming Techniques Page 481
This table shows the different templates that are available as part of Panorama. (To save space, these images
have been reduced to 50%).

As you may have noticed, some of these dialogs contain a Cancel button and some contain a Stop button. If
the dialog contains a Stop button the procedure will stop immediately if the button is pressed.

Sample # Sample

3131

3121 3101

3122 3102

3123 3103

3125 3105

3120 3100

Page 482 Panorama Formulas & Programming
If the dialog contains a Cancel button the procedure will continue no matter what button is pressed. The pro-
cedure can use the info("dialogtrigger") function to find out which button was pressed. If the Cancel
button was pressed Panorama will ignore whatever the user typed into the field or variable, leaving the orig-
inal value untouched. Here is a procedure that uses the info("dialogtrigger") function to find out
which button was pressed.

local whatArea
whatArea="909"
customdialog 3131
gettext "Select what area code?",whatArea
if info("dialogtrigger")="OK"

select Phone match "("+whatArea+")*"
else

selectall
endif

If you create your own custom resource templates make sure the resource file is open before you use the dia-
log (see “Opening and Closing Resource Files” on page 435).

The SuperGetText Statement

Panorama V introduced this new statement that displays a configurable dialog for entering text. You can con-
trol over a dozen different options, including the overall dialog size (height and width), the font, text size,
title, color, background color, and more.

The SuperGetText statement has two parameters

supergettext input,options

Input is a field or variable that will contain the text that is typed into the dialog. Options is a text parameter
that uses a syntax similar to an HTML tag to specify one or more options. If you just want to use the default
options you don’t have to specify any options at all.

supergettext Query,""

This plain dialog looks like this:

Each option is specified as an option=value pair, for example height=4in, caption="Enter
Quantity", etc. Here is an example of a dialog with several options set. (Tip: If you enclose the entire option
parameter in “smart quotes” as shown below you will be able to use regular " quotes for the individual
options, if necessary.)

supergettext Query,“caption="Please enter the quantity:" height=104 width=350”

Chapter 3:Programming Techniques Page 483
This dialog will look like this.

The table below describes each of options available with this statement.

Option Examples Description

title= title="Latest Information" With this option you can set the title of the dialog. This
appears in the title bar at the top of the dialog window.

height=

height=400
height=5in
height=4.5"

height=10cm
height=80%
height=-50

height=-2cm

This option specifies the height of the dialog. The default is
200 pixels. If you supply just a number then the height is
specified in pixels (72 pixels = 1 inch). If the number is fol-
lowed by in or " then it is specified in inches. If the number
is followed by cm it is specified in centimeters. If the num-
ber is followed by % it is specified as a percentage of the
screen height, for example 50% is 1/2 of the screen height.
If the height is negative then this value is the distance of the
border between the top of the screen and the alert (also the
bottom of the alert and the bottom of the screen). For exam-
ple if your screen is 8 inches high then a height of -1in will
make the alert 6 inches high (one inch at the top and one
inch at the bottom).

width=

width=600
width=7in
width=5.5"

width=12cm
width=80%
width=-50

width=-2cm

This option specifies the width of the dialog. The default is
500 pixels. If you supply just a number then the width is
specified in pixels (72 pixels = 1 inch). If the number is fol-
lowed by in or " then it is specified in inches. If the number
is followed by cm it is specified in centimeters. If the num-
ber is followed by % it is specified as a percentage of the
screen width, for example 50% is 1/2 of the screen width. If
the width is negative then this value is the distance of the
border between the left of the screen and the alert (also the
right edge of the alert and the right side of the screen). For
example if your screen is 10 inches wide then a width of -
1in will make the alert 8 inches wide (one inch on the left
and one inch on the right).

font=
font=Tekton

font="Comic Sans"
font=Verdana

This option specifies the font to be used. The default is
whatever the system font is on your system.

size= size=9
size=18

This option specifies the text size (in points). The default is
12 points.

scroll= scroll=yes
scroll=thin

This option enables a scroll bar to allow viewing of large
quantities of text. The options are yes, thin and no.

caption= caption="Start date:"
This option specifies a message to be displayed at the top of
the dialog, above the text. (This message is displayed
within the dialog, not in the title bar.)

captionheight= captionheight=2
This option specifies how many lines should be used for the
caption (see above). This value defaults to 1, but you can
use a larger value if you have a long caption.

Page 484 Panorama Formulas & Programming
After the dialog is complete the program can use the info("dialogtrigger") to find out which button
was clicked.

captionfont=
captionfont=Tekton

captionfont="Comic Sans"
captionfont=Verdana

This option specifies the font to be used in the caption. This
allows you to specify a different font for the caption and the
text editing portions of the dialog.

captionsize= captionsize=9
captionsize=18

This option specifies the text size (in points) to be used in
the caption. This allows you to specify a different font size
for the caption and the text editing portions of the dialog.

captionstyle=
captionstyle=italic
captionstyle=bold

captionstyle="bold italic"

This option specifies the text style to be used in the caption.
You can choose one or more options from bold, italic,
underline, outline and shadow. All of the text in the caption
will be displayed in the same style, you cannot mix styles.

captioncolor=
captioncolor=#00FF00

captioncolor=red
captioncolor=royalblue

This option specifies the caption text color (the default is
black). If the color begins with # then you can specify any
color using HTML style color tags (#RRGGBB, for example
#00FF00 for green). You can also choose from this list of col-
ors: aliceblue, antiquewhite, aqua, aquamarine, azure, beige,
bisque, black, blanchedalmond, blue, blueviolet, brown, burly-
wood, cadetblue, chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, dark-
gray, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkor-
ange, darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkturquoise, darkviolet, deeppink,
deepskyblue, dimgray, dodgerblue, firebrick, floralwhite, forest-
green, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray,
green, greenyellow, honeydew, hotpink, indianred, indigo, ivory,
khaki, lavender, lavenderblush, lawngreen, lemonchiffon, light-
blue, lightcoral, lightcyan, lightgoldenrodyellow, lightgreen,
lightgrey, lightpink, lightsalmon, lightseagreen, lightskyblue,
lightslategray, lightsteelblue, lightyellow, lime, limegreen, linen,
magenta, maroon, mediumaquamarine, mediumblue, mediumor-
chid, mediumpurple, mediumseagreen, mediumslateblue, medi-
umspringgreen, mediumturquoise, mediumvioletred,
midnightblue, mintcream, mistyrose, moccasin, navajowhite,
navy, oldlace, olive, olivedrab, orange, orangered, orchid, pale-
goldenrod, palegreen, paleturquoise, palevioletred, papayawhip,
peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown,
royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell,
sienna, silver, skyblue, slateblue, slategray, snow, springgreen,
steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white,
whitesmoke, yellow, yellowgreen.

buttons= buttons="Yes;No;Cancel"
buttons="One:50;Two:50"

This option allows you to specify up to three buttons (the
default is two buttons: Ok and Cancel). Each button is sepa-
rated by a semicolon, and the first button listed is the
default button. The default button width is 80 pixels, you
can also specify a button width in pixels by placing a colon
followed by the width after the button name. In the second
example to the left the buttons will be 50 pixels wide.

bgcolor=
bgcolor=#FFDDFF

bgcolor=lightskyblue
bgcolor=##983

This option specifies the background color (the default is
gray). If the color begins with # then you can specify any
color using HTML style color tags (#RRGGBB, for example
#FFCCFF for lite pink). You can also choose from the same
list of colors available for the color= option (see above). A
third option is to use ## followed by a resource number to
display a background image from Panorama’s resources.
You can use the Icons & Backgrounds wizard to find out
what background images are available.

Option Examples Description

Chapter 3:Programming Techniques Page 485
Obsolete Text Entry Statements

Since Panorama was first released in 1988 it has evolved and improved in many ways. For compatibility, we
usually leave in older features even when new features make them obsolete, as is the case with the statements
described in this section. However, they are still described here because you may encounter them in older
databases. The getscrap statement displays a simple dialog.

The user types in one item of text, then presses OK or Stop. Panorama will put whatever text the user types
into the clipboard. The getscrap statement has one parameter, the text that you want to appear at the top of
the dialog. The example below uses getscrap to find out what check to search for.

getscrap "Find what check #?"
select «Check#»=val(clipboard())

The getscrapok statement is similar to getscrap, but the dialog has no Stop button.

The SuperChoiceDialog Statement

This statement displays a configurable dialog that displays a list of choices. This statement has three parame-
ters:

superchoicedialog list,selection,options

The list parameter must be a text delimited array containing the lists of choices that will be displayed. The
selection parameter must be a field or variable to accept the choice. The options is a text parameter that uses
a syntax similar to an HTML tag to specify one or more options. If you just want to use the default options
you don’t have to specify any options at all.

superchoicedialog States,theState,""

This plain dialog looks like this:

Page 486 Panorama Formulas & Programming
Each option is specified as an option=value pair, for example height=4in, caption="Enter
Quantity", etc. Here is an example of a dialog with several options set. (Tip: If you enclose the entire option
parameter in “smart quotes” as shown below you will be able to use regular " quotes for the individual
options, if necessary.)

superchoicedialog States,theState,
 “Caption="Select the State" captionstyle=bold height=6in width=3in”

This dialog will look like this.

Chapter 3:Programming Techniques Page 487
The table below describes each of options available with this statement.

Option Examples Description

title= title="Latest Information" With this option you can set the title of the dialog. This
appears in the title bar at the top of the dialog window.

height=

height=400
height=5in
height=4.5"

height=10cm
height=80%
height=-50

height=-2cm

This option specifies the height of the dialog. The default is
200 pixels. If you supply just a number then the height is
specified in pixels (72 pixels = 1 inch). If the number is fol-
lowed by in or " then it is specified in inches. If the number
is followed by cm it is specified in centimeters. If the num-
ber is followed by % it is specified as a percentage of the
screen height, for example 50% is 1/2 of the screen height.
If the height is negative then this value is the distance of the
border between the top of the screen and the alert (also the
bottom of the alert and the bottom of the screen). For exam-
ple if your screen is 8 inches high then a height of -1in will
make the alert 6 inches high (one inch at the top and one
inch at the bottom).

width=

width=600
width=7in
width=5.5"

width=12cm
width=80%
width=-50

width=-2cm

This option specifies the width of the dialog. The default is
500 pixels. If you supply just a number then the width is
specified in pixels (72 pixels = 1 inch). If the number is fol-
lowed by in or " then it is specified in inches. If the number
is followed by cm it is specified in centimeters. If the num-
ber is followed by % it is specified as a percentage of the
screen width, for example 50% is 1/2 of the screen width. If
the width is negative then this value is the distance of the
border between the left of the screen and the alert (also the
right edge of the alert and the right side of the screen). For
example if your screen is 10 inches wide then a width of -
1in will make the alert 8 inches wide (one inch on the left
and one inch on the right).

font=
font=Tekton

font="Comic Sans"
font=Verdana

This option specifies the font to be used for the list of
choices. The default is whatever the system font is on your
system.

size= size=9
size=18

This option specifies the text size (in points) for the list of
choices. The default is 12 points.

caption= caption="Start date:"
This option specifies a message to be displayed at the top of
the dialog, above the text. (This message is displayed
within the dialog, not in the title bar.)

captionheight= captionheight=2
This option specifies how many lines should be used for the
caption (see above). This value defaults to 1, but you can
use a larger value if you have a long caption.

Page 488 Panorama Formulas & Programming
After the dialog is complete the program can use the info("dialogtrigger") to find out which button
was clicked.

captionfont=
captionfont=Tekton

captionfont="Comic Sans"
captionfont=Verdana

This option specifies the font to be used in the caption. This
allows you to specify a different font for the caption and the
text editing portions of the dialog.

captionsize= captionsize=9
captionsize=18

This option specifies the text size (in points) to be used in
the caption. This allows you to specify a different font size
for the caption and the text editing portions of the dialog.

captionstyle=
captionstyle=italic
captionstyle=bold

captionstyle="bold italic"

This option specifies the text style to be used in the caption.
You can choose one or more options from bold, italic,
underline, outline and shadow. All of the text in the caption
will be displayed in the same style, you cannot mix styles.

captioncolor=
captioncolor=#00FF00

captioncolor=red
captioncolor=royalblue

This option specifies the caption text color (the default is
black). If the color begins with # then you can specify any
color using HTML style color tags (#RRGGBB, for example
#00FF00 for green). You can also choose from this list of col-
ors: aliceblue, antiquewhite, aqua, aquamarine, azure, beige,
bisque, black, blanchedalmond, blue, blueviolet, brown, burly-
wood, cadetblue, chartreuse, chocolate, coral, cornflowerblue,
cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, dark-
gray, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkor-
ange, darkorchid, darkred, darksalmon, darkseagreen,
darkslateblue, darkslategray, darkturquoise, darkviolet, deeppink,
deepskyblue, dimgray, dodgerblue, firebrick, floralwhite, forest-
green, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray,
green, greenyellow, honeydew, hotpink, indianred, indigo, ivory,
khaki, lavender, lavenderblush, lawngreen, lemonchiffon, light-
blue, lightcoral, lightcyan, lightgoldenrodyellow, lightgreen,
lightgrey, lightpink, lightsalmon, lightseagreen, lightskyblue,
lightslategray, lightsteelblue, lightyellow, lime, limegreen, linen,
magenta, maroon, mediumaquamarine, mediumblue, mediumor-
chid, mediumpurple, mediumseagreen, mediumslateblue, medi-
umspringgreen, mediumturquoise, mediumvioletred,
midnightblue, mintcream, mistyrose, moccasin, navajowhite,
navy, oldlace, olive, olivedrab, orange, orangered, orchid, pale-
goldenrod, palegreen, paleturquoise, palevioletred, papayawhip,
peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown,
royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell,
sienna, silver, skyblue, slateblue, slategray, snow, springgreen,
steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white,
whitesmoke, yellow, yellowgreen.

buttons= buttons="Yes;No;Cancel"
buttons="One:50;Two:50"

This option allows you to specify up to three buttons (the
default is two buttons: Ok and Cancel). Each button is sepa-
rated by a semicolon, and the first button listed is the
default button. The default button width is 80 pixels, you
can also specify a button width in pixels by placing a colon
followed by the width after the button name. In the second
example to the left the buttons will be 50 pixels wide.

bgcolor=
bgcolor=#FFDDFF

bgcolor=lightskyblue
bgcolor=##983

This option specifies the background color (the default is
gray). If the color begins with # then you can specify any
color using HTML style color tags (#RRGGBB, for example
#FFCCFF for lite pink). You can also choose from the same
list of colors available for the color= option (see above). A
third option is to use ## followed by a resource number to
display a background image from Panorama’s resources.
You can use the Icons & Backgrounds wizard to find out
what background images are available.

Option Examples Description

Chapter 3:Programming Techniques Page 489
Custom Dialogs

Most of the dialogs you will need will not fit into the “off the shelf” category described in the last section.
When an off the shelf dialog won’t cut it, you can build your own dialogs using standard Panorama forms.
Forms used as dialogs are created just like any other form, using text objects, buttons, lists, pop-up menus,
pictures, etc. In fact, any form can be used as a dialog.

If a dialog is going to be used to collect information that is independent from the database (i.e. not in a data-
base field) your dialog should use SuperObjects™ that are linked to global variables. You can use the Super-
Object Text Editor, Pop-Up Menus, Data Buttons and Lists with global variables. When the dialog is closed,
the procedure can use the information the user entered into these global variables any way it wants to.

Preparing a Form for Use as a Dialog

The first step in designing a custom dialog is to create a normal form (see “Creating a New Form, Crosstab or
Procedure” on page 182 of the Panorama Handbook).

Page 490 Panorama Formulas & Programming
Next use the Push Button tool (see “Super Object Push Button” on page 823 of the Panorama Handbook) to cre-
ate the OK and Cancel buttons. Both of these buttons should be configured to resume the current procedure
when clicked. To set up this configuration on the Macintosh hold down the Control key and click on the
Procedure pop-up menu. To setup this configuration on Windows simply right click on the Procedure pop-up
menu.

MacOS — hold down Control key and click
Windows — right click

Chapter 3:Programming Techniques Page 491
The next step is to add any text editing boxes that are needed using the Text Editor SuperObject (see “Text
Editor SuperObject” on page 639 of the Panorama Handbook). If a text editing box is going to be used to edit a
database field it should be configured to edit a variable. The variable should have the same name as the field
but with a prefix of d. The example below shows the configuration for editing the Name field.

An optional step at this point is to give some or all of the text editor objects a name (see “Object Type/Object
Name” on page 533 of the Panorama Handbook to learn how to assign a name to any object). In particular
you’ll probably want to assign a name to the upper left object, the object that will become the default for text
entry when the dialog is first opened.

Page 492 Panorama Formulas & Programming
At this point you can add text captions and any checkboxes or radio buttons. To configure a checkbox or
radio button to edit a database field it should be a variable with the same name as the field but with a d pre-
fix, just as for the Text Editor SuperObjects. Otherwise the variable can be any name you like.

Once all the objects on the form are complete, switch the form from Graphics Mode to Data Access Mode.
Then adjust the size of the window to show just the area you want to appear in the dialog.

Now open the Dialog Workshop (in the Developer Tools subfolder of the Wizard menu). This open a small
window.

The guts of this workshop is in the Dialog menu.

If you haven’t already set the size of your window you can use the Auto Size Window command to adjust
the form size. The wizard will try its best to adjust the form to an appropriate size.

Chapter 3:Programming Techniques Page 493
When your form is ready to go choose the Write Dialog Code command. This command will analyze the
form and write the code for a new procedure for you!

To try out your new dialog use the Try Dialog command. This allows you to see exactly what your new dia-
log looks like and how it will work.

Next, close the form window. However, make sure that you leave another window in the database open, so
that the database itself doesn’t become closed.

Page 494 Panorama Formulas & Programming
If your dialog works the way you expected the next step is to copy the procedure into the database itself. You
can copy your new procedure to the clipboard with the Copy Dialog Code command. If the dialog will be
opened by clicking on a button or selecting an item in the Action menu then you’ll need to create a new pro-
cedure (see “Writing a Procedure from Scratch” on page 216). Once the procedure is opened you can use the
Paste command to insert the automatically generated code into it.

For most dialogs, that’s it! Once you’ve tried one or two dialogs you’ll find that you can create a new dialog
in just a few minutes.

Before you actually use the dialog you’ll need to close the form you created. Make sure that some other win-
dow in this database remains open. To use the dialog you can simply select the new procedure from the
Action menu (or click on the button or whatever). The dialog will appear, and will automatically be centered
over the current window (or, if the window is too small, centered in the middle of the screen). Any cells or
buttons associated with a field will automatically be filled in with the original data from the current record.

When you press the OK or Cancel buttons the dialog will close automatically, and if the OK button was
pressed any fields that were modified will be updated.

Chapter 3:Programming Techniques Page 495
Customizing the Dialog Code

The program automatically generated by the Dialog Workshop will handle many common dialogs as-is.
However, this program is designed to be flexible and to allow you to modify almost all aspects of its behav-
ior. The key to this procedure is the RunDialog statement. Let’s start by looking at the automatically gener-
ated code to see how it works. Here is the simplest possible dialog processing code — just four lines.

loop
rundialog,{Form=Address Height=120 Width=400 Movable=yes Menus=normal}
stoploopif info("trigger")="Dialog.Close"

while forever

In this most basic form the code is a simple loop that executes the rundialog statement each time through
the loop. This statement handles most of the work. Whenever something happens (a button is pressed, the
Enter or Tab key is pressed), the rundialog statement analyzes it and then returns to the loop. Your code in
the loop can find out what is happening by examining the result of the info("trigger") function.

The rundialog statement has one parameter — a list of options. The options is a text parameter that uses a
syntax similar to an HTML tag to specify one or more options. Each option is specified as an option=value
pair, for example form="Entry", title="Enter Quantity", etc. (Tip: If you enclose the entire option
parameter in “smart quotes” you will be able to use regular " quotes for the individual options, if necessary.)

This very simple program shown above only does one thing — stop the loop if info("trigger") becomes
Dialog.Close. Our code doesn’t need to do anything else because the rundialog statement will do every-
thing for us including opening and closing the dialog.

To illustrate how this procedure can be expanded, let’s consider the dialog show below. This dialog is
designed to allow the user to type in a word or phrase they want to search for.

Here’s the procedure that can handle this dialog. The automatically generated code is shown in blue, the cus-
tom code in purple.

global findThis
findThis=""
loop

rundialog {Form="Find" Height=45 Width=346 movable=yes menus=normal AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

find exportline() contains findThis
endif

while forever

The first two lines simply create the global variable named findThis and assign it a value. This is the variable
the user will type into. The other new code checks to see if the OK button has been pressed, and if so, per-
forms the search.

linked to findThis global variable

Page 496 Panorama Formulas & Programming
We can modify this code further to perform error checking. This version of the program checks to make sure
that the user has typed something to search for. If not a message is displayed. More importantly, the
settrigger statement is set to "" instead of "Dialog.OK". This tells the rundialog statement not to
close the dialog window.

global findThis
findThis=""
loop

rundialog {Form="Find" Height=45 Width=346 movable=yes menus=normal AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif

while forever

The way the code above is written the find operation happens while the dialog is still open. If you wanted the
dialog to close first you would need to rewrite the program like this.

global findThis
findThis=""
loop

rundialog {Form="Find" Height=45 Width=346 movable=yes menus=normal AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

endif
endif

while forever
if dlgResult="Ok"

find exportline() contains findThis
endif

When the dialog is finished the dlgResult value will contain either the value Ok or Cancel.

You can add additional buttons to the dialog that perform some action within the dialog. For example, you
could add a Clear button to this dialog.

Chapter 3:Programming Techniques Page 497
When a button other than the OK or Cancel button is pressed the info("trigger") function will return
Button. followed by the title of the button.

global findThis
findThis=""
loop

rundialog {Form="Find" Height=45 Width=346 movable=yes menus=normal AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif
if info("trigger") = "Button.Clear"

superobject "Find","Open"
activesuperobject "setselection",0,32767
activesuperobject "clear"

endif
while forever

Sometimes you may want to have more than one button that terminates the dialog successfully. In this case
both the Find and Select buttons cause the dialog to close.

Here is the revised program to handle this dialog.

global findThis
findThis=""
loop

rundialog
{Form="Find" Height=45 Width=346 movable=yes menus=normal

AutoEdit="Find" OkButton="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif
if info("trigger") contains "Button.Select"

superobjectclose
if findThis=""

message "You must enter something to select!"
else

select exportline() contains findThis
settrigger "Dialog.OK"

endif
endif

while forever

Page 498 Panorama Formulas & Programming
The first thing to notice is the option OkButton="Find" on the fourth line. Options are discussed in more
detail in the next section, but for now this option tells the rundialog statement to treat the Find button as if
it was the OK button. That means that when you press the Enter or Return key it will be treated just as if you
had pressed the Find button. It also means that when the Find button is pressed the info("trigger")
function will return Dialog.OK, not Button.Find (see line 6).

The additions to handle the Select button are fairly routine. However, notice the fourth line from the bottom,
settrigger "Dialog.OK". This line tells the rundialog statement to go ahead and close the dialog win-
dow.

In some cases you may need to perform some initialization after the dialog window has opened. Usually this
involves some sort of graphic manipulation — moving an object or changing a font (see “Programming
Graphic Objects on the Fly” on page 633). (Almost any other kind of non-graphic initialization can simply be
performed before the loop begins.) We don’t have an example of this, but the basic idea is to check for the
trigger value of Dialog.Initialize.

loop
rundialog {Form="Find" Height=45 Width=346 movable=yes menus=normal AutoEdit="Find"}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.Initialize"

/*
... code to initialize procedure goes here ...

*/
endif

while forever

Sometimes you may want to handle the Cancel button in a special way. The revised procedure below checks
to see if the user has typed anything in, and if so, asks them to confirm that they really do want to cancel.

global findThis
findThis=""
loop

rundialog {Form="Find" Height=45 Width=346 movable=yes menus=normal
AutoEdit="Find" OkButton="Find"}

stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

if findThis=""
message "You must enter something to search for!"
settrigger ""

else
find exportline() contains findThis

endif
endif
if info("trigger") contains "Button.Select"

superobjectclose
if findThis=""

message "You must enter something to select!"
else

select exportline() contains findThis
settrigger "Dialog.OK"

endif
endif
if info("trigger") = "Dialog.Cancel"

superobjectclose
if findThis≠""

alert 1014,"Are you sure you want to cancel?"
if info("dialogtrigger") contains "no"

settrigger "" /* tell .dialog to stop the cancel! */
superobject "Find","Open"

endif
endif

endif
while forever

Chapter 3:Programming Techniques Page 499
All of the examples have shown push buttons, but you can also check for and handle any type of button, list,
or even a Text Editor SuperObject that triggers the rundialog statement using ((((Resume)))). Any object that
has the ((((Resume)))) option set can be handled by your custom dialog code.

Options to the RunDialog Statement

The rundialog statement has one parameter. This parameter contains a series of name=value pairs that
tell the .dialog subroutine how to process the dialog. At a minimum this parameter must include three
parameters: the form name, the form height, and the form width.

{Form=Address Height=120 Width=400}

If the form name (or any value) contains a space it must be surrounded with quotes, like this.

{Form="Time Card" Height=120 Width=400}

In addition to the three basic name/value pairs there are also about a dozen other optional name/value pairs
that you can specify to customize the appearance and behavior of your dialog.

The height and width options are normally specified in pixels. (One inch is equal to 72 pixels). However,
you can also specify these values in inches (for example 2" or 3in) , centimeters (12cm) or as a percentage of
the screen width or height (75%). If the value is negative then the dialog size will depend on the height and/
or width of the screen. For example, height=-72 specifies a dialog with 1 inch above and below the dialog.
If the dialog has a variable size (either a percentage or negative value) then you should make the form elastic
(see “Elastic Forms” on page 922 of the Panorama Handbook) so that it can adjust to whatever screen size is
available.

The movable option allows you to create a dialog with a drag bar that can be moved around on the screen.
The value for this option should be yes or no, for example

movable=yes

The default is yes, and we no longer recommend turning this option off.

If you don’t give the dialog a title it will use the name of the form, as shown above. You can override this and
specify another title using the windowtitle option, like this.

windowtitle="Locate Information"

The dialog will appear with the specified name in the title bar.
"

Page 500 Panorama Formulas & Programming
When a dialog has more than one editable text item normally the top left item is the default item where you
will begin typing.

If the Text Editor SuperObjects are named (see “Object Type/Object Name” on page 533 of the Panorama
Handbook) you can override this default and specify a different default editing item with the autoedit
option.

autoedit=Zip

With this option set the Zip Code becomes the default item.

The autoeditstart and autoeditend options control what text is initially selected in the default item.

autoeditstart=0 autoeditend=0

If both of these values are set to zero the initial editing point will be at the beginning of the text. If both of
these are set to a large value like 9999 the initial editing point will be at the end of the text.

default item

default item

initial editing point

Chapter 3:Programming Techniques Page 501
The okbutton option allows you to change what button is considered the OK button.

okbutton=Find

The OK button is usually named OK but it can be changed to any button on the form. When the button des-
ignated as the OK button is pressed the info("trigger") function will return Dialog.OK, even if the
actual button has a different name. In addition, pressing the Enter or Return key will be treated the same as
clicking on whatever button has been designated as the OK button.

The cancelbutton option allows you to change what button is considered the Cancel button.

cancelbutton=Stop

The Cancel button is usually named Cancel but it can be changed to any button on the form. When the but-
ton designated as the Cancel button is pressed the info("trigger") function will return Dialog.Cancel
even if the actual button has a different name.

The timeout option allows you to put a time limit on a dialog. The timeout value is specified in seconds, so
this option will cause the dialog to time out in two minutes.

timeout=120

If the dialog is still open after two minutes it will close automatically as if the designated Ok button was
pressed.

Editing Database Information with a Dialog

Editing database information with a dialog that has OK and Cancel buttons takes some extra effort. You can’t
simply edit the data directly because if the user presses the Cancel button you must be able to restore the
original data. The solution is to copy the data from the database into variables, edit the variables, and then
only copy the data back into the database if the OK button is pressed. You can write code for all this yourself,
but it’s easier to let the rundialog statement take care of it all for you.

To illustrate this, consider this dialog for editing an address.

designated OK button

Page 502 Panorama Formulas & Programming
The dialog edits five database fields — Name, Address, City, State and Zip. If you followed instructions care-
fully you have set up the SuperObject Text Editors in this dialog to edit five corresponding variables —
dName, dAddress, dCity, dState and dZip (see “Preparing a Form for Use as a Dialog” on page 489). Now
one way to set this up would be to write the code to transfer the data back and forth yourself.

global dName,dAddress,dCity,dState,dZip
dName=Name
dAddress=Address
dCity=City
dState=State
dZip=Zip
loop

rundialog {Form=Address Height=120 Width=400 menus=normal AutoEdit=Name}
stoploopif info("trigger")="Dialog.Close"
if info("trigger") contains "Dialog.OK"

Name=dName
Address=dAddress
City=dCity
State=dState
Zip=dZip

endif
while forever

This is a lot of extra work, though, because you have to type the field names twice and the variable names
three times! Another option is to declare the relationship between the fields and variables as part of the
option parameter to the rundialog statement. Each declaration takes the form

Variable:"<variable>=<field>"

Here is our revised procedure. A lot shorter, eh? Make sure that these declarations are in the parameter to the
rundialog statement, between the { and } characters. On the other hand, if you set up your form correctly
the Dialog Workshop will write all of the declarations for you, completely automatically!

loop
rundialog {Form=Address Height=120 Width=400 AutoEdit=Name

Variable:"dName=Name"
Variable:"dAddress=Address"
Variable:"dCity=City"
Variable:"dState=State"
Variable:"dZip=Zip"}

stoploopif info("trigger")="Dialog.Close"
while forever

Sometimes the data needs to be converted in addition to being copied. Any time a dialog needs to edit a
numeric or date field the declaration needs to include the functions for converting in both directions. Here’s
how a numeric Amount field and date StartDate field would be handled.

Variable:"val(«dAmount»)=str(«Amount»)"
Variable:"date(«dStartDate»)=datepattern(«StartDate»,“mm/dd/yy”)"

When conversion functions are used the variable and field names must always be enclosed in « and » chev-
rons (see “Special Characters” on page 57). The chevrons must be included even if the variable or field name
doesn’t contain any blanks or punctuation. If the chevrons are omitted an error will occur when you try to
open the dialog.

The rundialog statement normally creates the variables you specify as global variables when the dialog is
opened (see “Long Life Variables” on page 249). Using the variabletype option you can specify that
another type of variable be created instead. The only option that makes any sense here is fileglobal.

variabletype=fileglobal

Chapter 3:Programming Techniques Page 503
Custom Dialog Menus

The rundialog statement normally displays only the Apple (Mac only) and Edit menus when a dialog is
open. This allows you to cut, copy and paste text within the menu. If you want to turn off all the menus, add
menu=none to the list of options.

You can also specify your own completely custom menus using Panorama’s Live Menu feature (see “Live
Menus” on page 362). Use the menu= option followed by the formula you want to use, like this:

rundialog “ ... other options ... menu={formula} ... other options ... ”

In designing the formula you’ll need to use the same rules as the for the second parameter of the
filemenubar and windowmenubar statements (see “The FileMenuBar Statement” on page 362). Specifi-
cally, you’ll usually want to use the menu(, menuitems(, arraymenu(and other similar functions to
assemble the custom menu items. The example below adds a custom City menu when the dialog is open.
This menu will list all of the cities in the database.

 rundialog “Form="Find/Select" Height=45 Width=346 AutoEdit="Find" OkButton="Find"
 menus={menu("City")+arraymenu(listchoices(City,¶))}
 windowtitle="Locate Information"”

Here is the dialog with the City menu pulled down. (Notice that the rundialog statement automatically
includes the Edit menu.)

To make this custom menu work you’ll need to add code to the dialog loop to check for the menu. This code
is identical to the code used for the .CustomMenu procedure (see “.CustomMenu” on page 381). The purple
code below shows a typical way to handle the menu.

global findThis
findThis=""
loop
 rundialog “Form="Find/Select" Height=45 Width=346 AutoEdit="Find" OkButton="Find"
 menus={menu("City")+arraymenu(listchoices(City,¶))}
 windowtitle="Locate Information"”
 stoploopif info("trigger")="Dialog.Close"
 if info("trigger") beginswith "menu."
 local menuname,menuitem
 splitmenutrigger menuname,menuitem
 if menuname="City"
 superobject "Find","Open"
 activesuperobject "inserttext",menuitem
 endif
 endif

 ... rest of dialog event loop ...

Page 504 Panorama Formulas & Programming
You’ll also need to make one change to the .CustomMenu code for this database. At the beginning of this
procedure add one line — rundialogmenus.

Now the custom menu code is complete. When you open this dialog, you can use the City menu to type the
name of a city into the dialog.

Chapter 3:Programming Techniques Page 505
Accessing and Modifying the Database Structure (Fields)

Usually the database field structure is set up in advance, and procedures simply work with the fields as they
have been defined. However, for single user databases it is possible for a procedure to add new fields, delete
fields, or change the properties of existing fields. For example you may want to temporarily add a field to
perform a calculation, then remove the field when the procedure is finished.

There are two techniques for modifying field structure in a procedure. The procedure can modify the struc-
ture directly using special statements, or it can open and modify the design sheet.

Getting Information About Field Structure

Before you actually modify the field structure you might want to know something about it. There are several
functions that a procedure can use to learn about the structure of a database.

The dbinfo(function can gather a variety of information about any open database. This function has two
parameters:

dbinfo(option,database)

The second parameter is the name of the database that you want information about. If the parameter is empty
("") the current database is assumed. This database must be currently open. If the database is not open the
dbinfo(function will not return any information.

The first parameter specifies the type of data you are requesting. Information types you may request include
fields, forms, procedures, crosstabs, flash art, and folder. When the option is "fields" the function will
return a carriage return separated list of the fields in the database (see “Text Arrays” on page 93). For exam-
ple, the procedure below will display the number of fields in the current database:

message "The database "+info("databasename")+" contains "+
str(arraysize(dbinfo("fields",""),¶))+" fields."

The datatype(function returns the data type of a field or variable—text, numeric, date, etc. This function
has one parameter: the name of the field or variable in question. Depending on the data type this function
will return one of the 10 values listed below.

The procedure listed below uses the datatype(function and the dbinfo(function to build a list of all the
numeric fields in the current database.

local X,XField,XType,AllFields,NumericFields
X=1 NumericFields=""
AllFields=dbinfo("fields","")
loop

XField=array(AllFields,X,¶)
stoploopif XField=""
XType=datatype((XField))
if XType beginswith "F" or XType beginswith "I"

NumericFields=sandwich("",NumericFields,",")+XField
endif
X=X+1

while forever
message "Numeric Fields: "+NumericFields

Text Integer

Choice Fixed 1 Digit (#.#)

Picture Fixed 2 Digits (#.##)

Date Fixed 3 Digits (#.###)

Floating Point Fixed 4 Digits (#.####)

Page 506 Panorama Formulas & Programming
Notice that XField is surrounded by an extra pair of parentheses when it is used in the datatype(function.
Without this extra pair the datatype(function would return the type of the XField variable itself, instead of
the field whose name is contained inside of XField.

The info("fieldname") function returns the name of the currently active field. You can use this function
to save the current field name in a variable, go somewhere else, then return to the original spot.

Modifying Field Structure Directly

There are five statements that allow a procedure to modify the structure of a database directly: addfield,
insertfield, deletefield, fieldname, and fieldtype.

The addfield statement adds one field to the end of the database (the extreme right edge of the data sheet).
This statement has one parameter—the name of the new field:

addfield fieldname

The fieldname can be defined with any formula. To simply define a fixed field name, enclose that name in
quotes like this:

addfield "Tax Rate"

The new field is always a text field. You can change it to a different data type with the fieldtype statement
(see below). To make this new tax rate field a numeric two digit field the procedure would be modified like
this.

addfield "Tax Rate"
field "Tax Rate"
fieldtype "Fixed 2 Digits (#.##)"

Note that the new field does not become the current field. Use the field statement to make the new field
current before changing the type or performing other operations on the field, as shown in the example above.

The insertfield statement is exactly the same a the addfield statement except that the new field is
inserted in front of the current field instead of being added to the end of the data sheet.

Both the addfield statement and the insertfield statement can be programmed to display a dialog
allowing the user to set up the field name, type, etc. To use this option put the word dialog (no quotes) after
the statement, like this:

insertfield dialog

To change the data type of the currently active field use the fieldtype statement. This statement has one
parameter, the new data type:

fieldtype type

The type parameter is actually a text item that names the parameter. Legal field types are shown in this table.

Text Integer

Choice Fixed 1 Digit (#.#)

Picture Fixed 2 Digits (#.##)

Date Fixed 3 Digits (#.###)

Floating Point Fixed 4 Digits (#.####)

Chapter 3:Programming Techniques Page 507
If the current field has any data in it, Panorama will attempt to convert the data to the new data type. If some
of the data can’t be represented in the new data type, that data will be thrown away; so be careful! For exam-
ple if a text field is converted to date or number, data values like John Smith or San Francisco in that field will
be tossed. Don’t change the field type unless you are sure the data currently in the field can be converted, or
unless you don’t care!

The procedure below shows how these statements and functions can be used together. This procedure makes
an exact copy of the current field. First it copies the current field name and type into the local variables the-
Field and theType (the datatype(function is described in the previous section). Then it attempts to move
one field to the right. If it can’t (because the current field is the last field of the database) it adds a new field,
otherwise it inserts a new field in the middle of the database. Finally, it sets the new field to the same data
type as the original field and copies the data from the original field into the new field.

local theField,theType
theField=info("fieldname")
theType=datatype(info("fieldname"))
right
if stopped /* could also use if info(“stopped”) */

addfield "Copy of "+theField
else

insertfield "Copy of "+theField
endif
field ("Copy of "+theField)
fieldtype theType
formulafill grabdata("",theField)

To change the name of the current field use the fieldname statement (see “FIELDNAME” on page 5220).
You can either specify the new name for the field using a formula, or use the word dialog to allow the user
to enter the name in a dialog (they will also be able to modify other field properties.) (Note: Panorama will
not prevent you from creating two or more fields with the same name. However, you should avoid this if
possible. You can use the dbinfo(function to get a current list of the field names; see the previous section.)

To delete the current field, use the deletefield statement. Panorama won’t display any warning—it will
simply delete the field and all the data in it. Be careful because once you delete a field it’s gone…you can’t get
it back. (Exception: If you have saved the database you might be able to get the field back with the Revert To
Saved command.)

Page 508 Panorama Formulas & Programming
Hiding and Showing Fields

Panorama has several statements and functions for hiding and showing fields in the data sheet.

HideCurrentField - This statement hides the current field.

ShowAllFields - This statement shows all fields.

ShowTheseFields fieldlist - This statement shows all fields listed, leaving any other fields hidden.
There should be one field name per line in the list. If none of your field names contain commas the
commatocr(function is handy for this, for example:

showthesefields commatocr("Name,Phone,Email")

HideTheseFields fieldlist - This statement hides all fields listed, leaving any other fields visible.
There should be one field name per line in the list. If none of your field names contain commas the
commatocr(function is handy for this, for example:

 hidethesefields commatocr("Salary,Birthday")

hiddenfields() - This function returns a carriage return delimited list of fields that are currently hidden
in the current database, if any.

visiblefields() - This function returns a carriage return delimited list of fields that are currently hidden
in the current database, if any.

Chapter 3:Programming Techniques Page 509
Working With the Design Sheet

For the ultimate control the procedure can open the design sheet and change it just like any other database.
There are two statements a procedure can use to open the design sheet: opendesignsheet and
godesignsheet. The opendesignsheet statement opens the design sheet in a new window (see “Open-
ing a Window” on page 445 for more information on opening windows). The godesignsheet statement
opens the design sheet in the current window.

Once the design sheet is open, the procedure can locate any field it wants using the find statement (see
“Finding Information” on page 552). Once the correct line is selected the procedure can change elements with
assignment statements (Default="Acme", etc.). When the changes are complete, the procedure must use the
newgeneration statement to actually change the structure of the database.

The example below opens the design sheet and changes the output pattern for the Price field.

opendesignsheet
find «Field Name»="Price"
if info("found")

«Output Pattern»="$#,.##"
newgeneration

endif
closewindow

If you don’t want the user to be able to see the shenanigans with the design sheet, use the setwindow or
setwindowrectangle statements to make the window open outside the visible screen area (see “Specify-
ing the New Window Location” on page 446).

Updating Database Structure From Another Database

Panorama includes a mechanism that lets you copy the structure of a database from another database while
retaining the original data. Let’s say that you have created a database and distributed it to many users far and
wide…perhaps you are even selling the database. Your many users are each filling their databases with their
own data. In the meantime, you are creating a new version. This new version of the database may have new
fields, new forms, new procedures, and there are probably changes to existing forms/procedures/fields as
well. Once you have finished your update you need a way to distribute the update and let each user update

Page 510 Panorama Formulas & Programming
his or her copy of the database so that it has the new structure but retains the old data. The changename,
detachname and hijack statements make this possible. The example procedure below shows how to do it.
This procedure assumes the old version of the database is currently open. The procedure allows the user to
locate the update file, then updates the structure.

local oldFile,newFolder,newFile,newFType
/* let user locate the update file */
openfiledialog newFolder,newFile,newFType,"KASXZEPD"
if newFile="" stop endif /* user pressed cancel */
/* save name of original database*/
oldFile=info("databasename")
/* change name of original database IN MEMORY ONLY */
changename oldFile+".old"
/* open the file with the new structure */
openfile folderpath(newFolder)+newFile
/* suck the data from the old file into the new structure */
openfile "&"+oldFile+".old"
/* name of new database=name of old database (IN MEMORY ONLY) */
detachname oldFile
/* now connect to the original databases file on disk */
/* it's a "filejacking"! */
hijack oldFile+".old"
/* save the new, update file */
save
/* finally close the old database - we're done with it */
window oldFile+".old:SECRET"
closefile /* this file is really gone now */

If you look closely at this example, you will see that it doesn’t really update the structure of the original data-
base. Instead, it loads the data from the old database into the new database using Panorama’s standard
"append with matching names" feature (see “Replacing the Data in a Database” on page 407). Once this is
done the old database is “detached” from its disk file. The new file then takes over or “hijacks” the detached
disk file. As part of this “hijack” process Panorama also copies the auto-increment value, so if the database
uses auto-numbering the numbers will continue to be generated in sequence.

Transferring Permanent Variables

If the original database has permanent variables that you want to keep, insert the following statements just
before the detachname statement in the procedure above. This procedure assumes that the new updated
database has at least the same permanent variables as the original database, and it copies the values from the
old database to the new.

local oldPermanentVariables,opv,pv
/* build a list of the permanent variables */
oldPermanentVariables=dbinfo("permanent",oldFile+".old")
opv=1
loop

/* get name of permanent variable */
pv=array(oldPermanentVariables,opv,¶)
stoploopif pv=""
/* transfer value from old to new */
set pv,grabfilevariable(oldFile+".old",pv)
opv=opv+1

while forever

For more information about the grabfilevariable(function, see “Accessing “Dormant” Variables” on
page 250.

Chapter 3:Programming Techniques Page 511
The procedure above will not work if the old database is not in author mode, since the dbinfo(function will
not be able to build a list of permanent variables. In that case you must rely on your knowledge of the origi-
nal database and hard code the permanent variable names, like this:

pAreaCode=grabfilevariable(oldFile+".old","pAreaCode")
pDialingPrefix=grabfilevariable(oldFile+".old","pDialingPrefix")
pCallingCard=grabfilevariable(oldFile+".old","pCallingCard")

This procedure transfers three permanent variables from the old database to the new: pAreaCode, pDialing-
Prefix and pCallingCard.

Verifying Database Identity

The procedure listed above for updating the database relies on the user to pick the correct update database. If
they pick the wrong database, there will be a big problem. You can use permanent variables to create a data-
base identity system that will permanently identify a database, even if it has been renamed. We recommend
creating three permanent variables with the names dbVendor, dbName and dbVersion. Here is an example
showing how these variables can be created in the .Initialize procedure (see “.Initialize” on page 382).

permanent dbVendor,dbName,dbVersion
dbVendor="ProVUE Development"
dbName="Power Team Phone Book"
dbVersion="2.0"

Once these variables have been created they can be used to verify the identity of a database. In the database
update routine you can add verification code in between the two openfile statements (see “Updating Data-
base Structure From Another Database” on page 509). This verification code will stop the update if the user
selected the wrong database.

if dbVendor≠grabfilevariable(oldFile+".old",dbVendor) or
dbName≠dbVendor≠grabfilevariable(oldFile+".old",dbName)

message "Please pick another database. "+
"The file you picked is not an update for "+oldFile+"."

closefile /* close the bogus update file */
changename oldFile /* and restore the original name */

endif

You could make this procedure even more robust by adding a check to make sure that the version number of
the update file is newer than the version number of the old file.

Page 512 Panorama Formulas & Programming
Database Navigation and Editing

When you are manually working with a database you can use your eyes to see what you are clicking on and
modifying. A procedure doesn’t have eyes to see with, but it can still navigate and modify the database. Since
the procedure can’t see what it is doing you have to give it exact instructions to get the job done correctly.
Imagine giving directions to a blindfolded person (go 23 paces, turn left, go 14 paces, turn right, etc.) Using a
procedure to navigate and edit the database requires the same type of precise instructions.

To illustrate how a procedure can navigate and move around the database we’ll use this database of national
parks.

As shown above we’ll start out with the database on the record for Grand Canyon National Park. The current
field is the City field.

Moving Up and Down in the Database

The basic statements for moving the currently active record are firstrecord, lastrecord, uprecord
and downrecord. The firstrecord statement makes the very first visible record in the database the cur-
rently active record (the record at the top of the data sheet).

Chapter 3:Programming Techniques Page 513
The lastrecord statement makes the very last visible record in the database the currently active record (the
record at the bottom of the data sheet).

The uprecord and downrecord statements move the currently active record either one record up (towards
the top of the data sheet) or one record down (towards the bottom of the data sheet).

To find out if the currently active record is the first or last visible record in the database, use the
info("bof") and info("eof") functions (bof stands for beginning of file and eof stands for end of file).

Here’s an example that uses the statements and functions described in this section to count the number of
parks with no access fee.

local freeparks
freeparks=0
firstrecord
loop

if Fee=0
freeparks=freeparks+1

endif
stoploopif info("eof")
downrecord

while forever

Although this procedure will work, it will also be unnecessarily slow. Avoid scanning through the database
whenever possible. Here’s another way to write this same procedure that will be much, much faster. For a
small database with a couple of dozen records like our example the speed difference isn’t too important, but
for a large database with thousands of records we’re talking about the difference between seconds vs. min-
utes.)

local freeparks
freeparks=0
formulasum freeparks,?(Fee=0,1,0)

Page 514 Panorama Formulas & Programming
Another way to reposition the currently active record is to search for something using the find statement
(see “Finding Information” on page 552). The find statement has one parameter, a formula. Starting from
the top of the selected records, Panorama scans down the database until it finds a record that makes this for-
mula true. For example, this procedure will scan down the database until it finds a record where the Park
field contains Everglades.

find Park contains "Everglades"

Notice that the active field stays the same (City) even though the formula searches the Park field.

After the find statement you can check to see if Panorama actually found anything with the
info("found") function.

To find the next match use the next statement (see “Finding Information” on page 552). This is just like the
find statement except there is no formula…it re-uses the formula supplied with the find statement. You
can continue to use the next statement over and over again until the info("found") function tells you
there are no more matches.

Here’s an example that locates all parks with no access fee and deletes them from the database:

find Fee=0
loop

stoploopif (not info("found"))
deleterecord
next

while forever

Once again, this procedure will work but will be slow. Here’s a faster solution:

select Fee<>0
removeunselected

Why do I keep showing you these alternate examples? If you are a C or a Pascal programmer you are proba-
bly used to solving many problems with loops. In Panorama, a loop is often not the best solution because it is
too slow. It may take some research, but you can usually find a Panorama statement that will do the same job
much faster.

Chapter 3:Programming Techniques Page 515
Moving Left and Right

The basic statements for moving the currently active field are field, left and right. The field statement
moves directly to the specified field. For example

field Park

will make the Park field the current field.

If a field name has spaces or other unusual punctuation you must surround it with quotes (see “Constants”
on page 49). Be sure to use quotes and not « » (chevrons).

field "Phone Number"

You can also use a formula to calculate the field name. If you do so you must surround the formula with (and
) parentheses. For example this procedure will move to the last column in the database — any database.

field (array(dbinfo("fields",""),arraysize(dbinfo("fields",""),¶),¶))

The formula uses the dbinfo(function (see “Getting Information About Field Structure” on page 505) to
calculate the name of the last field (in this case URL) and then the field statement jumps to that field.

Page 516 Panorama Formulas & Programming
To move left one field (column in the data sheet) use the left statement (see “LEFT” on page 5466). To move
right one field (column in the data sheet) use the right statement (see “RIGHT” on page 5679). You can find
out if this operation succeeded by using if stopped. This will be true if the procedure tried to move to the
left of the first column or to the right of the last column. Here is a procedure that scans the entire database
and converts every text field to upper case.

field (array(dbinfo("fields",""),1,¶)) /* move to first field */
loop

if datatype(info("fieldname"))="Text" /* is this a text field? */
formulafill upper(«») /* if yes, convert to upper case */

 /* Note: «» is shorthand for current field */
endif
right /* move to next field */

until stopped /* stop if we just tried to move past last field */
/* could also use until info(“stopped”) */

Here’s the result of running this procedure on our National Parks sample database.

Notice that this procedure doesn’t reference any specific field names in the National Parks database. This pro-
cedure will actually work on any database.

Moving “Left” and “Right” on a Form

The examples in the previous section all showed the data sheet, but a procedure can also move to a specific
field within a record on a form. To illustrate this we’ll use this form from a Contacts database.

Just as when the data sheet is open a procedure can move to a specific field with the field statement.

field Zip

Chapter 3:Programming Techniques Page 517
Panorama will jump to the specified field.

The left and right statements don’t move left and right on the form, but move to the next column based
on the order of the fields on the data sheet. For example, suppose you start on the First field.

The right statement will cause Panorama to jump to the next field to the right in the data sheet. In this case
that field (Last) is also to the right on the form.

The next field to the right in the data sheet, Credit Card, does not exist on this form, so at this point the cur-
rent field selection is invisible. The Credit Card field is the current field, however, and would be modified if
the procedure used a statement like formulafill at this point.

Page 518 Panorama Formulas & Programming
The next field to the right in the data sheet, Title, does have a data cell on this form.

The procedure can continue moving to the “right” until it gets to the last column in the data sheet. The left
statement moves in the opposite direction.

Moving to an Empty Line Item Field

Line items are used for repeating items within a record (see “Repeating Fields (Line Items)” on page 222).
When creating a new line item line in a procedure you will want to move to the first empty line item field. To
illustrate this, consider this simple invoice form.

To add a new line item to this invoice the procedure must move to the Quantity7 field. One way to do this
would be with a loop.

local n
n=1
loop

field ("Quantity"+str(n))
stoploopif «»=""
n=n+1

while forever

Quantity7

Chapter 3:Programming Techniques Page 519
Since this is such a common operation when working with line item fields Panorama has a built in statement
to do this job. The statement is called emptyfield (see “EMPTYFIELD” on page 5191). The emptyfield
statement has one parameter, the name of the line item field to jump to. This field name must be surrounded
with quotes and must be followed by the Ω character (see “Special Characters” on page 57).

emptyfield "QuantityΩ"

If there aren’t any empty line item fields this statement simply leaves the current field wherever it was.

Adding and Deleting Records

To add a new record at the end of the database use the addrecord statement.

new record added at end of database

Page 520 Panorama Formulas & Programming
To insert a new record just above the current record use the insertrecord statement. For example, suppose
you start with the database on the Death Valley National Park record, like this.

The insertrecord statement inserts a record just above Death Valley.

To insert a new record just below the current record use the insertbelow statement. For example, suppose
you start with the database on the Death Valley National Park record, just like the previous example.

The insertbelow statement inserts a record just below Death Valley. Notice that it also moves the current
field to the first field in the database.

Chapter 3:Programming Techniques Page 521
To delete the current record use the deleterecord statement. Once again we’ll start with the database on
the Death Valley National Park record.

The deleterecord statement deletes Death Valley and makes the record below Death Valley (Denali Park)
the current record.

Another way to To delete the current record use the deleteabove statement. Once again we’ll start with the
database on the Death Valley National Park record.

The deleteabove statement deletes Death Valley and makes the record that was above Death Valley (Cum-
berland Island national Seashore) the current record.

Page 522 Panorama Formulas & Programming
The deleteall statement deletes all the data in the entire database, leaving just one blank record.

Needless to say you need to be very careful with this statement!

Modifying the Database One Cell at a Time

To modify an individual data cell in the current record (see “Moving Up and Down in the Database” on
page 512) you use an assignment statement (see “Assignment Statements” on page 243). Unlike every other
statement, an assignment statement has no specific keyword that identifies the statement. Assignment state-
ments always have the format shown below:

<data storage location> = <formula>

The first part of the assignment statement is the data storage location. This is the final destination for the data
that is being moved. In fact, sometimes the data storage location is simply called the destination of the assign-
ment. The data storage location may be a variable, a field in the currently active record, or the clipboard.

The next part of the assignment statement is the equals symbol. This identifies this statement as an assign-
ment statement.

After the equals symbol is the formula. The formula may simply take a variable or field and pass it along, or
it may process, calculate or filter the data before it passes it along to be stored in the data storage location.
Here‘s a simple assignment statement that takes the contents of B and moves it into A. After this statement is
finished both A and B will contain the same value.

A=B

More complicated assignment statements may combine multiple fields or variables, and they may process
the data in some way. An assignment statement may also take a constant value and store it. Here are some
examples:

A=B*C

Name=upper(myName)

City="San Francisco"

In each case, the process is the same. First Panorama calculates the formula to produce a data value. Then it
stores the data value in a data storage location.

Accessing and Modifying the Current Cell

To access or modify the current cell use «» (see “Special Characters” on page 57). For example this statement
sets the current cell to Bingo.

«»="Bingo"

This procedure stores the contents of the current cell in the variable OriginalData.

OriginalData=«»

Chapter 3:Programming Techniques Page 523
To find out which field is the current cell use the info("fieldname") function.

Accessing and Modifying the Clipboard

In addition to variables and fields, the operating system itself provides one spot for stashing data…the clip-
board. This is where data goes when you use the Copy or Cut commands in the Edit menu. To grab any text
that is in the clipboard, use the clipboard() function. To put data on the clipboard, use an assignment with
clipboard on the left hand side of the equals sign.

The example below takes an address, formats it and copies it onto the clipboard.

clipboard=Name+¶+Address+¶+sandwich("",City,", ")+State+" "+Zip

Here’s an example that grabs a name from the clipboard and selects all the records containing that name:

local findThis
findThis=clipboard()
select Name contains findThis

This example copies the contents of the clipboard into a variable before using it in the select statement (see
“Selecting Information” on page 557). This is not absolutely necessary—in fact this procedure could have
been written in a single line like this:

select Name contains clipboard()

However, the original procedure will be much faster. Because of the overhead involved in querying the oper-
ating system, accessing the clipboard is much slower than accessing a variable. If you’re only going to be
accessing the clipboard a few times, by all means use it directly. But if you are going to access the clipboard
over and over again (as the select statement does) it’s much better to copy the value into a variable first.

Triggering Automatic Calculations

A database can be set up so that when a field is modified by the user, one or more formulas is automatically
calculated (see “Automatic Calculations” on page 303 of the Panorama Handbook). When an assignment state-
ment modifies a field, however, these formulas are not automatically calculated. This is to give the procedure
programmer the ultimate control over all calculations that occur during the procedure.

If you as the programmer would like the automatic calculations to be performed during an assignment, add
an extra equal symbol to the assignment. The two equal symbols must be adjacent with no spaces between
them, like this:

PriceΩ==19.95

In this example, storing the value 19.95 will most likely trigger several additional calculations to compute the
total for this line item and the total for the entire invoice.

Triggering Automatic Procedures

A database can be set up so that when a field is modified by the user, a procedure is automatically triggered.
This may be a specific procedure for this field (see “Automatically Triggering a Procedure” on page 314), or
the generic .ModifyRecord procedure (see “.ModifyRecord” on page 383). These procedures are never trig-
gered automatically when an assignment statement modifies a field, even when the double equal assignment
is used (see previous section). If you want a procedure to be triggered after a field is modified, you must call
the procedure explicitly with the call statement (see “Subroutines” on page 261). This example modifies
several fields, then calls the .ModifyRecord procedure:

City="San Francisco"
State="CA"
«Area Code»="415"
call .ModifyRecord

Page 524 Panorama Formulas & Programming
If the automatically triggered procedure expects that a certain field is active when it is triggered you should
make sure that field is active by using the field statement before calling the procedure.

The Set Statement

The set statement performs the same job as an assignment statement—moving a data item from one place to
another. However, unlike the assignment statement, the data storage location is not known in advance.
Instead, the data storage location is calculated using a formula.

The set statement has two parameters:

set <data storage location formula>,<formula>

The first parameter is a formula that calculates the name of the data storage location. Suppose you wanted to
store the data in a field named Widget. In an assignment you would simply use this name, but in the set
statement the name must be calculated, in this case "Widget". (Of course this is a silly example, because if
we knew the field name in advance we might as well use a regular assignment statement. We’ll look at a bet-
ter example in a minute.)

The second parameter is the formula. This formula produces the data that will be stored in the data storage
location. It’s exactly the same as the formula used in an assignment statement.

Here’s our example. Suppose we have a database where each record has 10 phone number fields, Phone1,
Phone2, Phone3, etc. We want to write a procedure that will automatically store a new phone number in the
first empty field. Here’s one way to get this job done using the set statement:

local newPhone,Counter,tempPhone
Counter=1 newPhone=""
gettext "New phone #:",newPhone
loop

tempPhone=grabdata("","Phone"+str(Counter))
if error

message "No empty phone number slots!"
stop

endif
stoploopif tempPhone=""
Counter=Counter+1

while forever
set "Phone"+str(Counter),newPhone

The procedure starts by initializing the variables, and asking the user to input the new phone number. Then it
loops through the phone number fields, starting with Phone1, then Phone2, etc. It checks each field to see if it
is empty. If it is, the loop stops and the new phone number is stored with the set statement. The first param-
eter of the set statement calculates the field name with the formula "Phone"+str(Counter). For exam-
ple, if the fourth phone number field was empty, this formula will calculate the field name Phone4.

The FormulaCalc Statement

The formulacalc statement is similar to the set statement. It’s different from the set statement because the
data storage location is known in advance, but the formula is not known in advance. Instead, the formula
itself is calculated using another formula. The formulacalc statement has two parameters:

formulacalc <data storage location>,<formula>

The first parameter is the data storage location. This should be a variable or field name, just as in the regular
assignment statement.

The second parameter is the formula. This formula must itself produce another formula, which is then calcu-
lated to produce the data that will be stored in the data storage location. Usually there is a field or variable
that contains the formula you want to calculate.

Chapter 3:Programming Techniques Page 525
Our example of the formulacalc statement lets the user type in a formula, then calculates the formula and
displays the result.

local xFormula,Answer
xFormula=""
gettext "Enter the formula",xFormula
formulacalc Answer,xFormula
message Answer

The formulacalc statement was primarily designed to make it easy to build a calculator with Panorama.
I’m sure some enterprising programmer out there will find some other uses as well.

Opening the Input Box

The data sheet and data cells in a form use a pop-up input box for editing data (see “The Input Box” on
page 272 of the Panorama Handbook). The editcell statement automatically opens the input box for the cur-
rent cell. For example, this procedure adds a new record and automatically opens the input box to get ready
for data entry.

addrecord
editcell

When used on a data sheet window the result of this procedure looks like this.

We recommend that the editcell statement be the last statement in a procedure. If it is not the last state-
ment in the procedure you should use the editcellstop statement, like this.

if info("trigger") contains "Add Record"
addrecord
editcellstop

endif

input box open and ready for data entry in new record

Page 526 Panorama Formulas & Programming
If the cell contains data the editcell statement normally selects all of the data when it opens the input box,
like this.

The editselect statement allows a procedure to control what text is selected. It must be used immediately
before the editcell or editcellstop statement. The editselect statement has two parameters: start
and end. Both parameters are numbers from 0 (first character) to 32768 (last character). The table below
shows the effect of different parameters with this statement.

The input box normally has a scroll bar when it is more than about an inch high. The noeditscroll state-
ment suppresses the scroll bar no matter how high the input box is. This statement is designed to be used as a
prefix for the editcell and editcellstop statements, like this.

noeditscroll
editcell

Code Result

editselect 0,0
editcell

editselect 32768,32768
editcell

editselect 0,32768
editcell

editselect 5,8
editcell

Chapter 3:Programming Techniques Page 527
The input box appears without a scroll bar.

In a form window a procedure can even open an input box in “thin air” in an arbitrary location. No data cell
object on the form is required. To learn how to do this see “FLOATINGEDIT” on page 5257 of the Panorama
Reference.

These statements work only with data cells. To learn how to control editing within a Text Editor SuperObject
see “Text Editor SuperObject Commands” on page 670.

“Natural” Data Entry

Computers and people often don’t think alike. Computers tend to use rigid formats, while people like to be
more free-form. In the case of databases with contact information it’s best to store lots of separate fields for
first and last names, street address, city, state, zip etc. (as shown on the left below). This gives the most flexi-
bility in sorting, selecting and reporting data. However, from a data entry point of view it would be much
nicer to enter data in a more natural format (as shown on the right).

no scroll bar

Page 528 Panorama Formulas & Programming
Natural Data Display

To display data in a natural format use a Text Display SuperObject (see “Text Display SuperObjects™” on
page 608 of the Panorama Handbook) or a Text Editor SuperObject (see “Text Editor SuperObject” on page 639
of the Panorama Handbook) with the Formula option enabled (see “Text Editor Options” on page 643 of the
Panorama Handbook). Of course if you want to be able to edit the data you’ll have to use the Text Editor object.
Here is the configuration dialog for the Natural format text editor shown in the preceding section. (Note: The
blue-green background behind the text was created with a rectangle object placed behind the Text Editor.)

Chapter 3:Programming Techniques Page 529
Here is the complete formula for this object.

sandwich("",First," ")+Last+¶+
Title+¶+
Company+¶+
arrayrange(Address,1,2,¶)+¶+
sandwich("",City,", ")+sandwich("",State," ")+Zip+sandwich(" ",Country,"")+¶+
?(Address notcontains ¶,¶,"")+
Phone+¶+Fax+¶+Email+¶+Notes

The arrayrange(function is used to extract a maximum of two lines of address (so if an address has 3 or
more lines the extras will be removed). The ?(function (see “The ? Function” on page 130) checks to see if
the Address field contains only one line, and if so, adds an extra blank line between the address and the
phone number.

The sandwich(functions are used to add punctuation (spaces and commas) only if needed.

If the city name is empty (for example when entering a new contact) then there is no comma.

Since the box for entering formulas in the Text Editor SuperObject is so small you may want to test out your
formula in a Text Display SuperObject first, then copy to a Text Editor once it is working correctly.

2 line address, so no blank line before phone #

1 line address

blank line
added by ?(function

sandwich("",City,", ")

Page 530 Panorama Formulas & Programming
Natural Data Entry

Displaying the data in a “natural” format is only half the job. To allow the data to be entered and/or modified
in this natural format you’ll need to create a procedure. In our case we’ve configured the Text Editor to trig-
ger a procedure named .NaturalData when the Enter key is pressed.

Here is the .NaturalData procedure itself.

local FullContact,FullName,FullAddress,namePrefix,nameMiddle,nameSuffix
local xTitle,xCompany,xPhone,xFax,xEmail,zPhone,zFax,xNotes
FullContact=TextEditingResult
splitlines FullContact,

"1W",FullName,
"1W",xTitle,
"1W",xCompany,
"3W",FullAddress,
"1",xPhone,
"1",xFax,
"1",xEmail,
"0",xNotes

Title=xTitle Company=xCompany Email=xEmail Notes=xNotes
getname FullName,namePrefix,First,nameMiddle,Last,nameSuffix
getaddress FullAddress,Address,City,State,Zip,Country
getphone xPhone,"714",Country,zPhone,1,""
Phone=strip(array(zPhone,2,":"))
getphone xFax,"714","",zFax,1,""
Fax=strip(array(zFax,2,":"))

The procedure starts by creating the temporary variables it needs. Then it uses the splitlines statement
(see “SPLITLINES” on page 5786 of the Panorama Handbook) to split the incoming data into eight separate
components. Most of these components are one line high, but the address contains three lines and the notes
contains all of the text after the tenth line. In the process of splitting the text the splitlines statement also
automatically capitalizes the first letter of each word in the name, title, company and address. However, the
capitalization only happens if all of the text is entered in lower case, so frank rich will be converted to Frank
Rich, but Scott McBride must be typed in like that, not as scott mcbride.

The getname statement splits the name into five separate components (see “GETNAME” on page 5306 of the
Panorama Reference). This database only uses two of the components (first and last names) so the other three
components are simply discarded. This table shows a few examples of how a name is split up into its individ-
ual components.

Sample Prefix First Middle Last Suffix

Frank Rich Frank Rich

Ms. Susan Kay Olson Ms. Susan Kay Olson

John Kuttel DVM John Kuttel DVM

General Dwight A. Eisenhower General Dwight A. Eisenhower

Mark Jackson Jr. Mark Jackson Jr.

Chapter 3:Programming Techniques Page 531
The getaddress statement splits the address into five separate components (see “GETADDRESS” on
page 5288 of the Panorama Reference). It is primarily designed to handle US and Canadian addresses. If you
purchased the optional zip code dictionary (see “Zip Code Lookup” on page 145) you can enter just the zip
code and let Panorama fill in the city and state for you (see the 3rd and 4th examples in the table below). This
table shows a few examples of how a name is split up into its individual components.

The getphone statement formats the phone number (see “GETPHONE” on page 5308 of the Panorama Refer-
ence) but only if the country name is blank, USA or CANADA. Our example has been set up to default to the
714 area code, but you can use any default area code you wish.

Sample Street Address City State Zip Country

575 Memorial Drive
Cambridge, MA 02139 575 Memorial Drive Cambridge MA 02139

445 Hoes Lane
Piscataway, NJ 08855-1331 445 Hoes Lane Piscataway NJ 08855

-1331

15180 Transistor Lane
92648 15180 Transistor Lane Huntington Beach CA 92648

400 Seaport Court
Suite 100
94063

400 Seaport Court
Suite 100 Redwood City CA 94063

6733 Missisauga Road
Missisauga, ON L5N6J5 canada 6733 Mississauga Road Missisauga ON L5N

6J5 CANADA

Sample Output

5557390 (714) 555-7390

3034491234 (303) 449-1234

(412) 987-3859 (412) 987-3859

7307832x23 (714) 730-7832x23

Page 532 Panorama Formulas & Programming
To see how all of this works together let’s add a new record and type in the data. We think you’ll agree that
typing in the data in this natural format is easier than tabbing from field to field to field.

When the entry is complete press the Enter key. The .NaturalData procedure will process the entry into the
separate fields in the database. Here you see both the natural display format and a form displaying each field
separately.

Since the data is stored in separate fields you can easily sort, group or select it any way you want. Neverthe-
less you still have the convenience of entering and editing it in natural format if you wish. To edit the natural
format data simply click on it and edit, then press Enter to update the database.

The natural data formats demonstrated in this contacts database can be used with any database you create.

Chapter 3:Programming Techniques Page 533
Validating a Credit Card Number

Credit cards have an internal checksum that allows a number to be validated for simple data entry errors (for
example missing or transposed digits). The cardvalidate statement checks to make sure that a number is a
valid credit card number. This statement has two parameters. The first is the card number you want to vali-
date. The second parameter should be a variable. The statement will set this variable to Ok or Error depend-
ing on the card number you submit. This example checks the card number in the field CCNumber to see if it
is a valid credit card number.

local cctemp,ccvalid
cctemp=striptonum(CCNumber)
cardvalidate cctemp,ccvalid
if ccvalid<>"Ok"

message "This credit card number is not valid!"
endif

The cardvalidate statement cannot tell whether this card number has actually been issued, what the
credit limit is, or any other financial information about the card. It simply provides a basic check for missing
or transposed digits within the number. Basically, if this statement says that the number is in error you know
for sure that the number is wrong, but if this statement says the number is valid you would still need to check
with the issuer to determine if this is a valid card.

By the way, it’s easy to determine the type of card from the first digit of the number.

Here’s another handy tip for testing. You can make a “valid” credit card number by taking the digits 1, 2, 3,
and 4 and repeating them four times in any order. For example 111122223333444, 3333111122224444
and 4444111133332222 are all valid credit card numbers (of course there aren’t really any cards with these
numbers, but the checksum is ok).

Card First Digit

3

4

5

6

Page 534 Panorama Formulas & Programming
Moving Data Between Files

Many database applications require multiple database files working together. For example, organizing a
company’s order entry operations usually requires an invoice file, an inventory/price list file, and possibly a
customer file. As orders are entered, data will move back and forth between these files to adjust inventory
levels, maintain customer credit records, and so forth.

Sometime you may want to display or use information from another file without actually moving it. For
example, you may want to display a customer’s current credit balance without actually copying it into the
invoice. Panorama gives you the option of actually moving data from place to place or simply displaying or
printing it.

Panorama’s primary method for moving data between databases is the same method used to move data
within a record: the assignment statement. Using the lookup(function (along with several variations on this
function) you can turn any assignment statement into a cross database transfer. However, assignments are
not the only way to transfer data across files…there are also some special statements that are especially useful
for multiple-record transfers.

Warning: Panorama can only move data between database files that are currently open. If a database is not
open, you must open it before data transfer can take place.

Cross Database Assignment Statements

The primary method for moving data between databases is assignment statements. If you are reading this
chapter straight through this may puzzle you, since earlier we stated that assignment statements always
worked on the current record on the current database. For example, consider this statement.

A=B+C

All three of the elements of this assignment (A, B and C) must be either fields in the current record or vari-
ables.

To break the limitation to the current record, the assignment statement must use a special function, called a
transfer function. Panorama has about a half a dozen transfer functions, but at the basic level they all work the
same way…you tell them how to find some data and they go get it.

A=transferfunction(<how to find the data>)

Each transfer function has a series of parameters that tell it how to find the data you want. The transfer func-
tion uses these parameters to find the data and bring it back to the formula.

Except for the fact that transfer functions retrieve data from other database files, these functions are just like
any other function. You can use them in combination with other operators and functions. For example, sup-
pose you had a transfer function with parameters designed to retrieve a person’s name. You could use this
function to construct a greeting for a letter like this:

Greeting="Dear "+upperword(transferfunction(<how to find the name>))+","

You can only transfer one item of data per assignment statement. If you want to transfer more than one item
of information, you’ll have to transfer one at a time (with some special exceptions explained later). The trans-
fer functions are designed so that transferring several items of data from a single record is a very fast opera-
tion.

Identifying Data to Move

Moving data is easy. The hard part is explaining to Panorama exactly what the data is you want it to move.
Unfortunately, we usually can’t simply point at the data and say “there it is, go get it.” Most of the next few
sections will deal with how to explain where the data is in an unambiguous way so Panorama will under-
stand and obey.

Chapter 3:Programming Techniques Page 535
Panorama has two basic ways for identifying data to move: by position and by value. Data that is identified
by position really is identified by pointing at it and saying “go get it.” For example, you might ask the user to
find an item in the price list and click on it. Once the user has located the item, Panorama can easily move the
data somewhere else with the grabdata(function.

The second way to identify data to move is by value. When this technique is used, we tell Panorama what we
are looking for and it goes and finds it for us. For example, we may want to find the current credit balance for
Gargantuan Widget Company. In this case, the value is Gargantuan Widget Company. Panorama will scan
the database looking for this value, and if it finds a record containing the value, it moves the credit balance
from that record to the currently open database.

Identifying data by value is somewhat complicated because the result is uncertain. There are basically three
possible outcomes: 1) The value doesn’t exist anywhere in the database, 2) There is one record with this value
in the database, or 3) There are many records with this value in the database. To write a successful program
for moving data between databases you must decide how your procedure will handle each of these situa-
tions.

Transfer Function Parameters

All transfer functions have similar parameters for locating the data to transfer. (Note: The parameters do not
necessarily appear in the order presented below.)

The first two parameters listed below, Target Database and Data Field, are used by all transfer functions. The
remaining parameters, Key Field, Key Value, Default Value, Summary Level and Separator are used only by
transfer functions that identify data by value.

Target Database. This parameter is the name of the database that contains the data you want to retrieve. Usu-
ally this is a fixed name, so you would simply enter the name surrounded by quotes, for example "Price List"
or "Customer File". If the name of the target file may change you could put the name in a variable. By the way,
the target database must be open, or the transfer function will not work.

The target database may even be the currently open database. This allows you to transfer data from other
records in the database to the current record. To specify the current database use the info("databasename")
function. (You could simply type in the name of the current file surrounded by quotes, but if the file is ever
renamed the transfer function will stop working.)

Data Field. This parameter is the field that contains the actual data you want to retrieve. It must be a field
within the target database. For example, if you wanted to look up a person’s phone number, this would be a
field named something like Phone.

The data field should contain data you don’t already know. For example, if you know a company’s name and
want to know their address, the data field would be Address. (The CompanyName field would be the key
field, see below.)

Each transfer function can transfer one and only one data field. You can’t use a formula here like

City+" "+State+" "+Zip

you must specify the name of a single field in the target database. If you want to transfer multiple fields
you’ll generally have to use multiple assignment statements and transfer one field at a time.

The type of data the transfer function returns depends on the type of data contained in the data field. If the
data field is a text field, the transfer function will return a text value. If the data field is a numeric field, the
transfer function will return a numeric value. (Exception: If the transfer function is allowed to return multiple
matches, the data is always converted to text.)

Note: Prior to version 3.0, Panorama required that the data field name be surrounded by quotes when used in
a transfer function. This is no longer necessary, but is still allowed for compatibility with database files cre-
ated with older versions. Now you can simply type the field name in without quotes. (However, if the field
name contains punctuations or spaces it must, of course, be surrounded by chevrons « and ».)

Page 536 Panorama Formulas & Programming
Key Field. This parameter is the field in the target database that contains the data you already know about.
For example, suppose you know someone’s name but not their phone number. The Name field would be the
key field. The transfer function will scan the key field looking for an exact match with the data supplied as
the Key Value parameter.

Only a single field may be used as the key field, and it must match up with the data in the key value. Suppose
you want to look up the phone number for Joe Smith, and your target database contains separate fields for
first and last name. You’ve got a problem, because your key value does not match up with any one field in the
target database. The possible solutions include: 1) matching up on the last name only, 2) creating a new,
redundant field in the target database that contains both first and last names, or 3) using the arraybuild state-
ment instead of an assignment statement to transfer the data. (The arraybuild statement allows any for-
mula to be used as a match, so you are not limited to a single key field and a single key value. Using the
arraybuild statement to transfer data between files will be described in detail in a later section.)

Note: Prior to version 3.0, Panorama required that the key field name be surrounded by quotes when used in
a transfer function. This is no longer necessary, but is still allowed for compatibility with database files cre-
ated with older versions. Now you can simply type the field name in without quotes. (However, if the field
name contains punctuations or spaces it must, of course, be surrounded by chevrons « and ».)

Key Value. This parameter is the value that identifies the data you want to retrieve. For example, if you are
looking up data in a price list database, the key value would be values like 180 ohm resistor or 3/8" lock
washer. The key value must exactly match a value in the key field. If the key field contains a part called a 250
µf capacitor the key value must be exactly that, not 250 µf Capacitor or 250 µf capacitor (50V).

The key value is usually assembled from one or more fields in the current database. Unlike the key field, the
key value may be assembled with any formula you want to use. For example, suppose your target database
contains names in a single field (for example Maureen Livingston or Steve Toyota) but the current database
has separate fields for first and last names. No problem here, just use a formula like First+" "+Last for
the key value. Remember, the key value is a value, so any formula may be used to calculate it. The key field is
a field, and must be a single field in the target database.

Default Value. What if the transfer function fails to locate the key value anywhere in the target database?
There is no data to retrieve, but the transfer function must return some value. This is the job of the default
value. The default value steps in when the requested data is not available for any reason.

The default value should have the same data type as the data field. If the data field is text, the default value
should be text. If the data field is numeric, the default value should be numeric. The most common default
values are "" (empty string) for text, and 0 for numeric. However, you can use any value you want.

Sometimes you may want to create an assignment that moves data from another database to a field in the
current database, but leave that field untouched if the data cannot be found. In this case, the default value
should be the field itself. That way if the data is not found Panorama will simply move the current field to
itself, essentially leaving it untouched. The partial example below shows how this works. This transfer func-
tion looks up a phone number, but if it is not found, uses the current phone number as the default.

Phone=transferfunction(...,Phone,...)

Summary Level. Panorama normally scans all records in the target database looking for a match between the
key value and the key field. However, if you set the summary level parameter to a non-zero value, the trans-
fer function will only scan summary records. The summary level parameter should be a number from 0 to 7.
If the value is set to 2, only summary levels 2 and above will be scanned, etc. Unless you specifically want to
work with summary records, set this parameter to zero.

Separator. This parameter is only used by transfer functions that can return more than one match at a time,
like lookupall(. Each returned data item is separated by the text in this parameter. Common separators
include commas, slashes, carriage returns (¶) and tabs (¬). For example, suppose you want a transfer func-
tion to return a comma separated list of all the invoice numbers for a certain customer. The separator is a
comma character (",").

Chapter 3:Programming Techniques Page 537
Single Record Transfer Functions

Enough theory, let’s get down to specifics. The transfer functions described below locate a single record in a
database and retrieve one item of data from that record.

grabdata(target database,data field)

The grabdata(function identifies data by position. This function retrieves data from the current record in the
specified database. For example, if the user has selected 7404 hex inverter in the Price List database by click-
ing on it (or searching for it with the Find/Select command), this procedure will copy the information into the
current line item in the Invoice database.

ItemΩ=grabdata("Price List",Part)
PriceΩ=grabdata("Price List",Price)

The drawback of the grabdata(function is that the user must manually locate the data, but sometimes this
is exactly what you want.

A sometimes useful trick with the grabdata(function is to grab data in the current database. This allows
you to specify the field name with a variable.

lookup(target database,key field,key value,data field,default value,summary level)

The lookup(function identifies data by value. When this function is used, Panorama scans every record in
the target database starting from the top (including unselected records). When it finds the first match
between the key value and the key field, it stops scanning and returns the value in the data field of that
record. There may be 1, 10, 100 or 1,000 possible matches, but the lookup(function will only return the first
one.

For our example, suppose we have two databases: Invoices and Customers. These two databases have 5 iden-
tical fields: Company, Address, City, State and Zip. When the user enters the company name, we want to
write a procedure that will automatically move the address, city, state and zip from the customer file into the
new invoice.

gettext "What company name?",Company
Address=lookup("Customers",Company,Company,Address,"",0)
City=lookup("Customers",Company,Company,City,"",0)
State=lookup("Customers",Company,Company,State,"",0)
Zip=lookup("Customers",Company,Company,Zip,"",0)

Since each lookup(statement can only transfer one value, four lookups are required. Panorama doesn’t
actually scan the Customer file four times. When a procedure performs multiple lookups with the same tar-
get database, key field, and key value Panorama realizes that it doesn’t have to re-scan the database—it
already knows where the data is, and it just goes and gets it. (If your database is set up for it, you can use the
speedcopy statement to move this data even faster. See the description of this statement later in this chap-
ter.)

lookuplast(target database,key field,key value,data field,default value,summary level)

The lookuplast(function identifies data by value. When this function is used Panorama scans every
record in the target database, but unlike the lookup(function, this function starts from the bottom and scans
up (including unselected records). When it finds a match between the key value and the key field, it stops
scanning and returns the value in the data field of that record. There may be 1, 10, 100 or 1,000 possible
matches, but the lookuplast(function will only return the last such match in the file. (However, there is an
exception. If you are scanning the current database, the lookuplast(function will skip the current record.
This allows you to find the last match in the file not including the current record.)

Page 538 Panorama Formulas & Programming
When the key field and key value may match many times, we are often more interested in the last match
instead of the first match. For example, if a customer has many invoices with us, we are probably more inter-
ested in the most recent invoice than in the first invoice from long ago. (Of course this is assuming the data-
base is sorted in chronological order!) The lookuplast(function allows us to locate this most recent
information.

Our lookuplast(example finds the most recent order for a given customer, and the amount of that order.

local theCustomer,lastOrderDate,lastOrderAmount
theCustomer=""
gettext "Customer name:",theCustomer
lastOrderDate=lookuplast("Invoice",Company,theCustomer,Date,0,0)
if lastOrderDate=0

message "No previous invoices for this customer."
stop

endif
lastOrderAmount=lookuplast("Invoice",Company,theCustomer,Total,0,0)
message theCustomer+"’s most recent order was for "+

pattern(lastOrderAmount,"$#,.##")+" on "+
datepattern(lastOrderDate,"Month ddnth, yyyy")+"."

Here’s another example that combines lookup(and lookuplast(. This example first tries to look up a cus-
tomer in the Customers database. If they are not found there, it checks to see if there is a previous invoice for
this customer.

Address=lookup("Customers",Company,Company,Address,"",0)
if Address≠""

City=lookup("Customers",Company,Company,City,"",0)
State=lookup("Customers",Company,Company,State,"",0)
Zip=lookup("Customers",Company,Company,Zip,"",0)

else
Address=lookuplast(info("database"),Company,Company,Address,"",0)
City=lookuplast(info("database"),Company,Company,City,"",0)
State=lookuplast(info("database"),Company,Company,State,"",0)
Zip=lookuplast(info("database"),Company,Company,Zip,"",0)

endif

Remember, the lookuplast(function locates the matching information that is physically closest to the bot-
tom of the database. What this proximity to the bottom means depends on how the database is sorted.

lookupselected(target database,key field,key value,data field,default value,summary level)

The lookupselected(function identifies data by value. When this function is used, Panorama scans every
selected record in the target database starting from the top. Unlike a regular lookup(, this function skips
unselected records.

There are two possible advantages to using the lookupselected(function. If the target database contains
only a small percentage of selected records compared to unselected records, lookupselected(will be
faster than lookup(. (Of course if the data you want to locate is not selected, lookupselected(won’t find
a match.)

The primary advantage to using lookupselected(is the ability to control exactly what records are
scanned as part of the lookup. This is especially useful if there is a possibility of more than one match
between the key value and key field.

table(target database,key field,key value,data field,default value,summary level)

The table(function is the only transfer function that does not require an exact match between the key value
and the key field. If it does not find an exact match, the table(function will accept a match that is merely
“close enough.” The table function is designed to be used with rate lookup tables like tax tables, shipping
tables, volume discount tables etc. If the table(function does not find an exact match between the key
value and the key field, it will pick the record in the target database where the key field is closest to, but not

Chapter 3:Programming Techniques Page 539
greater than, than the key value. For example, suppose the key field contains the values 5, 25, 100, 250 and
1000. If the key value is 47, the table(function will match with the record containing 25 in the key field. If the
key value is 4700, the table(function will match with the record containing 1000 in the key field. If the key
value is 4, there is no match, because there is no value in the key field less than 4. In this case the default value
will be used.

Suppose you have a database called Shipping Rates that contains the fields and values shown here.

The table(function interprets this table like this: From 0-49 pounds in Zone 1, the rate is $2.50 per pound.
From 50-99 pounds the rate is $2.35/pound. From 100-249 the rate is $2.25 per pound, and so on. Items 2,000
pounds and over are shipped for $1.86 per pound. The other zones are similar.

The procedure below calculates the shipping charges for a package.

local PackageWeight,DestinationZone,ShippingCharge
PackageWeight="" DestinationZone=""
gettext "Package weight:",PackageWeight
PackageWeight=val(PackageWeight)
if PackageWeight<0

message "Sorry, anti-gravity option not available until 3rd quarter."
stop

endif
gettext "Zone Number (1-3)",DestinationZone
if length(DestinationZone)≠1 or DestinationZone<"1" or DestinationZone>"3"

message "Zone must be from 1 to 3"
stop

endif
ShippingCharge=PackageWeight*

table("Shipping Rates",Weight,PackageWeight,
"Zone"+DestinationZone,0,0)

message "Shipping charge is: "+pattern(ShippingCharge,"$#,.##")

Notice that this example actually calculates the name of the data field on the fly: either Zone1, Zone2, or
Zone3. The data field is still a single field (remember, only one item can be transferred at a time) but we are
using a formula to calculate what the name of that field is.

In a real database you probably would not ask the user to enter the zone, but would have another database
that would relate zones to zip codes. Here’s a simple Zone Chart database that divides the entire USA into
three zones based on the first three digits of the zip code.

Weight Zone1 Zone2 Zone3

0 2.50 4.00 5.00

50 2.35 3.80 4.70

100 2.25 3.60 4.50

250 2.12 3.40 4.25

500 2.03 3.00 4.05

1000 1.94 2.85 3.85

2000 1.86 2.70 3.70

Zip3 Zone

000 1

300 2

700 3

99: 0

Page 540 Panorama Formulas & Programming
The last value in this table, 99:, is the smallest value that is greater than the last legal zip code (999) according
to the ASCII character order. This record can help catch illegal zip codes. For instance, ABC is greater than 99:,
so the Zone will be 0 for this illegal zip code.

The assignment below will turn a regular zip code (Zip) into a zone number according to the Zone Chart
database.

DestinationZone=table("Zone Chart",Zip3,Zip[1,3],Zone,0,0)

This assignment can easily be plugged into the previous example to calculate the shipping charges given the
weight and zip code.

Clairvoyance and Lookups

When data is transferred between two databases with a lookup, there is usually one field in the current data-
base that contains the key value. For example, when we look up a company name from the Customer data-
base, we usually get the name from the Company field in the current database. For the purposes of this
discussion we’ll call this field in the current database the key value field. This is different from the key field,
which is in the target database. However, both of these fields contain the same data: the same customer
names, or the same part descriptions, the same account numbers, etc.

Since the key value field and the key field contain the same data, it makes sense to link them with Panorama’s
Clairvoyance® feature. This allows you to type in the first few letters of a customer name (or a part descrip-
tion, or an account number, etc.) and then let Clairvoyance complete the entry from the data in the key field
in the target database. When it is used this way, Clairvoyance is almost like a pre-lookup. The beauty of this
scheme is that when Clairvoyance completes the entry for you, you know that the key value is entered 100%
correctly and that the lookup will work perfectly.

To set up Clairvoyance between fields in different databases you’ll need to use the design sheet. Open the
design sheet for the current database, then click on the name of the field that contains the key value. Now
choose Clairvoyance Link from the Special menu. A dialog with a list of databases will appear. Choose the
target database. Now a list of fields in the target database will appear. Choose the key field. Press the OK but-
ton, then use the New Generation tool to update the database itself. Your cross-database Clairvoyance link is
now set up. (Of course, this link will only work if both databases are open.)

The SpeedCopy Statement (Multiple Assignments in One Statement)

Some applications require you to transfer many fields from one database to another. Normally this requires a
separate assignment for each field you want to move. This isn’t so bad for a few fields, but if you need to
transfer, say, 20 fields it gets tedious and slow. The speedcopy statement can transfer many fields at once,
but only if the fields to be copied in the two databases match exactly. The fields to be copied must appear in
exactly the same order in both databases, and the fields must have the same data types. With all these restric-
tions, you may be surprised to find out that the fields do not have to have the same names!

Here’s how speedcopy works. Before you use speedcopy, you must perform an assignment with a
lookup(function (actually, any single record transfer function will do: lookuplast(, lookupselected(,
etc.). The lookup(function locates the record containing the information to be copied.

The speedcopy statement has three parameters.

speedcopy FirstAssignField,LastAssignField,FirstTargetField

The first two parameters are fields in the current database. The last parameter is a field in the target database.
All of these field names should be surrounded by quotes (for example "Name", not Name). Speedcopy starts
by converting these field names into field numbers. For example, if a field would be the third column in the
data sheet, it is field #3.

Chapter 3:Programming Techniques Page 541
Once speedcopy has converted the field names into numbers, it starts copying data. Suppose the FirstAs-
signField was field number 3, and the FirstTargetField was field number 8. Speedcopy will start by copying
field #8 in the target database into field #3 in the current database. Then it will copy field #9 in the target
database into field #4 in the current database. It will continue copying fields until it has copied something
into the LastAssignField.

To show a specific example, suppose we have two databases, Organizer and Customers, with the fields listed
below:

The procedure below will quickly copy the Address, City, State, Zip and Phone fields from the Customers
database to the Organizer database.

Address=lookup("Customers",Company,Company,Address,"",0)
if Address≠""

speedcopy "City","Phone","City"
endif

Let’s take a close look at how this procedure works. The first line attempts to lookup the Address from the
Customer database. If this lookup fails, the procedure is finished. However, if the lookup succeeds the proce-
dure continues with the speedcopy statement.

The first parameter of the speedcopy statement is City, which is field #5 in the current database (Organizer).
The second parameter is Phone, which is field #8 in the current database. The final parameter is City, which is
field #3 in the target database (Customers).

In this example speedcopy will copy 4 fields from Customers into Organizer. These four data moves are:

City into City(Customers field #3 into Organizer field #5)

State into State(Customers field #4 into Organizer field #6)

ZipCode into Zip(Customers field #5 into Organizer field #7)

Phone# into Phone(Customers field #6 into Organizer field #8)

As speedcopy moves data from one database to another, it doesn’t make any kind of checks on the data. If the
fields aren’t really in the same order, speedcopy will cheerfully copy them in the wrong order. Even worse, if
you try to copy a numeric field into a text field or a text field into a numeric field, speedcopy will not object,
but will speedily turn your current database into swiss cheese. The moral of the story is to use the speedcopy
statement very carefully. Like any sharp instrument you want to make sure it is pointed in the right direction
before you use it.

Organizer Customers

1 Name Company

2 Title Address

3 Company City

4 Address State

5 City ZipCode

6 State Phone#

7 Zip Fax#

8 Phone Cust#

Page 542 Panorama Formulas & Programming
Multiple Record Transfer Functions

The transfer functions described below locate every matching record in the target database, and return all the
data field values in the records that match. The data field values are strung together as a single piece of text,
with the separator character (or characters) in between each item. If the separator is a single character, the
result is a text array.

lookupall(target database,key field,key data,data field,separator)

The lookupall(function builds a text array containing one item for every record in the target database
where the data in the key field matches the key value. Each item in the text array contains the value extracted
from the data field for that record. If the data field is a numeric or date field, it is converted to text using the
default patterns for that field.

Here is an example that looks up all the checks written to a certain person or company. The checks are dis-
played with a comma in between each check number.

local CheckTo,Checks
CheckTo=""
gettext "List checks written to:",CheckTo
Checks=lookupall("Checkbook",Payee,CheckTo,«Check#»,",")
if Checks=""

message "No checks written to "+CheckTo
else

message "Checks written to "+CheckTo+":"+Checks
endif

The lookupall(function will often return a lot of duplicate data. Since the result is an array, you can use
the arraydeduplicate statement to sort and eliminate the duplicates. This example produces a sorted list of
customers in Arizona.

global theCustomers
theCustomers=lookupall("Invoices",State,"AZ",Company,¶)
arraydeduplicate theCustomers,theCustomers,¶

The lookupall(function is especially useful for displaying or printing lists of items, and for other user
interface elements like lists or pop-up menus. The lookupall(function can be used directly in auto-wrap
text or a Text Display SuperObject to display a list, or as part of the data formula for a Super Matrix object.

lookupcalendar(target database,key field,key data,data field,separator)

The lookupcalendar(function is identical to the lookupall(function except for the way that the key
value and the key field are compared. The lookupcalendar(function requires that the key field be a field
that contains reminders, and the key value be a date. (To refresh your memory, a reminder is a special data
type that holds scheduling information.) The lookupcalendar(function will locate all records where the
reminder and the date match. For example, if the date specified is 5/23/95, lookupcalendar(will match for
reminders that are set for 5/23/95, or are set for 5/23 of every year (annually), or are set for every Tuesday,
etc.

As you might guess, this function is very handy for calendars. Using this function you can display all the
reminders for a specific date.

lookuprtime(target database,key field,key data,pattern,separator)

Lookuprtime is short for lookup reminder time. The lookuprtime(function is similar to the
lookupcalendar(function, but it returns the actual time of the reminders instead of information in a sepa-
rate data field. Like lookupcalendar(, the key field must be a field that contains reminders, and the key
value must be a date. The pattern parameter tells the function how to format the time into text, for example
"hh:mm am/pm". You may use any pattern supported by the timepattern(function.

Chapter 3:Programming Techniques Page 543
The example below will fill the global variable Agenda with the items on today’s schedule.

global Agenda
local todayTimes,todayMessages
todayTimes=lookuprtime("Reminders",When,today(),"hh:mm am/pm",¶)
todayMessages=lookupcalendar("Reminders",When,today(),Message,¶)
arrayfilter todayTimes,Agenda,¶

import()+" - "+array(todayMessages,seq()-1,¶)

The list of items in Agenda will be formatted something like this:

7:00 am - Breakfast meeting with Bob
9:25 am - Make sure Williams got our quote
1:30 pm - Late lunch with Jennings group
3:45 pm - get prepped for staff meeting
4:00 pm - Weekly staff meeting
5:30 pm - Don’t forget flowers for Pat

This list can easily be displayed with an auto-wrap text object, a Text Display SuperObject, or a List SuperOb-
ject.

After a Lookup…Modifying the Original Data

There is no specific function or statement that allows you to modify data you have looked up. However, it’s
not difficult to write a procedure that does this. The basic principle is to use the find statement to locate the
data, then modify the data.

The example below looks up a price from an Inventory database, then goes to the Inventory database, locates
the part with the find statement, decreases the quantity on hand, then goes back to the original window.

local originalWindow,theItem,theQty
PriceΩ=lookup("Inventory",Part,ItemΩ,Price,0,0)
if PriceΩ=0

stop
endif
AmountΩ=QtyΩ*PriceΩ
GrandTotal=sum(AmountΩ)
originalWindow=info("windowname")
theItem=ItemΩ
theQty=QtyΩ
window "Inventory"
if info("records")>info("selected")

selectall
endif
find Part=theItem
QtyOnHand=QtyOnHand-theQty
window originalWindow

(This example is actually a bit unrealistic because the normally you would not want the inventory to be
updated immediately as each price was looked up. Instead you would probably wait until the entire invoice
was complete and post all the inventory changes at one time. Nevertheless, the basic technique is the same.)

Page 544 Panorama Formulas & Programming
The search technique is a bit awkward to use for modifying data that was retrieved by a lookupall(func-
tion (or any multiple record transfer function). For example, suppose you want to modify the third item
retrieved by the lookupall(function. You could use the find statement in a loop to find the third match in
the target database, but Panorama has a special statement that helps perform this job: the allindex state-
ment. This statement has two parameters:

allindex item,transferformula

The item parameter must be a variable. Before you use the allindex statement you must set this variable to
the number of the item you want to locate: 1, 2, 3, etc. Afterwards the variable will contain the line number in
the target database that corresponds to this item, or zero if there is no such item.

The second parameter, transferformula, should contain the multiple record transfer function (lookupall(,
lookupcalendar(, etc.).

The previous section showed an example that displayed an agenda for a particular day. For this example
we’ll assume that this agenda has been loaded into a List SuperObject™, and that this SuperObject has been
set up to trigger the procedure below whenever the user clicks on an item. This procedure will find out what
item the user selected, then use the allindex and find statements to locate the original record in the Reminders
database for that item.

local AgendaItem
AgendaItem=1
superobject "AgendaList","FindSelected",AgendaItem
if AgendaItem=0

stop /* nothing clicked! */
endif
allindex AgendaItem,lookupcalendar("Reminders",When,today(),Message,¶)
window "Reminders"
if info("selected") < info("records") selectall endif
find seq()=AgendaItem
/* now we can modify the original data the mouse was pointing to */
editreminder When,Message

The allindex statement only works if you display the data directly from the lookupall(function (or
other multiple record lookup.) If the data is filtered, sorted and/or de-duplicated the allindex statement
will not be able to correctly locate the original data.

Using Lookups for Display/Printing

So far, all our examples have used lookups and other transfer functions to actually transfer data from one
database to another via transfer functions. However, since these are functions, they can be used in a formula
anywhere. For example, you can use a lookup in an auto-wrap text object or in a Text Display or Text Editor
SuperObject.

Let’s take an invoice file to show some examples of how lookups can be used for display. If all of your cus-
tomers are listed in a customer database, you can display the address on the invoice without actually having
fields in the database for the address. Use an auto-wrap text object or Text Display SuperObject with a lookup
formula to display the address. One advantage of this approach is that if you change the address of the com-
pany in the customer database, all the invoices will automatically show the new address. A possible disad-
vantage of this approach is that there is no way to enter the address of a company that is not in the customer
database. You must enter the company in the customer database first, and then create the invoice.

Another application on an invoice would be to display a list of all the previous invoices for this customer. To
do this you would use the lookupall(function. As you flip from invoice to invoice the new list is automati-
cally displayed. You might want to use more than one auto-wrap text object or Text Display object; perhaps
one to display the invoice numbers, one to display the invoice dates, and one to display the invoice amounts.
If these are placed next to each other, they will line up in a neat columnar display.

Chapter 3:Programming Techniques Page 545
One place where you probably don’t want to simply display the result of a lookup is prices. We’ve already
shown examples where a price is transferred from a price list database into the invoice database. You could
simply display the price instead of storing it in the invoice…you can even perform calculations on the price
as part of the display formula. But what if the price list changes? You probably don’t want your old invoices
to change every time a price changes—these old invoices are a historical record of the transactions that actu-
ally took place. By transferring the price into the invoice database you are “freezing” it and isolating it from
later changes in the price list database.

The point of this section is: Don’t always assume that you must transfer data from one database to another to
link them. Look at each situation carefully. Do I need to transfer the data to isolate it from further changes?
Do I want the data to continue to be linked and to reflect changes in the original database? How much addi-
tional processing do I need to do to this data after it has been transferred? Don’t always do it the same way,
but pick the best solution for each individual situation.

Using ArrayBuild to Transfer Data Between Files

The arraybuild statement can scan any open database and extract data from it. Does that sound familiar?
The arraybuild can act as a super duper lookup with several advantages. The table below summarizes the
differences between using regular lookup functions and the arraybuild statement for retrieving data from
another database:

The primary disadvantage of the arraybuild statement is that it is not a function, so it cannot be used as
part of a formula. The arraybuild statement can only be used as part of a procedure.

Let’s start by looking at how the arraybuild statement can be used to simulate various transfer functions.
Here’s an example from earlier in this chapter that uses the lookup(function.

gettext "What company name?",Company
Address=lookup("Customers",Company,Company,Address,"",0)
City=lookup("Customers",Company,Company,City,"",0)
State=lookup("Customers",Company,Company,State,"",0)
Zip=lookup("Customers",Company,Company,Zip,"",0)

Here’s another procedure that does the same thing but using the arraybuild statement.

local theCompany,TransferArray
gettext "What company name?",Company
theCompany=Company
arraybuild TransferArray,¶,"Customers",

?(theCompany=Company,Address+¬+City+¬+State+¬+Zip,"")
if TransferArray=""

stop
endif
Address=array(array(TransferArray,1,¶),1,¬)
City=array(array(TransferArray,1,¶),2,¬)
State=array(array(TransferArray,1,¶),3,¬)
Zip=array(array(TransferArray,1,¶),4,¬)

Lookup Functions ArrayBuild Statement

Locating Data Only 1 key field Can combine multiple fields

Match Criteria Exact match required Any comparison operator (=, <, >,
contains, soundslike, match, etc.)

Retrieving Data Only 1 data field Can combine multiple fields

Use in Procedure Yes Yes

Use in Form Yes No

Page 546 Panorama Formulas & Programming
Ok, ok…I know you’re not impressed (yet!). This example is longer and more obscure looking than the first
one, and it does the same thing. But now take a look at a procedure that is impossible with the lookup(func-
tion. This procedure looks up a person by their last name and first initial (separate fields in the Customers
database).

local theFirst,theLast,TransferArray
theFirst=upper(FirstName) theLast=upper(LastName)
arraybuild TransferArray,¶,"Customers",

?(theFirst[1,1]=upper(FirstName[1,1]) and theLast=upper(LastName),
Address+¬+City+¬+State+¬+Zip,"")

if TransferArray=""
stop

endif
Address=array(array(TransferArray,1,¶),1,¬)
City=array(array(TransferArray,1,¶),2,¬)
State=array(array(TransferArray,1,¶),3,¬)
Zip=array(array(TransferArray,1,¶),4,¬)

How does this procedure do its job? First, it transfers the data it wants to look for into temporary variables
(theFirst and theLast). In this example, the data is also converted to all upper case, so that it doesn’t matter if
the names are upper or lower case in the two different databases.

Now the arraybuild statement gets to work. The ? function uses a formula to identify people by their first
initial (theFirst[1,1]=upper(FirstName[1,1]) and also by their last name
(theLast=upper(LastName)). When it encounters a record that matches the formula, it copies the
Address, City, State, and Zip into the TransferArray variable. These four fields are separated by tabs within
the array (remember, the ¬ character is a tab). For example, the TransferArray might look like this:

In this hypothetical example the arraybuild statement has located four records in the target database that
match the formula. Which one to choose? The procedure could choose the first match, the last match, or it
could display the entire list to the user and ask them to make the choice. The procedure we have created
always uses the first matching record. The inner array(function, array(TransferArray,1,¶), locates
the first record that matched from the target database. The outer array(function pulls out the individual
items: Address, City, etc.

If you wanted to find the last record that matched you would rewrite the end of this procedure like this:

…
…
if TransferArray=""

stop
endif
local LastMatch
LastMatch=arraysize(TransferArray,¶)
Address=array(array(TransferArray,LastMatch,¶),1,¬)
City=array(array(TransferArray,LastMatch,¶),2,¬)
State=array(array(TransferArray,LastMatch,¶),3,¬)
Zip=array(array(TransferArray,LastMatch,¶),4,¬)

124 W. Olive St San Jose CA 95134

2347 N. Riverside Cambridge MA 02139

687 E. Dorothy Lane Bothell WA 98011

5672 Lakewood Drive Salinas CA 93908

Chapter 3:Programming Techniques Page 547
For some applications the best option may be to let the user choose the appropriate record if there are dupli-
cates. To illustrate this, we’ll assume that we have created a form called Select that contains a List SuperOb-
ject named Choices. The List SuperObject has been set up to display whatever list is contained in the global
variable named ChoiceList. The main procedure looks like this:

global TransferArray
local theFirst,theLast,HowMany
theFirst=upper(FirstName) theLast=upper(LastName)
arraybuild TransferArray,¶,"Customers",

?(theFirst[1,1]=upper(FirstName[1,1]) and theLast=upper(LastName),
FirstName+" "+LastName+¬+Address+¬+City+¬+State+¬+Zip,"")

if TransferArray=""
stop

endif
HowMany=arraysize(TransferArray,¶)
if HowMany=1

Address=array(array(TransferArray,1,¶),2,¬)
City=array(array(TransferArray,1,¶),3,¬)
State=array(array(TransferArray,1,¶),4,¬)
Zip=array(array(TransferArray,1,¶),5,¬)

else
/* duplicate records, so let user pick from list */
arrayfilter TransferArray,ChoiceList,¶,

array(import(),1,¬)
opendialog "Select"

endif

If TransferArray contains only one record, the procedure simply fills in the Address, City, etc. But if Transfer-
Array contains multiple records, the procedure builds a new array that contains the names of the people it
found, and then opens the dialog to display the list.

When the user clicks on one of the names in the List SuperObject we’ll need another procedure that actually
fills in the Address, City, etc. Here is that procedure:

local UserChoice
UserChoice=1
superobject "Choices","FindSelected",UserChoice
if UserChoice=0 stop endif ; nothing clicked!
closewindow ; close the dialog
UserChoice=UserChoice
Address=array(array(TransferArray,UserChoice,¶),2,¬)
City=array(array(TransferArray,UserChoice,¶),3,¬)
State=array(array(TransferArray,UserChoice,¶),4,¬)
Zip=array(array(TransferArray,UserChoice,¶),5,¬)

If you’ve been studying these examples carefully you have probably noticed that in these three examples
we’ve used the arraybuild statement in a manner similar to the lookup(, lookuplast(and
lookupall(functions—but with much more flexible parameters. The possibilities for linking databases
with the arraybuild statement are almost limitless.

Page 548 Panorama Formulas & Programming
Posting Data to Other Databases

So far, all of our examples have pulled data from other database files into the current record of the currently
open database. What if you need to go the other way? What if you have information in the current database
that needs to be moved somewhere else? This is often called “posting” data, and is essentially performing a
lookup in reverse. Panorama has two statements for posting data — post and postadjust.

The Post Statement

The post statement assigns values to one or more fields in another database.

post mode,database,keyfield,keyvalue,datafield,datavalue,df2,dv2,df3,dv3 …

The mode parameter controls how the post statement decides which record will be updated in the target
database. There are three modes available:

The next five parameters are very similar to the parameters for the lookup(function.

The database parameter is the name of the target database you want to post data to. This database must
already be open.

The keyfield parameter is the name of the field in the target database you want to search (update and
updateadd modes only).

The keyvalue parameter is a formula that specifies the value you want to search for in the keyfield field.

The datafield parameter is the name of the field that will be modified. The datavalue is the new value to be
placed in this field. You may specify additional pairs of fields/values to modify in the target database, in fact,
there is no limit to the number of field/value pairs you can include as parameters to this statement.

This example assigns the value "714" to the AreaCode field in the "My Contacts" database and it will assign
"555-1212" to the Phone field and "4" to the Extension field. It will look for a matching customer name and
create a new record if it can't find one.

post "updateadd","My Contacts","CustomerName",CustomerName,
"AreaCode","714",
"Phone","555-1212",
"Extension","4"

Mode Description

"update"

When this mode is used, the post statement will search for a
record where the data in the keyfield matches the keyvalue
you have supplied. When this record is found, the specified
datafields are updated. If a record with matching data does
not exist an error will be generated (this error can be trapped
with the if error statement).

"add"

When this mode is used, the post statement will not search
for a matching record, in fact the keyfield and keyvalue
parameters are ignored. The statement simply adds a brand
new record and updates the specified data fields.

"updateadd"

When this mode is used, the post statement will search for a
record where the data in the keyfield matches the keyvalue
you have supplied. If this record is found, the specified
datafields are updated. If a record with matching data does
not exist a new record is added and the specified datafields
are updated.

Chapter 3:Programming Techniques Page 549
The PostAdjust Statement

The postadjust statement adjusts the value of a numeric field in another database, by adding (or subtract-
ing) a number. For example, you could use this to subtract from the quantity on hand field of an inventory
database as an invoice is processed.

postadjust database,keyfield,keyvalue,datafield,deltavalue,minimum,maximum

Unlike the post statement, the postadjust statement always runs in update mode. If the postadjust
statement cannot find the record specified by the keyfield and keyvalue parameters it will stop and generate
an error (you can trap this error with the if error statement).

The first four parameters are very similar to the parameters for the lookup(function.

The database parameter is the name of the target database you want to post data to. This database must
already be open.

The keyfield parameter is the name of the field in the target database you want to search.

The keyvalue parameter is a formula that specifies the value you want to search for in the keyfield field.

The datafield parameter is the name of the field that will be modified. This must be a numeric field.

The deltavalue is the adjustment you want to make to the datafield. This should be a positive or negative
number. For example, a deltavalue of -6 means “subtract six from the datafield.”

The minimum parameter allows you to specify a minimum value for the datafield. If the adjusted value of
this field would be below this value then the adjustment is not made and an error is generated. For example
when adjusting an inventory database you would typically set the minimum to zero to prevent the quantity
on hand from becoming negative. The error message will look like the one shown below. This error indicates
that you tried to subtract 8 items from 5, which would result in -3, which is below the minimum.

POSTADJUST failed because adjusted value would be below minimum.
Database Value:5 Delta:8

If you trap the error with the if error statement you can extract these values with the info("error")
function. An example of this is shown below.

If you don’t want to have any minimum value at all, set the minimum parameter to -1.

The maximum parameter allows you to specify a maximum value for the datafield. If the adjusted value of
this field would be above this value then the adjustment is not made and an error is generated. For example if
you were adjusting a class size you might set the maximum to the number of seats in the classroom. The error
message will look like the one shown below. This error indicates that you tried to add 3 items to 285, which
would result in 31, which is above the maximum of 30.

POSTADJUST failed because adjusted value would be above maximum.
Database Value:28 Delta:3

If you trap the error with the if error statement you can extract these values with the info("error")
function.

If you don’t want to have any maximum value at all, set the maximum parameter to 0.

The example below shows how to link an inventory and invoice database so that the inventory quantities on
hand are automatically adjusted as invoices are shipped, and back orders are marked as necessary.

The inventory database includes at least two fields for each product.

Field Description

SKU Identification code for each product

OnHand Current quantity on hand

Page 550 Panorama Formulas & Programming
The invoice database includes at least these four line item fields for each item purchased (presumably it
would also include fields with pricing information.

The procedure below prepares an invoice for shipping. It scans each line item and determines if it needs to be
shipped. If one or more items remain unshipped, it checks the inventory database. If there is insufficient
inventory on hand to complete the order, it grabs whatever is available.

local itemNumber,itemSKU,itemQty,itemShipped,itemNeeded,itemNow,itemAvailable
itemNumber=1
loop

itemSKU=grabdata("Invoice","SKU"+str(itemNumber))
if error

stoploopif true() /* loop stops when line item field does not exist */
endif
if itemSKU<>"" /* ignore blank line items */

itemQty=grabdata("Invoice","Qty"+str(itemNumber))
itemShipped=grabdata("Invoice","Shipped"+str(itemNumber))
if itemQty<itemShipped/* is everything shipped yet? */

itemNeeded=itemQty-itemShipped
itemNow=itemNeeded
postadjust "Inventory","SKU",itemSKU,"OnHand",-itemNeeded,0,0
if error

itemNow=0
itemAvailable=val(tagdata(info("error"),"Database Value:"," ",1)
if itemAvailable>0

/* not enough to fill order, just ask for what we can get */
itemNow=itemAvailable
postadjust "Inventory","SKU",itemSKU,"OnHand",-itemNow,0,0

endif
endif
set "Shipped"+str(itemNumber)),itemShipped+itemNow
set “ShipNow"+str(itemNumber)),itemNow

endif
endif
itemNumber=itemNumber+1

while forever

When the procedure is done the inventory has been updated and the invoice will contain the quantities to
ship now, if any.

Field Description

SKU1, SKU2, … Identification code for product

Qty1, Qty2, … Quantity customer desires to purchase

Shipped1, Shipped2, … Total quantity shipped to customer

ShipNow1, ShipNow2, … Quantity to ship now

Chapter 3:Programming Techniques Page 551
Sorting

To sort the database takes two steps. First the procedure must select the field to sort by (see “Moving Left and
Right” on page 515). Then the sortup or sortdown statement is used to sort the database. The sortup
statement sorts the database in ascending order — A’s at the top and Z’s at the bottom. The sortdown state-
ment does the reverse, Z’s go at the top and A’s at the bottom. This example sorts an address book by last
name.

field "Last Name"
sortup

To sort by two or more fields you must use the sortupwithin statement. This statement leaves the data in
the original field in order but re-arranges the records within each value. For example the procedure below
will sort an address book by state, and then by city within each state.

field State
sortup
field City
sortupwithin

Note: Because Panorama uses what is called a “stable sort algorithm” there is another way to sort multiple
fields. Instead of using sortupwithin you can sort the fields in reverse order, like this.

field City
sortup
field State
sortup

Just like the previous example, this procedure will sort the address by city within state. There really isn’t any
advantage to using this technique, but it is available.

To sort the database by the color of the data in a field use the sortbycolor statement. See “Sorting By
Color” on page 327 of the Panorama Handbook to learn more about sorting by color.

Reducing Screen “Flashing”

When a database is sorted more than once in a row the window will redisplay over and over again. This is
annoying and wastes time, also. You can eliminate this “flashing” with the noshow and endnoshow state-
ments. This example shows a revised version of our procedure to sort an address book by city and state.

noshow
field City
sortup
field State
sortup
showpage

endnoshow

This revised procedure will only redisplay the window once (because of the showpage statement). To learn
more about the noshow and endnoshow statements see “Suppressing Display of Text and Graphics” on
page 307.

Making Sorts Even Faster

Panorama sorts even large databases very quickly. However, the noundo statement can make it sort even
faster. This statement disables Panorama’s undo feature. Since the sort doesn’t need to worry about undo it
can run slightly faster.

noundo
field Company
sortup

Page 552 Panorama Formulas & Programming
Locating Information

Panorama has two ways of locating information — finding and selecting (see “Finding vs. Selecting” on
page 331). In a procedure you find information with the find statement and select information with the
select statement.

Finding Information

The find statement searches the database, starting from the top. This statement has one parameter, a for-
mula. Starting from the top of the selected records, Panorama scans down the database until it finds a record
that makes this formula true (see “True/False Formulas” on page 124). For example, this procedure will scan
down the database until it finds a record where the Park field contains Everglades.

find Park contains "Everglades"

Notice that the active field stays the same (City) even though the formula searches the Park field.

After the find statement you can check to see if Panorama actually found anything with the
info("found") function. Here is a procedure that uses this statement and function to locate a park and, if
found, make it bold (see “Data Style and Color” on page 588).

local choice,wasField
choice=""
gettext "Which park?",choice
find Park contains choice
if info("found")

wasField=info("fieldname")
field Park
Style "cell bold"
field (wasField)

else
message "Sorry, park not found."

endif

When you run this procedure it starts by asking you what park you want to highlight (see “Basic Text Entry
Dialogs” on page 480).

Chapter 3:Programming Techniques Page 553
If the find statement locates the requested information it marks the park name in bold.

If the requested information is not found then an error message is displayed, but the database is not modi-
fied.

A Handy Universal Find Procedure

Here is a handy procedure that will search every field in the database. It can be used in any database without
modifications. (Note: A variation of this procedure is in the Search All Fields wizard.)

local whatfor
whatfor=""
gettext "Search for?",whatfor
find exportline() contains whatfor

The secret of this procedure is the exportline(function (see “EXPORTLINE(” on page 5210 of the Pan-
orama Reference). This function takes all the fields in a line, converts them to text if necessary, and then
appends them together with tabs in between. The procedure uses this handy capability to search all of the
fields in the database at once!

Here is a slightly revised version of this procedure that is even cooler. If it finds what you are looking for it
automatically moves to the field containing the data it has located.

fileglobal whatfor
whatfor=""
gettext "Search for?",whatfor
find exportline() contains whatfor
if info("found")

field (array(dbinfo("fields",""),
arrayelement(exportline(),search(upper(exportline()),upper(whatfor)),¬),¶))

else
beep

endif

When you run this procedure it stops and asks you what you want to look for.

Page 554 Panorama Formulas & Programming
If that word or phrase exists anywhere in the database, it will find it.

It can find a phone number like 882-4336.

Or it can even find a numeric value like 10.00.

Wherever the data is, this procedure will find it and move right to the spot. See the next section for a “univer-
sal find next” procedure to go with this procedure.

Chapter 3:Programming Techniques Page 555
Find Next

To find the next match use the next statement. This is just like the find statement except there is no for-
mula…it re-uses the formula supplied with the find statement. You can continue to use the next statement
over and over again until the info("found") function tells you there are no more matches. The procedure
below uses the next statement to find the next occurrence of the word or phrase — either on the same line or
on a different line.

local fieldnum,thisline,nextSpot
fieldnum=arraysearch(dbinfo("fields",""),info("fieldname"),1,¶)
thisline=rep(¬,fieldnum)+arrayrange(exportline(),fieldnum+1,9999,¬)
nextSpot=search(upper(thisline),upper(whatfor))
if nextSpot>0

field (array(dbinfo("fields",""),arrayelement(thisline,nextSpot,¬),¶))
rtn

endif
next
if info("found")

field (array(dbinfo("fields",""),
arrayelement(exportline(),search(upper(exportline()),upper(whatfor)),¬),¶))

else
beep

endif

To illustrate these universal find procedures we’ve added them to the National Parks database.

To demonstrate these procedures we’ll start by running Universal Find to search for canyon.

Page 556 Panorama Formulas & Programming
When the OK button is pressed the procedure finds the first occurrence of the word canyon.

Running the Universal Next procedure locates the next occurrence of the word canyon, in the City column of
the same record.

There’s no more occurrences of the word canyon in this record, so choosing Universal Next again jumps
down several lines.

Each time you choose Universal Next Panorama will jump to the next occurrence of the word canyon, until it
finally runs out.

Chapter 3:Programming Techniques Page 557
Let’s go back and review the original Universal Find procedure for a moment.

fileglobal whatfor
whatfor=""
gettext "Search for?",whatfor
find exportline() contains whatfor
if info("found")

field (array(dbinfo("fields",""),
arrayelement(exportline(),search(upper(exportline()),upper(whatfor)),¬),¶))

else
beep

endif

The first line of this procedure declares the fileglobal variable whatfor. It’s important that this variable is
declared as a global or fileglobal and not as a local variable. Why? Well, remember that Panorama stores the
formula used by the find statement for use by the next statement. In this case the formula is

exportline() contains whatfor

If whatfor is a local variable, it will cease to exist as soon as the Universal Find procedure is finished (see
“The Birth and Death of a Local Variable” on page 249). Because of this when the next statement is executed
(or if you manually choose Next from the Search menu) an error will occur: field or variable does not exist!
The solution is simply to create whatfor as a global or fileglobal variable so that it will still be hanging
around when it becomes time to search for the next occurrence of the word or phrase.

Selecting Information

The select statement searches the database, making everything that does not match invisible (see “Finding
vs. Selecting” on page 331 of the Panorama Handbook). This statement has one parameter, a formula. Starting
from the top of the selected records, Panorama scans down the database looking for records that makes this
formula true (see “True/False Formulas” on page 124). If the formula is not true the record will be made tem-
porarily invisible. For example, this procedure will select all parks where the admission fee is greater than ten
dollars.

select Fee>10

Only two parks in this database fit in this category. All the others are temporarily invisible.

You can construct as complex a formula as you like, combining different elements together with and and or.

select Park contains "Great" or Park contains "Grand"

In this case four records match the criteria.

Page 558 Panorama Formulas & Programming
A procedure can find out how many records are selected with the info("selected") function. The
info("records") function returns the total number of records in the database, both visible and invisible.
See “Database Information” on page 180 for more information on these functions.

When a procedure wants to make sure that all records are selected it should use the selectall statement.
Here is a simple procedure that checks to see if all records are selected, and if not, selects them.

if info("selected")<info("records")
selectall

endif

A procedure can use the selectadditional statement to add to the current selection. The selectwithin
statement can be used to select a subset of the currently selected subset. The selectreverse statement
swaps the visible and invisible records.

Handling Empty Selections

What if the select statement fails to select any records? Eeek! Panorama always requires that at least one
record be selected at all times, it never allows every record in a database to be invisible. If none of the records
in the database match the formula, Panorama does nothing. It’s as if the select never happened. Whatever
records were visible before remain visible after. This can be a problem if the following statements are expect-
ing a particular subset of the database to be selected.

Fortunately, Panorama normally handles this situation for you automatically so that your procedures will
work correctly. Panorama keeps track of the fact that there should be no records selected, and it will skip any
statement that modifies the database, including formulafill, sequence, propagate, unpropagate, etc.
(basically any statement that corresponds to an item in the Math menu will be skipped). Panorama will con-
tinue skipping these statements until it comes to a selectall statement or another select statement.

Panorama’s automatic statement skipping for empty subsets should work fine for most applications. As a
procedure programmer, however, you have the choice of overriding this statement skipping and program-
ming your own solution to the empty subset condition.

To test for an empty subset, use the info("empty") function. This example calculates the InvoiceAge field
only for invoices that have actually been shipped (the ShipDate field is not empty) and that are not paid yet.
An error message will appear if there are no outstanding invoices.

select sizeof(ShipDate)≠0 and Balance>0
if info("empty")

message "No outstanding invoices!"
else

field InvoiceAge
formulafill today()-ShipDate
selectall

endif

Remember, this logic is only necessary if you want to perform some special handling of empty subsets. Nor-
mally, Panorama will handle the empty subset just fine on its own by skipping the statements until the
selected subset changes.

Chapter 3:Programming Techniques Page 559
Selecting Duplicates

The selectduplicates statement may be used to locate and select duplicate entries in a database. The
statement has one parameter, a formula that determines what fields to check for duplicates. If this parameter
is empty text ("") then the current field is assumed. This statement must be combined with the sortup state-
ment. For example, to locate duplicate check number entries within a database you would use this procedure.

field "Check Number"
sortup
selectduplicates ""

If you supply a formula you can check for duplicates across multiple fields, or using only part of a field, or
both, as in the example below. This procedure will check for duplicates in the same zip code, with the same
last name and first initial. The formula uses a text funnel to extract the initial from the first name. See “Taking
Strings Apart (Text Funnels)” on page 69 if you are not familiar with text funnels.

field Zip
sortup
field "Last Name"
sortupwithin
field "First Name"
sortupwithin
selectduplicates Zip+«Last Name»+«First Name»[1,1]

The database must be sorted so that the duplicates you want to find will be consecutively located within the
database (see “Sorting” on page 551).

Live Clairvoyance™

Panorama V introduced a new search method — Live Clairvoyance™. Live Clairvoyance allows you to per-
form "live" searches on any Panorama database. The search results are updated dynamically as you type,
allowing you to "hone in" on just the information you are looking for. The search may include multiple fields
or even all fields in the database being searched. (If you've used the search box in iTunes you'll find Live
Clairvoyance familiar, although the underlying technology is not related.)

The easiest way to use Live Clairvoyance is with the wizard that comes with Panorama. This wizard per-
forms the neat trick of allowing you to use Live Clairvoyance without doing any programming, and in fact
without making any modification at all to your databases. However, for some applications you may want to
build Live Clairvoyance into your forms. This allows you to customize it exactly for your needs, and to inte-
grate it with other database operations.

To illustrate how Live Clairvoyance can be used we’ll use a database called My Address Book. You’ll find a
copy of this database in the Guided Tour submenu of the Wizard menu.

Page 560 Panorama Formulas & Programming
Here is the form that has been set up to use Live Clairvoyance.

This form has many elements, but the Live Clairvoyance portion consists of only three — a Text Editor Super-
Object to type in the search word or phrase, a List SuperObject to display the resulting list, and a procedure to
perform the actual database scan.

procedure is triggered every time a key is pressed

procedure
scans data-
base and
updates list

Text Editor SuperObject

List SuperObject

Chapter 3:Programming Techniques Page 561
Live Clairvoyance starts with typing in one or more characters to search for. This is done with a Text Editor
SuperObject. This illustrations shows the options that must be set for this object. (It also shows the formulas
for two Super Flash Art objects to display the background and cancel icon for the search area. See the Dialogs
& Icons wizard for more information on these images.)

The Data option is set to a variable named liveQuery. You can use any variable name you like, but you’ll need
to use the same name when you write the procedure that is triggered by this object.

In the Editing Options the Update Variable Every Key option must be enabled. This allows the procedure to
see what you have typed. Moving on to the procedure, in this case it is named .LiveQuery. You can use any
name you like as long as it is selected in this pop-up menu. You also want to check the Most Keys and
..Handler options.

Super Flash Art “##995”

Super Flash Art “##982”

Page 562 Panorama Formulas & Programming
The Live Clairvoyance output can be displayed with a Text Display SuperObject, a Matrix SuperObject, or a
List SuperObject, as in this case.

To set up this List object you’ll need to set up two dialogs. When first setting up the object you’ll need to set
the List Items (Formula) option to the name of a variable — in this case we picked queryResults but again
you can use any name you want. (In this example the Data option was also set to a variable named
querySelection, but this variable is not directly involved in the operation of Live Clairvoyance.)

When using a List Object you must also set the name of the object. In this case we set the name to Query List,
but again you can choose any name you want as long as you remember what the name is so that you can use
it in the procedure. It’s not necessary to set the object name when displaying the result in a Text Display or
Matrix Super Object.

Chapter 3:Programming Techniques Page 563
Once the form objects are set up there’s only one remaining piece - the procedure.

The procedure only has two statements. The first statement defines the two variables used, liveQuery for the
search text and queryResults for the output list.

The second statement, liveclairvoyance, does all the heavy lifting. This statement has eleven parameters.

LIVECLAIRVOYANCE INPUT,OUTPUTLIST,SEPARATOR,LISTOBJECT,DATABASE,QUERY,COMPARE,TEMPLATE,
TICKS,MAX,OPTIONS

The Input and OutputList parameter must be set to the variables defined in the Text Editor SuperObject and
List SuperObject. The ListObject parameter must be set to the name of the list object (if a list object is being
used, otherwise set this parameter to "".

The table below gives detailed explanations for each parameter.

Parameter Example Description

Input liveQuery This parameter must contain the data to be
searched for, usually in a variable.

OutputList queryResults
This parameter is the name of a variable that will
contain the final output array of matching
entries.

Separator ¶ The separator character for the output array.

ListObject "Query List"
If non-blank, this parameter must specify the
name of a List SuperObject to be updated each
time a search is performed.

Database "" Name of the database being searched, or blank
for the current database.

name of variable in Text Editor SuperObject

name of variable displayed in list

object name of list SuperObject (leave blank if
Text Display or Matrix object).

search formula

display formula

Page 564 Panorama Formulas & Programming
Query First+" "+Last

Formula used for searching. Each time a search
is triggered (usually by pressing a key) the state-
ment will scan the database and check to see if
the search text matches this formula. For exam-
ple, the example formula to the left would find
text located in the first and last name fields. This
formula must include all of the fields in the data-
base that you want to search (keep in mind,
however, that searching more fields may affect
performance in large databases).

Compare ""

This parameter specifies the comparison opera-
tor to use. The choices are contains, beginswith,
endswith, soundslike, match and = (you must
put quotes around each of these. If you leave this
empty it will default to contains, so in the exam-
ple database the search performed will be

First+" "+Last contains liveQuery

Template First+" "+Last+" ("+City+", "+State+")"

This parameter specifies how the fields in the
database will be displayed in the output list. In
this example the output will contain the first and
last names, followed by the city and state within
parentheses.

Ticks 20

This parameter specifies how often the display
will be updated during the search. The value is
specified in ticks (1 tick is equal to 1/60th of a
second). A value of 20 will cause the display to
update 3 times per second. Up to a point, lower
values will make the search “look” faster
because partial results appear sooner. If this
value is set to zero then no partial results will be
displayed, and nothing will appear until the
entire search is complete.

Max 0
This is the maximum number of elements that
can appear in the output array. Use 0 for no
limit.

Options " "

This parameter can contain one or more options
to modify the search. If it contains "sort" the out-
put array will be sorted alphabetically. If it con-
tains "selected" only selected records will be
searched, otherwise all records will be searched
(even if some are currently not selected).

Parameter Example Description

Chapter 3:Programming Techniques Page 565
Adding a Cancel Search Button

You may want to add a cancel search button. This is easy to do, as shown below.

The procedure simply clears the variables for editing the search text (in this example liveQuery) and display-
ing the search results (in this example queryResults), and then displays these variables with the
showvariables statement. The final line is only required if you are displaying the results with a List Super-
Object — it forces the list to display the new (blank) information.

Clicking on the Live Clairvoyance List Object

This form has been set up so that when you click on a line in the list the database jumps to the corresponding
record. This allows you to display and/or edit the data. When you click on a line in the Scrolling List Super-
Object it will place the value of the line you click on into a variable named querySelection and then trigger a
procedure named .ClickQuery (the pop-up menu for setting this up is not shown).

The procedure simply uses a find statement to locate the corresponding record. If you flip back a couple of
pages, you’ll see that the right side of the equals sign (First+" "+Last+" ("+City+", "+State+")")
is the same as the Template formula parameter of the LiveClairvoyance statement. As long as these two
formulas match this procedure will be able to find the record that matches the item you clicked on.

Page 566 Panorama Formulas & Programming
Summaries and Outlines

Summarizing a database is a three step process — group, calculate and outline (see “3-Step Summarizing” on
page 365 of the Panorama Handbook). The table below lists the statements that can be used to automate this
process. Each statement corresponds to a menu command or tool. In fact, the easiest way to write a procedure
to summarize the database is to simply record it (see “Creating a Procedure with the Recorder” on page 212
and “Adding a Recording to an Existing Procedure” on page 223).

Step Statement Ref Description

Group

groupup Page 5337

This statement groups the database by the current field (see
“Moving Left and Right” on page 515). The database is sorted in
ascending order (A’s to Z’s) and a summary recorded is added
at each place where the value in the field changes.

If the current field is a date field you must add by day, by week,
by month, by quarter or by year after the groupup statement.

groupdown Page 5336 This statement works exactly like groupup, but sorts the data-
base in descending order (Z’s to A’s).

group Page 5334 This statement groups the database without sorting it.

groupbycolor Page 5335 This statement groups the database by color.

Calculate

total Page 5865 This statement calculates totals and subtotals in the current field
(see “Moving Left and Right” on page 515).

average Page 5069 This statement calculates averages and subaverages in the cur-
rent field.

count Page 5131 This statement counts non-empty values in the current field.

minimum Page 5531 This statement calculates minimum values in the current field.

maximum Page 5524 This statement calculates maximum values in the current field.

Outline

outlinelevel Page 5586

This statement expands or collapses the database to show a spe-
cific level of detail. The statement has one parameter, which
may be "Data" to show all of the detail, or a summary level from
"1" to "7" to show a specific outline level.

removesummaries Page 5657

This statement removes some or all of the summary records in
the database. The statement has one parameter, which specifies
the level of summaries to be removed (from "1" to "7"). To make
sure that all summary records are removed use "7".

removedetail Page 5656

This statement removes the data records from the database,
leaving only the summary records. It can also remove lower
level summary records. The remaining summary records are
dropped in level (the lowest remaining summary records
become data records). The statement has one parameter, the
lowest level of summary record to be retained (from "1" to "7").
To remove just the data records and leave all summary records
use "1".

collapse Page 5115 This statement hides any detail records associated with the cur-
rent summary record.

expand Page 5203 This statement expands the next level of detail associated with
the current summary record.

expandall Page 5205 This statement expands all of the detail associated with the cur-
rent summary record, right down to the data records.

info("summary") Page 5428 This function returns the summary record of the current record,
from 0 (data record) to 7 (highest level summary).

info("expandable") Page 5374
This function checks to see if the current record is an expand-
able summary record. It returns false if this is a data record or if
this record is already expanded.

Chapter 3:Programming Techniques Page 567
Summary/Outline Examples

To summarize a database using a procedure you simply pick one or more statements from each of the three
steps — group, calculate and outline. This very basic procedure summaries a checkbook by category and dis-
plays just the totals for each category.

field Category /* STEP 1 - GROUP */
groupup
field Debit /* STEP 2 - CALCULATE */
total
outlinelevel "1" /* STEP 3 - OUTLINE */

The end result of running this procedure will look something like this.

To remove the summaries and get back to the original data we can use a simple one line procedure.

removesummaries "7"

Page 568 Panorama Formulas & Programming
This slightly more complex procedure will group the database by month and by category within each month.

field Date /* STEP 1 - GROUP */
groupup by month
field Category
groupup
field Debit /* STEP 2 - CALCULATE */
total
outlinelevel "1" /* STEP 3 - OUTLINE */

Here is the result of running this procedure.

If the last line of the procedure had been

outlinelevel "2"

Then the final result would have looked like this.

Chapter 3:Programming Techniques Page 569
As the procedure runs it flashes the window over and over again. To eliminate this you can use the noshow
and endnoshow statements (see “Suppressing Display of Text and Graphics” on page 307).

noshow
field Date /* STEP 1 - GROUP */
groupup by month
field Category
groupup
field Debit /* STEP 2 - CALCULATE */
total
outlinelevel "1" /* STEP 3 - OUTLINE */
showpage

endnoshow

This revised procedure will only re-display the window once, at the very end.

Calculating Grand Totals

There are two methods for calculating a grand total without subtotals. The first is to simply use the total
statement. This adds a single summary record at the bottom of the database and calculates the total. (You can
also use the average, count, minimum and maximum statements this way.)

field Debit
total

This procedure produces a single summary record with the total, like this.

Another method for calculating a grand total is to use the formulasum statement. This statement has two
parameters:

formulasum result,formula

The result parameter must be a field or variable. The final total will be stored in here.

The formula parameter is a formula that will be evaluated for every selected record. Starting from the top of
the database, Panorama will visit each record and calculate the result of the formula. As it goes it keeps a run-
ning total of the results. The final result is the sum of all of the individual results for each selected record.

Page 570 Panorama Formulas & Programming
The procedure below calculates the grand total for the checkbook database and displays it. The database
itself is not modified (no summary record is added).

local total
formulasum total,Debit
message pattern(total,"$#,.##")

The procedure will display the total like this.

By changing the formula you can calculate different sums. This procedure calculates the number of checks
that are over $500.

local count
formulasum count,?(Debit>500,1,0)
message "There are "+str(count)+" checks over $500."

Here is the result.

There’s no reason you can’t use formulasum more than once, like this.

local count,total
formulasum count,?(Debit>500,1,0)
formulasum total,?(Debit>500,Debit,0)
message "There are "+str(count)+

" checks over $500"+¶+"(the average amount is "+
pattern(total/count,"$#.,##")+")"

This procedure displays both the number of checks over $500 and the average value of these checks.

Chapter 3:Programming Techniques Page 571
Running Total

The runningtotal statement performs a special computation. Unlike the other summary calculations, this
statement modifies every data cell in the currently active field, not just the summary records. Like the total
statement, runningtotal starts at the top of the database and adds up each data cell as it moves down the
column. The runningtotal statement, however, replaces each data cell with the current total. The result is
a field which contains the cumulative total at each point in the database. Here is a procedure that uses
runningtotal to calculate a checkbook’s balance after each transaction.

noshow
field Balance
formulafill Credit-Debit
runningtotal
showcolumns Balance

endnoshow

To see what the result of this procedure looks like go to “Using Running Total to Balance a Checkbook” on
page 399 of the Panorama Handbook. By the way, this procedure uses the noshow, showcolumns and
endnoshow statements to make sure that the window only get’s redisplayed once. These statements are not
necessary for the procedure to operate, but do make it look a little bit cleaner as it runs (“Suppressing Display
of Text and Graphics” on page 307).

Running Difference

The runningdifference statement is the opposite of runningtotal. This statement fills each data cell
with the difference between the cell and the cell above it. Use the runningdifference statement when you
want to calculate the spread or interval between consecutive values, for example odometer readings or dates.
Here is a procedure that uses runningdifference to calculate gas mileage per gallon for each fill-up.

field Range
formulafill Odometer
runningdifference
field MPG
formulafill Range/Gallons

Go to “Using Running Difference to Calculate Gas Mileage” on page 403 of the Panorama Handbook to see
what the result of this procedure looks like.

Page 572 Panorama Formulas & Programming
Transforming Big Chunks of Data

The Math menu contains ten commands for transforming an entire field of data at once (see “Data Process-
ing” on page 433 of the Panorama Handbook). All of these statements operated on the current field, so you’ll
need to position the current field before you use them (see “Moving Left and Right” on page 515). In addition
these commands only operate on selected data, so you must make sure that the proper data is selected before
the statement is used (see “Selecting Information” on page 557).

The workhorse of this group is formulafill, which you will probably use more than all the others com-
bined.

Category Statement Ref Description

Fills

formulafill Page 5274

This statement fills all of the selected cells in the current field
with a formula. Panorama starts at the top of the database and
works its way down, calculating a the formula result over and
over again for each record. See “Starting with a Formula” on
page 439 of the Panorama Handbook.

fill Page 5243

This statement also fills all of the selected cells in the current
field with a formula. Unlike formulafill, however, this state-
ment calculates the formula only once, before it starts scanning
the database. If you are filling the field with a constant value
like "US Mail" this statement will be slightly faster than the for-
mulafill statement.

emptyfill Page 5192
This statement fills all empty cells in a field with a formula. Like
the fill statement, the formula is only calculated once before
Panorama begins scanning the database.

sequence Page 5728 This statement fills a numeric field with an increasing or
decreasing numeric sequence, for example 1, 2, 3 or 100, 99, 98.

change Page 5095

This statement scans the current field searching for a word or
phrase. It replaces every occurrence of the word or phrase it
finds with another word or phrase. See “Change (Find and
Replace)” on page 472 of the Panorama Handbook.

Propagates

propagate Page 5619
This statement copies the values in the current field into the
empty cells (if any) below. See “Propagate” on page 466 of the
Panorama Handbook.

unpropagate Page 5874

This statement is the opposite of propagate. It scans the data-
base from top to bottom. If it finds the same value two or more
times in a row it erases all but the topmost duplicate value. See
“UnPropagate” on page 469 of the Panorama Handbook.

propagateup Page 5620
This statement copies the values in the current field into the
empty cells (if any) above. See “Propagate” on page 466 of the
Panorama Handbook.

unpropagateup Page 5875

This statement is the opposite of unpropagate. It scans the data-
base from bottom to top. If it finds the same value two or more
times in a row it erases all but the bottommost duplicate value.
See “UnPropagate” on page 469 of the Panorama Handbook.

Appearance stylecolor Page 5810
This statement changes the style (bold, italic, etc.) and color
(red, green, blue, etc.) of one or more data cells. See “Data Style
and Color” on page 474 of the Panorama Handbook.

Chapter 3:Programming Techniques Page 573
Making Transformations Even Faster

Panorama’s transformation (formulafill, propagate, etc.) statements operate very quickly, even when
used with large databases. However, the noundo statement can make these operations even faster. This state-
ment disables Panorama’s undo feature. Since the transformation doesn’t need to worry about undo it can
run slightly faster. Here is an example of how to use noundo in a procedure with the formulafill state-
ment.

noundo
field Total
formulafill A+B+C+D
field Avg
formulafill (A+B+C+D)/4

The benefit of the noundo statement will not be noticeable on smaller databases, but becomes more pro-
nounced the larger the database gets.

Numeric Calculations with FormulaFill

On numeric fields the formulafill statement can be used to calculate totals, averages, discounts, percent-
ages, etc. The statement must be followed by a formula to calculate (see “Formulas” on page 19). To illustrate
this statement we’ll use this database.

This procedure will calculate all the values in the total and average fields.

field Total
formulafill A+B+C+D
field Avg
formulafill (A+B+C+D)/4

Here’s the finished result.

Page 574 Panorama Formulas & Programming
Suppressing Zero’s

If a new record with incomplete information is added to the database the empty values are treated as zeroes,
as shown here.

Sometimes you may want a zero result to be suppressed, leaving the cell blank. To do this use the
zeroblank(function, like this (see “Suppressing Zero’s” on page 574).

field Total
formulafill zeroblank(A+B+C+D)
field Avg
formulafill zeroblank((A+B+C+D)/4)

When this procedure is run any zero values are treated as blanks.

Chapter 3:Programming Techniques Page 575
Fill vs. FormulaFill

Like the formulafill statement, the fill statement also takes a formula and fills all the cells in the current
column with the result. However, there is a big difference. The formulafill statement calculates the for-
mula over and over again, producing a separate result for every record. The fill statement only calculates
the formula once, before it starts. It then fills all the cells with the same value. To illustrate we’ll use a modi-
fied version of the procedure from the last section.

field Total
fill zeroblank(A+B+C+D)
field Avg
fill zeroblank((A+B+C+D)/4)

The result of this procedure depends on what record is active. In this case every cell is filled with the total and
average for Camarillo.

If we click on Laguna Beach and run the procedure again we’ll get a different result.

Page 576 Panorama Formulas & Programming
The fill statement works fine for constant values, and is slightly faster than formulafill.

field Total
fill 0
field Avg
fill 0

This procedure fills the columns with zeroes.

Use the zeroblank(function if you want to fill a numeric field with zeroes (see “Suppressing Zero’s” on
page 574).

field Total
fill zeroblank(0)
field Avg
fill zeroblank(0)

The result is two completely empty columns.

By the way, you could get the same result with the formulafill statement. It would be slightly slower, but
the difference would not be measurable unless the database contained tens of thousands of records.

Chapter 3:Programming Techniques Page 577
Using FormulaFill to Transform Text

Using the formulafill statement you can combine multiple fields, split a field apart, re-arrange words or
phrases, and translate characters (for example, converting uppercase to lower case). To illustrate a few exam-
ples of this we’ll use this contacts database.

This example combines the first and last names into a single field.

field Name
formulafill First+" "+Last

When triggered the result of this procedure looks like this.

Page 578 Panorama Formulas & Programming
This example combines the first and last names in a different way.

field Name
formulafill upper(Last)+", "+First

When triggered the result of this procedure looks like this.

Use text funnels to split a field apart or to re-arrange words or phrases. Text funnels allow a formula to
extract part of a cell based on a fixed character position within the cell, or based on patterns and context
within the cell. See “Taking Strings Apart (Text Funnels)” on page 69 for a complete explanation of text fun-
nels. This procedure will fill the Name field with the first initial and the last name.

field Name
formulafill First[1,1]+". "+Last

Here is the result.

For more information on formulas that take apart and put together text see “Text Formulas” on page 67.

Chapter 3:Programming Techniques Page 579
Date Calculations with Formula Fill

Use the formulafill statement to calculate the difference between dates, or to adjust dates. See “HTML
Generating Functions” on page 105 for details on performing calculations with dates. A typical use for date
arithmetic is aging of an accounts receivable database.

To calculate the age of an invoice based on the current date, use the Formula Fill command with the formula
shown here:

field Age
formulafill today()-«Ship Date»

Here is the result of this procedure.

Page 580 Panorama Formulas & Programming
If you want to calculate ages rounded to the nearest 30 day interval use the procedure below instead.

field Age
formulafill round((today()-«Ship Date»)-15,30)

Here’s the result. The age of each invoice rounded to the nearest 30 days.

For more information on the today(and round(functions see “TODAY(” on page 5862 and “ROUND(” on
page 5682 of the Panorama Reference.

The SEQ Function

The seq(function is a special function for use with the formulafill statement. This function returns a
unique number for each selected record, starting with 1 at the top of the database. Use this function if you
need a unique record number in a formula. Here is an example that fills a column with the words One, Two,
Three, Four, etc.

field Place
formulafill pattern(seq(),"§")

When you press OK the field is filled in (see “Displaying Numbers as Words” on page 254 for more informa-
tion on this output pattern.)

Chapter 3:Programming Techniques Page 581
Here is another example that uses the seq(function to assign medals to the first three finishers in the race.

field Time
sortup
field Place
formulafill array("Gold/Silver/Bronze",seq(),"/")

The first three finishers are assigned gold, silver, and bronze medals, with all of the other records left blank.

See “Text Arrays” on page 93 for more information on the array(function used in this example.

Filling Empty Cells

The emptyfill statement is very similar to the fill statement (see “Fill vs. FormulaFill” on page 575).
However, the emptyfill statement will not destroy the data already in the field. In fact, emptyfill will
only fill cells that are completely empty. Here is a database where some of the name prefixes have been left
blank.

Page 582 Panorama Formulas & Programming
Using the emptyfill statement these empty cells can quickly be filled with Mr.

field T
emptyfill "Mr."

Here’s the finished result.

Chapter 3:Programming Techniques Page 583
Automatic Numbering

The sequence statement fills the current field with a numeric sequence (for example 1, 2, 3 or 100, 110, 120).
The sequence statement only works with numeric fields, you cannot sequence a text, date, or choice field.
The sequence statement has one parameter, a text value that contains two numeric values within it, the start-
ing value and the increment. Here’s an example that will number 1000, 1001, 1002, etc.

field «Reg #»
sequence "1000 1"

Here is the result of this procedure.

The sequence can start with any number and increase by any value, including non-integer values or negative
values. The table below shows four examples of starting and increment values.

If the database contains summary records, the sequence count will reset to one after each summary record. If
you want to sequence the current field without restarting at summary records, use the formulafill state-
ment with the formula seq(). “Summaries and Outlines” on page 365 of the Panorama Handbook for more
information on summary records. See “Making Transformations Even Faster” on page 573 for more informa-
tion on the formulafill statement.

"1 1" "5 5" "1 0.1" "100 -1"

1 5 1.0 100

2 10 1.1 99

3 15 1.2 98

4 20 1.3 97

5 25 1.4 96

Page 584 Panorama Formulas & Programming
Propagate and UnPropagate

Like emptyfill, the propagate statement fills all the empty cells in the current field. However, instead of
filling the empty cells with a fixed value, the propagate statement propagates filled data cells into the
empty data cells (if any) below them. The propagateup statement propagates filled data cells into the
empty data cells (if any) above them. See “Propagate” on page 466 of the Panorama Handbook for examples of
these features in action.

The unpropagate statement performs the exact inverse of the propagate statement. If the same value
appears in two or more consecutive data cells, the unpropagate statement empties the second and subse-
quent data cells. The unpropagateup statement performs the same operation upside down, leaving the last
of several duplicate values while clearing the others. See “UnPropagate” on page 469 of the Panorama Hand-
book for examples of these features in action.

Using UnPropagate to Eliminate Duplicates

The unpropagate statement can be used to eliminate duplicate values in a database. To see how to do this
manually see “Using UnPropagate to Eliminate Duplicates” on page 470 of the Panorama Handbook. This pro-
cedure will remove all of the duplicate entries in the current field.

sortup
unpropagate
select «» <> ""
removeunselected

Tip: One possible problem with this technique is that all cells that start out empty will be removed. For exam-
ple if you are removing duplicate company names but some records don’t contain company names, the
records without company names will be removed. To fix this problem, use the emptyfill statement to fill
the empty names with a unique value like n/a before you start, then use the select statement to select all
values not equal (≠ or <>) to n/a. Then perform the rest of the steps listed above. Here is a revised version of
the procedure that takes care of this problem.

emptyfill "!empty!"
select «» <> "!empty!"
sortup
unpropagate
select «» <> ""
removeunselected
formulafill ?(«» = "!empty!" , "" , «»

Warning: Keep in mind that all of these techniques will blindly remove all but the first duplicate entry. In this
example, there were two entries for Bayshore Typesetting. However, they were probably not really dupli-
cates, since one was in Washington, DC and the other in San Rafael, CA. There is no way for an automatic
technique like this to know which of these is really correct, or even if they are really duplicates at all. If you
want to manually examine duplicate records instead of blindly deleting them, use the selectduplicates
statement. See “Selecting Duplicates” on page 559 for more information on this statement.

Change (Find and Replace)

The change statement finds and replaces a word or phrase in the current field. For example, you can use the
change statement to replace every occurrence of Inc. to Incorporated, or every occurrence of Purchase Order
to P.O. In its most basic form the change statement has two parameters:

change <original text>,<new text>

Chapter 3:Programming Techniques Page 585
To illustrate this statement we’ll use this conference registration database. Notice that it contains the abbrevi-
ation Inc. in several places in the company name field.

To change every occurrence of Inc. to Incorporated use this procedure.

field «Company Name»
change "Inc.","Incorporated"

Running this procedure makes the changes.

The procedure can use the info("changecount") function to find out how many occurrences of the word
or phrase were changed (if any). Here is a modified version of the procedure that simply reports the number
of changes.

field «Company Name»
change "Inc.","Incorporated"
message "Inc. changed into Incorporated in "+str(info("changecount"))+ " places."

Page 586 Panorama Formulas & Programming
Running this revised procedure (on the original data) causes this message to appear.

By adding the caps option to the change statement you tell Panorama to adjust capitalization as it performs
the replacement. The caps option should NOT be in quotes, and must be placed after the other parameters,
separated by one or more spaces. For example:

field «Company Name»
change "Inc.","Incorporated" caps

When the caps option is added to the statement Panorama will automatically adjust the capitalization of the
new word or phrase as it is inserted into the database. If you leave this option off, capitalization is not
adjusted. In fact, if the caps option is off, only words or phrases that exactly match the capitalization typed
into the dialog will be replaced. The table below shows the result of replacing Inc. with Incorporated both
with and without the caps option.

By adding the words option to the change statement you tell Panorama to replace only entire words, not
sections of words. For example, if you ask Panorama to change is to was, it will also change this to thwas.
This is, of course, wrong. To prevent this, add the words option after the other parameters, like this.

field Body
change "is","was" words

You can combine the caps and the words options, like this.

field Body
change "is","was" caps words

The order of the caps and words options does not matter, as long as both are after the other parameters.

Original without caps option with caps option

 Inc. Incorporated Incorporated

INC. INC. INCORPORATED

inc. inc. incorporated

Chapter 3:Programming Techniques Page 587
Changing with the Replace(Function

The change statement is not the only way to replace words or phrases. You can also use the formulafill
statement and the replace(or replacemultiple(functions (see “String Modification Functions” on
page 80). This technique is especially handy if you need to replace several words or phrases at once. For
example, consider the addresses in the database below.

Suppose you wanted to expand the abbreviations in these addresses: St. to Street, Dr. to Drive, etc. You could
do this by using the change statement over and over again. Or you can simply use the replacemultiple(
function to replace all of the abbreviations in one fell swoop.

field «Street Address»
formulafill replacemultiple(«Street Address»,

"Rd./St./Dr./Ln./Ave.",
"Road/Street/Drive/Lane/Avenue","/")

Running this procedure replaces all of the abbreviations at once.

See “Using FormulaFill to Transform Text” on page 577 for more information on the formulafill state-
ment.

Page 588 Panorama Formulas & Programming
Data Style and Color

In addition to the data stored in each cell, Panorama also keeps track of the style (plain, bold, italic, etc.) and
(to a limited extent) color (red, green, etc.) of each cell (see “Data Style and Color” on page 474 of the Pan-
orama Handbook). In a procedure the stylecolor statement can be used to change the style or color of one or
more data cells. The statement has one parameter which controls what cells get changed (cell, record, field,
all), what color the cells should be changed to (black, red, green, blue, cyan, yellow, magenta) and what style
(bold, italic, underline, shadow).

If the parameter starts with the word cell, only the current cell will be changed. If the parameter starts with
the word record, all the cells in the current record will be changed. If the parameter starts with the word field,
all the selected cells in the current field will be changed. If the parameter starts with the word all, every cell in
every selected record will be changed.

Here are some examples of different parameter combinations.

stylecolor "field blue bold"
stylecolor "all black"
stylecolor "cell red italic"
stylecolor "record bold"

For example, a procedure can underline the current data cell. We’ll start with a plain data cell.

Here is a procedure that changes the style of this cell.

stylecolor "cell underline"

When you run this procedure the cell will be underlined.

Chapter 3:Programming Techniques Page 589
It’s easier to see the underline if you click on another cell.

Using a slightly modified procedure we can make an entire line bold.

stylecolor "record bold"

Run the procedure to make the record bold.

This procedure will make all phone numbers appear in italic blue, as shown here.

field Phone
stylecolor "field italic blue"

Here’s the result.

Notice that the italic blue has overridden the bold applied in the previous example.

For our final example we will go to a checkbook database and mark all insurance payments in green.

select Category="Insurance"
stylecolor "all green"
selectall

Page 590 Panorama Formulas & Programming
When you run this procedure all the insurance records will turn green, like this.

A cell retains its style and color until the data is modified. Any data modification (editing, formula fill, etc.)
will cause the cell to revert to plain black.

Every data cell that is not plain black takes up an extra byte of storage. For example a database with 10 fields
and 500 records will expand by 5K bytes if you change every data cell to blue or italic (or both).

Accessing Style and Color in a Formula

Panorama formulas can use the fieldstyle(function to access both the style and color of individual data
cells. When combined with the select statement, these functions allows you to select data based on its style
or color. (See “Selecting Information” on page 557 for more information on this command.)

The basic syntax for the fieldstyle(function is:

fieldstyle(fieldname)

This function returns the style and color of a data cell— bold, italic, etc. The fieldname parameter is a string,
so it should usually be in quotes—for example fieldstyle("Price")="bold". If the data cell has more
than one style or color, this function will return all of them, for example red bold italic. Use the contains
operator (see “String Testing Functions” on page 78) to check for a specific style or color, for example

select fieldstyle("Name") contains "italic"

To check if a cell is plain, use a formula like this

fieldstyle("Address")=""

For more information on this function see “FIELDSTYLE(” on page 5221 of the Panorama Reference.

Chapter 3:Programming Techniques Page 591
Processing/Transforming an Entire Array

The previous section described methods for transforming an entire field in a database (See “Transforming Big
Chunks of Data” on page 572). This section describes different methods for quickly processing all the ele-
ments in an array. If you are not already familiar with text arrays see “Text Arrays” on page 93.

“Filtering” an Array

The arrayfilter statement allows a procedure to use a formula to process each element of an array. The
statement scans the array you specify element by element, and uses the formula you supply to transform
each element. It then builds a new array using the transformed elements.

The arrayfilter statement has four parameters:

arrayfilter oldarray,newarray,separator,formula

The first parameter, oldarray, is the original array. This is usually a field or variable, but could be any formula
that produces text data.

The second parameter, newarray, is the new array. This must be a field or variable. If you don’t mind chang-
ing the original array, oldarray and newarray may be the same field or variable. If you want to keep the orig-
inal array, newarray should be different.

The third parameter is the separator character (see “Picking a Separator Character” on page 93).

The fourth parameter is the formula that will transform each array element. In addition to the usual functions
and operators there are two functions that have special meaning in this function. The import(function
returns the original data in the array element. The seq(function returns the array element number (1, 2, 3,
etc.).

Here is a procedure called .NumberArray that adds sequence numbers to an array. The procedure that calls
.NumberArray must pass an array as parameter 1 and a separator character as parameter 2.

local tempArray
tempArray=parameter(1)
arrayfilter tempArray,tempArray,parameter(2),"("+str(seq())+") "+import()
setparameter 2,tempArray

Here’s a procedure that uses .NumberArray to produce a numbered list of atomic elements.

local Elements
Elements=replace("Hydrogen;Helium;Lithium;Beryllium;Boron;"+

"Carbon;Nitrogen;Oxygen;Flourine;Neon;"+
…
"Mendelevium;Nobelium;Lawrencium",";",¶)

.call .NumberArray,Elements,¶

Page 592 Panorama Formulas & Programming
This table shows what the Elements array looks like before and after the .NumberArray procedure processes
the array.

Stripping Blank Elements From An Array

The arraystrip(function removes all blank elements from an array. This function has two parameters: the
original array, and the separator character for that array.

arraystrip(array,separator)

The arraystrip(function can be combined with the arrayfilter statement to produce a subset of an
array. This example creates a list of recent local phone numbers.

global RecentLocalPhone
arrayfilter RecentPhone,RecentLocalPhone,¶,

?(length(import())<10,import(),"")
RecentLocalPhone=arraystrip(RecentLocalPhone,¶)

The table below shows how this procedure works. The first column shows the original RecentPhone array,
with 6 phone numbers, 3 local, 3 in other area codes. The second column shows the RecentLocalPhone array
after the arrayfilter statement. Using the ?(function the formula has “blanked out” all the phone num-
bers with area codes (see “The ? Function” on page 130). The array elements are still there, but they are
empty. The third column shows the RecentLocalPhone array after the arraystrip(function. All the empty
array elements have been removed, so this array now has only 3 items.

Reversing the Order of an Array

The arrayreverse(function reverses the order of the elements of an array. For example, the formula:

arrayreverse("1;2;3;4",";")

Before After

Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon

…

…

Mendelevium
Nobelium
Lawrencium

(1) Hydrogen
(2) Helium
(3) Lithium
(4) Beryllium
(5) Boron
(6) Carbon
(7) Nitrogen
(8) Oxygen
(9) Fluorine
(10) Neon

…

…

(101) Mendelevium
(102) Nobelium
(103) Lawrencium

Original after ArrayFilter after ArrayStrip(

784-3490
(213) 454-3309
(408) 339-7792
940-2234
(303) 452-2284
878-2256

784-3490

940-2234

878-2256

784-3490
940-2234
878-2256

Chapter 3:Programming Techniques Page 593
will produce the array 4;3;2;1.

The formula below could be used with an auto-wrap or text display object to display all the checks written to
a company, starting with the most recent check (assuming the Checkbook database is sorted by date).

arrayreverse(lookupall("Checkbook",«Pay To»,Company,«Check Num»,¶),¶)

Using Regular Text Functions with Arrays

Don’t forget that you can use regular text processing techniques on arrays (see “Text Formulas” on page 67).
After all, an array is simply a chunk of text that happens to have separator characters in it. For example, to
convert our entire atomic element array to upper case in one fell swoop, just use this assignment:

Elements=upper(Elements)

The assignment below will change all the stainless steel parts in the PartsList array to cheap plastic.

PartsList=replace(PartsList,"Stainless Steel","Cheap Plastic")

Of course no Panorama customer will ever need a formula like that!

Sorting an Array

Sorting an array in a procedure is easy. The arraysort statement does all the work. This statement has three
parameters:

arraysort oldarray,newarray,separator

The first parameter, oldarray, is the original array. This is usually a field or variable, but could be any formula
that produces text data.

The second parameter, newarray, is the new array. This must be a field or variable. If you don’t mind chang-
ing the original array, oldarray and newarray may be the same field or variable. If you want to keep the orig-
inal array, newarray should be different.

The third parameter is the separator character.

The arraysort statement always sorts the array in ascending order (A’s first, Z’s last). Upper case, lower
case, and international letters will be sorted correctly (i.e. a comes before B, which may seem obvious but is
not the normal ASCII order).

The example below builds a fileglobal variable named FormList that contains a list of the forms in the current
database. The list is carriage return delimited and alphabetized. You could use this list with a Pop-Up Menu
or a List SuperObject™.

fileglobal FormList
FormList=dbinfo("forms","")
arraysort FormList,FormList,¶

Removing Duplicate Items from an Array

The arraydeduplicate statement also sorts an array. After it sorts the array it eliminates all the elements
that are duplicated. For example, if an array contains San Francisco three times, this statement will eliminate
two and leave only one. The parameters for the arraydeduplicate statement are the same as for the
arraysort statement.

arraydeduplicate oldarray,newarray,separator

Page 594 Panorama Formulas & Programming
The example below creates a fileglobal variable named Companies, then fills it with a sorted list that contains
all the companies in California listed in alphabetical order:

fileglobal Companies
Companies=lookupall("Invoices",State,"CA",Company,¶)
arraydeduplicate Companies,Companies,¶

Each company will be listed only once, no matter how many times the company appears in the Invoices data-
base.

(Note: There is no automatic way to eliminate the duplicate values in an array without also sorting the array.)

Building an Array from a Database

The previous example showed how an array can be built from the data in a database using the lookupall(
function. An even more powerful technique is the arraybuild statement. This statement scans a database
and, using a formula you supply, extracts information from each record to build an array. The statement has
four parameters:

arraybuild array,separator,database,formula

The first parameter, array, is the new array you want to build. This must be a field or variable.

The second parameter is the separator character (see “Picking a Separator Character” on page 93).

The third parameter, database, is the name of the database that contains the information that will be scanned
to build the array. This database must be currently open at the time the arraybuild statement is used. If
you want to use the current database use the function info("databasename") or simply use "".

The fourth parameter, formula, is the heart of this statement. As the arraybuild statement scans the data-
base record by record, it uses this formula to extract data from each record and add it to the array. The for-
mula can also be used to select which records appear in the array. If the formula produces empty text for a
particular record, that record will not be included in the array. The formula can reference any field in the
database being scanned.

The example below produces a list of past due invoices.

fileglobal PastDueAccounts
arraybuild PastDueAccounts,¶,"Invoices",

?(Balance>0 and today()-InvoiceDate>30,
pattern(InvoiceNumber,#####)+" ("+Company+")","")

This procedure will produce an array that will look something like this:

00436 (Acme Widgets)
02445 (Optimal Resolution Trust)
03689 (Zippy Car Wash)

This array could be displayed on a report, or it could be used in a pop-up menu or scrolling list.

Warning: One thing to be careful about when building arrays with the arraybuild statement is the size
(number of characters) of the array you are building. The array must fit in Panorama’s scratch memory allo-
cation.

Note: The arraybuild statement scans every record in the database, whether it is selected or not. If you
would only like to scan selected records, use the arrayselectedbuild statement. This statement is identi-
cal to the arraybuild statement except for the fact that it only scans selected records. If you know that all
the records you want to scan are selected, this statement may be much faster than the regular arraybuild
statement.

Chapter 3:Programming Techniques Page 595
Appending an Array to a Database

An array in a variable can be appended to a database almost as if it were a text file on the disk. The array
must be carriage return delimited, and if there is more than one field, the fields must be tab delimited. To
append a variable to the current database, put +@ in front of the variable name like this:

openfile "+@Array"

To replace the entire current database with the array, put &@ in front of the variable name like this:

openfile "&@Array"

Here is an example that transfers houses from a Listings database to a Sales database.

local TransferArray
arraybuild TransferArray,¶,"Listings",

?(Escrow≠"Closed","",
Date+¬+Address+¬+City+¬+State+¬+Zip+¬+str(SoldPrice))

select Escrow≠"Closed"
removeunselected
open "Sales"
open "+@TransferArray"

The arraybuild statement copies all the recently sold listings into the TransferArray variable. The ¬ charac-
ter (see “Special Characters” on page 57) separates each field with the required tab. Once the listings are
safely copied into the array, they are deleted from the Listings database. The first open statement makes sure
that the Sales database is open and on top. This database has six fields, SoldDate, Address, City, State, and
SoldPrice, in that order. The formula in the arraybuild statement has been set up to create the array with
the fields in that order. The final statement of the procedure appends the data in TransferArray to the end of
the Sales database.

If you are transferring information between two databases with identical fields the exportline(function
can come in handy. This function outputs all the fields in the current record with tabs in between. The exam-
ple below appends all of the invoices in the database Paul's Invoices to the current database.

local TransferArray
arraybuild TransferArray,¶,"Paul's Invoices",exportline()
openfile "+@TransferArray"

This example transferred all of the information across, but you could use the ?(function to transfer just a
subset.

Copying Between Multiple Variables and an Array

Panorama has the ability to combine multiple variables into a single array, or to take an array and split it into
many separate variables. This capability can be useful for editing arrays (each array element can be edited in
a separate variable) and for saving a collection of variables in a single disk file (for example to store prefer-
ences).

The savevariables statement takes a list of variables and combines the values of all the variables into a
single array. The statement has three parameters:

savevariables VariableList,CombinedArray,Separator

The VariableList parameter is an array containing the names of the variables to be included in the result. Each
item in the array must be separated from the next by the Separator character (see “Picking a Separator Char-
acter” on page 93).

Page 596 Panorama Formulas & Programming
The CombinedArray parameter is a field or variable name. The statement will build the final array of values
in this field or variable, using the Separator character to divide each item. Any numbers will be converted to
text as the array built. The example below saves all of the fileglobal variables for the current file into a
disk file.

local fileExtraData
savevariables info("filevariables"),fileExtraData,¶
filesave "",info("databasename")+" Variables","",fileExtraData

The following example is similar but it saves both the variable name and the data in the format vari-
able=value. The variables will be listed in alphabetical order.

local varNames,varData
varNames=info("filevariables")
arraysort varNames,varNames,¶
savevariables info("filevariables"),varData,¶
arrayfilter varData,varData,¶,array(info("filevariables"),seq(),¶)+"="+import()
filesave "",info("databasename")+" Variables","",varData

The resulting file will be named something like Contact Variables (the exact name depends on the database
name) and will look something like this:

ActiveForm=Contacts
LocalAreaCode=714
SearchText=Chicago

The loadvariables statement takes an array of values and splits the values into individual variables. If the
variables don’t exist, the statement will create them. The loadvariables statement has three parameters:

loadvariables VariableList,VariableValues,Separator

The VariableList parameter is an array containing the names of the variables to be loaded. Each item in the
array must be separated from the next by the Separator character (see “Picking a Separator Character” on
page 93).

The VariableValues parameter is an array containing the values of the variables. This array must be in the
same order as the VariableList parameter. Each value in the array must be separated from the next by the
Separator character.

Here is an example that loads three variables from an array.

loadvariables "Gold,Silver,Bronze","Johnson,Smith,Fetzl",","

This example is exactly the same as:

Gold="Johnson"
Silver="Smith"
Bronze="Fetzl"

If a variable already contains a numeric value, the loadvariables statement keeps it numeric if possible (if
all the characters in the new value are numeric). Here is an example where three numbers are loaded into
variables.

fileglobal Red,Green,Blue
Red=0 Green=0 Blue=0
loadvariables "Red,Green,Blue","24,58,199",","

Chapter 3:Programming Techniques Page 597
This example is exactly the same as the procedure below. Notice that there are no quotes around the numbers.

fileglobal Red,Green,Blue
Red=24
Green=58
Blue=199

So far the examples aren’t too exciting. Here is an example that is a bit more interesting. Suppose you had an
array called ContactInfo that contained name/value pairs like this:

Name:Johnson
Email:ajohnson@worldwide.com
url:www.worldwide.com

The example below can take this array and separate it into three variables called ContactName, ContactE-
mail, and Contacturl.

global ContactInfo
local contactVariables,contactValues
arrayfilter ContactInfo,contactVariables,¶,"Contact"+array(import(),1,":")
arrayfilter ContactInfo,contactValues,¶,array(import(),2,":")
loadvariables contactVariables,contactValues,¶

The procedure starts by splitting the ContactInfo array into two separate arrays for variable names and val-
ues, then creates and loads the variables with the values.

The loadvariables statement will automatically create fileglobal variables if they do not exist. If you want
to create some other kind of variable you can use one of the four statements listed below. (The
loadfileglobalvariables statement is actually exactly the same as the loadvariables statement, but
is included for completeness.)

LoadGlobalVariables VariableList,VariableValues,Separator

LoadFileGlobalVariables VariableList,VariableValues,Separator

LoadWindowVariables VariableList,VariableValues,Separator

LoadLocalVariables VariableList,VariableValues,Separator

If the variables have already been created then these four statements all work exactly the same.

Editing an Array using Separate Variables

The loadvariables and savevariables statements can be used to help edit an array as individual com-
ponents. Each component has its own SuperObject for text editing, but the results are all combined into a sin-
gle variable.

Start by defining the variable names for each individual line item component. You’ll also need to build a form
with SuperObjects to edit each of these variables.

fileglobal LineItems
LineItems=replace("Qty1/Desc1/Price1/Qty2/Desc2/Price2","/",¶)

When you open the form to edit the array, this procedure will fill the separate variables with data from the
LineItemData array (which could be a field or a variable).

loadvariables LineItems,LineItemData,¶

When a component is modified you can rebuild the combined array with this procedure.

savevariables LineItems,LineItemData,¶

Page 598 Panorama Formulas & Programming
Processing/Transforming Binary Data

By now probably everyone who has ever used a computer for more than a week has heard that at their core,
computers work with 1’s and 0’s, on and off, true and false. This is called binary data, because there are only
two options. Fortunately, users don’t ever have to deal with raw binary data. The programmers take the 1’s
and 0’s and give them structure to create text, numbers, pictures, and other complex elements.

It’s not much fun, and it’s rarely necessary, but Panorama does allow a procedure programmer to work with
raw, unstructured, binary data: 1’s and 0’s. When you work with raw binary data it will always be in a text
field or variable. Panorama normally interprets text as a series of characters, as described earlier in this chap-
ter. The binary functions, however, do not interpret the binary data as characters. Instead, they allow you to
directly access and manipulate the 1’s and 0’s. Panorama uses the text data type to hold raw binary data
because text may be of any length and places no restrictions on the binary information that is placed in it.
(However, the text may look very strange if you display it in the data sheet or on a form; more on this later.)

Bits

The fundamental unit of computer information is a bit. A bit contains a single 1 or 0. However, a bit is too
small to be of much use by itself, so usually several bits are grouped together into a collection called a byte,
word, or longword.

Bytes

A byte is a collection of 8 bits. There are 256 possible combinations of 1’s and 0’s within a byte (28). These 256
possible combinations could represent characters, they could represent numbers from 0-255 or they could
represent 256 of anything else. The byte(function takes a number from 0 to 255 and converts it into the corre-
sponding pattern of 8 bits.

Function Reference
Page Description

bit(number) This function converts a bit number (1 to 32) into a number (1, 2, 4, 8, 16,
etc.)

getbit(number,bitnumber)
This function returns a true or false value by testing a bit. The bit number
may be from 1 to 32. If the bit is set, the value will be true, if it is not set,
the value will be false.

onescomplement(number) This function returns the one's complement of a 32 bit number (all bits are
reversed)

setbit(number,bitnumber,truefalse)
This function sets one bit within a number, without disturbing any of the
other bits. The bit number may be from 1 to 32. The bit will be set based
on the true/false parameter - set if true, cleared if false.

Function Reference
Page Description

byte(number) Page 5079

This function converts a number into a single byte of binary data. (Note:
the byte(function is basically the same as the chr(function.) The number
parameter must be between 0 and 255. This function converts the number
into a single byte of binary data (8 bits).

binaryvalue(data) Page 5075

This function converts binary data (a byte, word, or longword) into a
number. Data is the binary value that you want to convert into a number.
This value must be a byte, a word (2 bytes) or a longword (4 bytes). The
result is an integer.

bytearray(data,index)
This function extracts a value from an array of bytes. This is not a Pan-
orama style delimited array but a C style array of 8 bit values. The result
is an integer.

Chapter 3:Programming Techniques Page 599
Words

A word is a collection of 16 bits (or 2 bytes). There are 65,536 possible combinations of 1’s and 0’s within a
word (216). These 65,536 possible combinations could represent numbers from 0-65,535 or they could repre-
sent 65,536 of anything else. The word(function takes a number from 0 to 65,535 and converts it into the cor-
responding pattern of 16 bits.

Long Words

A longword is a collection of 32 bits (or 4 bytes). There are over 4 billion possible combinations of 1’s and 0’s
within a longword (232). The longword(function takes a number from 0 to 4,294,967,295 and converts it into
the corresponding pattern of 32 bits.

Creating Binary Values

Binary values are created with the byte(, word(and longword(functions. The example below builds a
text data value from a longword, a word, a word and a byte. The resulting text item has a length of 9
(4+2+2+1).

global rawData
rawData=longword(96345)+

word(1249)+
word(9004)+
byte(80)

chararray(data,index)
This function extracts a characters from an array of characters. This is not
a Panorama style delimited array but a C style array of ASCII characters.
The result is an single characters.

Function Reference
Page Description

word(number) Page 5906

This function converts a number into a single word (2 bytes) of binary
data. Number is the value that you want to convert into a binary number.
This value must be between 0 and 65,535. This function converts the
number into a two bytes of binary data (16 bits).

binaryvalue(data) Page 5075

This function converts binary data (a byte, word, or longword) into a
number. Data is the binary value that you want to convert into a number.
This value must be a byte, a word (2 bytes) or a longword (4 bytes). The
result is an integer.

wordarray(data,index)
This function extracts a value from an array of words. This is not a Pan-
orama style delimited array but a C style array of 16 bit values. The result
is an integer.

Function Reference
Page Description

longword(number) Page 5499

This function converts a number into a single longword (4 bytes) of
binary data. Number is the value that you want to convert into a binary
number. This value must be an integer. This function converts the num-
ber into a four bytes of binary data (32 bits).

binaryvalue(data) Page 5075

This function converts binary data (a byte, word, or longword) into a
number. Data is the binary value that you want to convert into a number.
This value must be a byte, a word (2 bytes) or a longword (4 bytes). The
result is an integer.

longwordarray(data,index)
This function extracts a value from an array of longwords. This is not a
Panorama style delimited array but a C style array of 32 bit values. The
result is an integer.

Function Reference
Page Description

Page 600 Panorama Formulas & Programming
Numeric values can be recovered from a text data item with the binaryvalue(function. The text input
into this function must have a length of 1, 2, or 4. You can use text funnels to control the position and length
of the data being converted. The example below will extract four values from a text item that is at least 9
bytes long.

global rawData
local myLong,myFirstWord,mySecondWord,myByte
myLong= binaryvalue(rawData[1;4])
myFirstWord= binaryvalue(rawData[5;2])
myFirstWord= binaryvalue(rawData[7;2])
myByte= binaryvalue(rawData[9;1])

If rawData contains the information stored in it from the previous example, the myLong variable will contain
96345, myFirstWord will be 1249, mySecondWord will be 9004, and myByte will be 80.

One Dimensional Arrays of Binary Values

Programmers familiar with languages like C and Pascal will be familiar with the concept of an array as a
sequence of binary values, for example a sequence of bytes, words, longwords, or some other length of
binary data. This is quite different from Panorama’s usual concept of arrays as variable length items sepa-
rated by a special character. Panorama has several functions for extracting a specific element from an array of
binary values. The function you pick depends on the type of binary value in the array.

Panorama also has three statements designed for rapidly filtering and/or processing arrays of binary data —
characterfilter, chunkfilter, and textfilter.

The CharacterFilter Statement

This statement scans text on a character by character basis. As it scans the input text, it builds a new text field
or variable. The contents of the new text is based on the result of the formula which is applied to each charac-
ter of the original text. The formula can use the import() function to retrieve the original character, or the
seq() function to retrieve the position of the character within the text.

The CharacterFilter statement has three parameters: OriginalText,NewText and Formula.

The OriginalText parameter is the text you want to scan. This may be a field, a variable, or any formula that
calculates a text value.

The NewText parameter is the name of a field or variable for holding the output text. If this is a field, it must
be a text field.

Function Reference
Page Description

bytearray(data,index)
This function extracts a value from an array of bytes. This is not a Pan-
orama style delimited array but a C style array of 8 bit values. The result
is an integer.

chararray(data,index)
This function extracts a characters from an array of characters. This is not
a Panorama style delimited array but a C style array of ASCII characters.
The result is an single characters.

chunkarray(data,index,
chunklength)

This function extracts a binary chunk from an array of chunks. This is not
a Panorama style delimited array but a C style array of binary chunks.
The result is a binary value (text).

longwordarray(data,index)
This function extracts a value from an array of longwords. This is not a
Panorama style delimited array but a C style array of 32 bit values. The
result is an integer.

wordarray(data,index)
This function extracts a value from an array of words. This is not a Pan-
orama style delimited array but a C style array of 16 bit values. The result
is an integer.

Chapter 3:Programming Techniques Page 601
The Formula parameter is a formula that produces a text result. This formula will be calculated for each char-
acter in the OriginalText parameter. The result will be appended to the NewText field or variable. The result
of this formula isn't limited to a single character, but may be several characters or zero characters (""). Within
the formula you can use the import() function to retrieve the original character, or the seq() function to
retrieve the position of the character within the text.

Let's review some examples that illustrate the operation of the CharacterFilter statement. This example con-
verts a string of characters into a comma separated array. For example, if A is abcd, then B will become
a,b,c,d, .

characterfilter A,B,import()+","

This example reverses the characters in a string of text. For example, if A is abcd, then B will become dcba .

characterfilter A,B,A[-seq();1]

This example converts text into a set of hex digits. For example, if A is abcd, then B will become 61 62 63 64 .

characterfilter A,B,radixstr("hex",asc(import()))[-2,-1]+" "

The ChunkFilter Statement

This statement is almost the same as CharacterFilter, but instead of single characters it allows you to process
fixed length chunks. Useful for base64 encryption, hex/ascii conversion, cryptography, etc. As it scans the
input text, it builds a new text field or variable. The contents of the new text is based on the result of the for-
mula which is applied to each character of the original text. The formula can use the import() function to
retrieve the original chunks of characters, or the seq() function to retrieve the chunk number (first chunk is 1,
next is 2, etc..

The ChunkFilter statement has four parameters: ChunkSize, OriginalText,NewText and Formula.

The ChunkSize parameter is the size of the chunks you want to use. This may be a field, a variable, or any
formula that calculates a numeric (integer) value, for example 2, 3, 5 or 10.

The OriginalText parameter is the text you want to scan. This may be a field, a variable, or any formula that
calculates a text value.

The NewText parameter is the name of a field or variable for holding the output text. If this is a field, it must
be a text field.

The Formula parameter is a formula that produces a text result. This formula will be calculated for each char-
acter in the OriginalText parameter. The result will be appended to the NewText field or variable. The result
of this formula isn't limited to the same size as the original chunk, but may be several characters or zero char-
acters (""). Within the formula you can use the import() function to retrieve the original character, or the
seq() function to retrieve the position of the character within the text.

To see examples of the chunkfilter statement in a real application, check out the BASESIXTYFOURENCODE
and BASESIXTYFOURDECODE procedures in the _InternetLib custom statement library.

The TextFilter Statement

This statement scans text and creates new text based on the original text. Unlike the CharacterFilter
statement, the TextFilter statement doesn't necessarily scan the text character by character. Instead, it
allows you to skip over a sequence of characters based on a formula before it starts scanning character by
character again.

The TextFilter statement starts with the first character in the original text. It then calculates the result of a
formula based on this location. This formula must start with the longword(function. The number in this
function determines the number of characters to skip before continuing the scan. If this skip value is zero, the
TextFilter statement stops scanning. If there is any text after the longword(value, that text is appended
to the output text.

Page 602 Panorama Formulas & Programming
The TextFilter statement has three parameters: OriginalText,NewText and Formula.

The OriginalText parameter is the text you want to scan. This may be a field, a variable, or any formula that
calculates a text value.

The NewText parameter is the name of a field or variable for holding the output text. If this is a field, it must
be a text field.

The Formula parameter is a formula that produces a text result. The first four bytes of the result from this for-
mula is treated as a binary value that tells Panorama how many characters to skip before resuming scanning
(you can produce this binary value with the longword(function). Any additional text after this binary value
will be appended to the NewText field or variable. Within the formula you can use the import() function to
retrieve the original text starting from the current location, or the seq() function to retrieve the position of
the character within the text.

Let's review an example that illustrate the operation of the TextFilter statement. This example take some text
in A and then place in B a space separated array containing the word lengths. For example, if A contains

How long is each word in this sentence?

Then the result in B will be

3 4 2 4 4 2 4 9

Here is the code that performs this job:

textfilter A,B,
longword(1+length(array(import(),1," ")))+
str(length(array(import(),1," ")))+","

There's just one problem with this simple example - there's an even simpler way to do this that doesn't use
the TextFilter statement:

arrayfilter A,B," ",str(length(import()))

To see examples of the chunkfilter statement in a real application, check out the FINDALLINTEXT, HARD-
WRAP and HEXDUMP procedures in the _TextLib custom statement library.

Data Dictionaries

A conventional dictionary (Webster’s, for example) contains a list of entries. Each entry comes as a pair — the
word itself, and the definition of the word.

Panorama supports a data structure called a data dictionary. Like a conventional dictionary, a data dictionary
contains a list of entries, and each entry comes as a pair — the entry key (which identifies the entry) and the
entry value (some data associated with this entry). Sometimes these entries are referred to as key/value pairs.
If you know the key, you can find out what the value is. A data dictionary allows you to combine any number
of these key/value pairs into a single structure that can be stored in a single variable, a single field or a single
procedure parameter. For example, in a database you could use a data dictionary to store additional, seldom
used data that you don’t want to devote an entire field to, or to store information that you didn’t anticipate
when you created the database. When a procedure (or custom statement) has a large and variable number of
parameters, you can combine these into a data dictionary that can be passed back and forth easily (many of
Panorama’s Internet access statements work this way). Data dictionaries are also an excellent way to store
preferences, and they are used that way by many of Panorama’s wizards (for example the Hot Key wizard
and any application that works with Generic fields (see ““Generic” Fields” on page 230 of the Panorama
Handbook).)

Chapter 3:Programming Techniques Page 603
Key/Value Pairs

Each entry in a dictionary consists of a key/value pair. The key identifies the pair, and must be unique. In
other words in a single dictionary you cannot have two pairs with the same key — every pair must have its
own unique name. The key can contain any text character you want, including spaces and punctuation. (The
only characters that are not allowed are chr(254) and chr(255).)

The value is simply a text value that is associated with they key. The value may contain any character except
for chr(254) and chr(255). Here are some examples of typical key/value pairs.

These examples are for illustration purposes only — you can use just about anything you need as a key or
value.

Storing a Key/Value Pair in a Dictionary

To store a key/value pair in a dictionary use the setdictionaryvalue statement.

setdictionaryvalue dictionary,key,value

The dictionary parameter tells the statement where the dictionary is located. This must be the name of a field
or variable. If a variable, the variable must be defined beforehand with the local, fileglobal, or global
statements (see “Variables” on page 247). The variable must also have a defined value, typically "" for a brand
new dictionary.

The key parameter is the identifier for this key/value pair. The value parameter is the actual data that will be
stored. If this key already exists within the dictionary the original value will be replaced by the new value,
otherwise a new key/value pair will be added to the dictionary.

To illustrate, here is an example that creates a new dictionary variable name ColorPalette, then fills it with
three key/value pairs.

local ColorPalette
ColorPalette=""
setdictionaryvalue ColorPalette,"TextColor","red"
setdictionaryvalue ColorPalette,"ButtonColor","blue"
setdictionaryvalue ColorPalette,"Background","white"

Now the ColorPalette variable contains all three key/value pairs — TextColor/red, ButtonColor/blue and
Background/white.

You can change the value of each key/value pair individually at any time. This line of code will change the
ButtonColor to green.

setdictionaryvalue ColorPalette,"ButtonColor","green"

If necessary, you can also delete individual key/value pairs with the deletedictionaryvalue statement.

deletedictionaryvalue ColorPalette,"ButtonColor"

This statement completely removes the ButtonColor key/value pair from the ColorPalette dictionary.

Key Value

Color Red

Area Code 951

Greeting Dear

Home Page www.myhomepage.com

Page 604 Panorama Formulas & Programming
Accessing Dictionary Entries

Once values have been stored in a dictionary they can be retrieved with the getdictionaryvalue(func-
tion, like this.

theColor=getdictionaryvalue(Palette,"TextColor")

The first parameter is the name of the field or variable that contains the dictionary, while the second parame-
ter is the key value of the item you want to retrieve.

If you are not sure if a dictionary contains a particular key/value pair you can use the
dictionaryvalueexists(function to find out. This example checks to see if a button color has been
defined, and if so calls a subroutine to change the color of all buttons.

if dictionaryvalueexsts(Palette,"ButtonColor")
call ChangeAllButtonColor,getdictionaryvalue(Palette,"ButtonColor")

endif

For a complete list of all of the entries in the dictionary use the listdictionarynames(function. This
function has one parameter, the name of the field or variable that contains the dictionary.

message listdictionarynames(ColorPalette)

The output is a text array that lists the keys stored in the dictionary, with each item separated by a carriage
return.

The dumpdictionary statement outputs a carriage return delimited array that contains both the keys and
the values, separated by an equals sign.

local ColorPalette,PaletteDump
dumpdictionary ColorPalette,PaletteDump
message PaletteDump

The output displayed by the message statement will look something like this:

Chapter 3:Programming Techniques Page 605
The dumpdictionaryquoted statement is similar, but each key is surrounded by chevrons and each value
is surrounded by quotes.

local ColorPalette,PaletteDump
dumpdictionaryquoted ColorPalette,PaletteDump
message PaletteDump

Here’s the output:

If you have fields or variables with the same names as the keys in your database, you can use this output with
the execute statement to initialize all of the fields or variables at once.

local ColorPalette,PaletteDump
dumpdictionaryquoted ColorPalette,PaletteDump
execute PaletteDump

Another Technique For Initializing a Dictionary

Earlier we showed you a method for setting up and initializing a dictionary.

local ColorPalette
ColorPalette=""
setdictionaryvalue ColorPalette,"TextColor","red"
setdictionaryvalue ColorPalette,"ButtonColor","blue"
setdictionaryvalue ColorPalette,"Background","white"

Panorama also includes a special statement for this task, initializedictionary. Here is the same task
performed with this statement.

local ColorPalette
initializedictionary ColorPalette,

"TextColor","red",
"ButtonColor","blue",
"Background","white"

You can include as many key/value pairs as you need. Using this statement instead of separate setdictionar-
yvalue statements has two advantages — it takes less typing, and it runs faster. Of course you can always
modify individual key/value pairs later with the setdictionaryvalue statement.

Additional Methods for Modifying Dictionary Entries

The appenddictionaryvalue statement appends additional text to the value portion of an existing key/
value pair. For example, the statement below will add 75% to whatever the ButtonColor is, so Blue becomes
Blue 75%. (The third parameter is a separator character, which in this case is a space.)

appenddictionaryvalue ColorPalette,"ButtonColor"," ","75%"

The changedictionaryname statement changes the key while leaving the value the same.

changedictionaryname dictionary,oldkey,newkey

Page 606 Panorama Formulas & Programming
For example, you could change the Background key to BgColor.

changedictionaryname ColorPalete,"Background","BgColor"

The value (in this case white) will remain the same.

Looking Up a Dictionary Key Given Its Value

In some cases it may be possible to look up a key if all you know is the value. This is the reverse of the normal
operation, which is to look up the value given the key. The getdictionarykey statement has three param-
eters:

getdictionarykey dictionary,value,key

The dictionary parameter is of course the name of the field or variable that contains the dictionary. The value
parameter is the value you are looking for. If this value is not unique (if more than one key/value pair have
the same value) then it is unpredictable what key will be returned, so you should only use this statement if
you know that the value is unique. The key parameter is the name of a field or variable that will be filled with
the key name (if any matching value is found, otherwise it will be filled with "").

The example below will find out what key has been set to the value white. If this dictionary is set up as it was
in the previous examples, the item variable will be filled with the value Background. (This isn’t really a great
example, since more than one item could be assigned the color white. If you use this statement, be very care-
ful that you know that there are no duplicate values in the dictionary.)

local item
getdictionararykey ColorPalette,"white",item

One other point to keep in mind about this statement — it’s a bit on the slow side. It is much slower than the
getdictionaryvalue(function.

Chapter 3:Programming Techniques Page 607
Accessing the Internet

In this millennium no computer is an island. Panorama allows you to tap into the Internet to automatically
retrieve data and graphics from the web, submit information to web servers, and to send e-mail based on
database information.

Basic Web Access

In this section we’ll show how to automatically receive and send data from anywhere on the web.

Fetching Web Pages

Fetching a web page is simple. The loadurl statement has two parameters:

loadurl page,url

The page parameter is the name of the field or variable to store that you want the downloaded page stored in.
The url parameter is the web address of the page you want to load, for example "http://www.weather.com".
This example will download the current weather for the 92648 zip code and display the current humidity.

local weatherURL,weatherPage,zip
zip="92648"
weatherURL="http://http://www.wunderground.com/cgi-bin/findweather/getForecast?query="
loadurl weatherPage,weatherURL+zip
humidity=tagdata(weatherPage,"Humidity:</td><td valign=top>","",1)
message "Humidity: "+humidity

When this procedure is triggered the current humidity will be displayed.

If there is a problem (for example the requested page doesn’t exist, or the computer is not currently connected
to the internet) the statement will place "" in the page field or variable. This revised example checks to make
sure that it got a response from the Weather Underground server.

local weatherURL,weatherPage,zip
zip="92648"
weatherURL="http://http://www.wunderground.com/cgi-bin/findweather/getForecast?query="
loadurl weatherPage,weatherURL+zip
if weatherPage<>""

humidity=tagdata(weatherPage,"Humidity:</td><td valign=top>","",1)
message "Humidity: "+humidity

else
message "Sorry, weather information is not currently available."

endif

Page 608 Panorama Formulas & Programming
Parsing Web Pages

The primary language of the web is HTML (HyperText Markup Language). When you fetch a page from a
web server, the page will be constructed with HTML tags like , <a>, , <input>, etc. In order to
extract the information you need from downloaded web pages you’ll need to learn at least some HTML. The
details of HTML syntax and vocabulary are beyond the scope of this book, but here are some books that you
may find useful.

When you fetch a web page with Panorama it’s usually because you want to retrieve one or more specific
pieces of information within that page. Often the specific information you want is buried like gold nuggets in
raw ore. Instead of using a pan or sluice to extract the nuggets, you’ll use statements and functions like
search(, tagdata(, gettaglocation and htmltabletoarray. Extracting information from web pages
is called web scraping, and you can find various books and articles on the subject in your local bookstore, in
programming magazines, and on the web.

Web scraping is kind of like detective work. The trick is to see through the clutter of tags and recognize the
patterns that can reliably point to the nuggets of information you are interested in. The detective has tools
that help solve the case — DNA, fingerprints, chemical analysis, phone records etc. But it takes imagination
and skill to use these tools to connect the dots. Similarly, we can teach you how to use the tools Panorama
makes available for analyzing and parsing web pages. But every page is unique and you’ll need to develop
your own sixth sense for teasing out the patterns in the tags.

HTML & XHTML: The Definitive Guide, Fifth Edition
by Chuck Musciano, Bill Kennedy

• Paperback: 670 pages
• Publisher: O'Reilly; 5 edition (August, 2002)
• ISBN: 059600382X
• Product Dimensions: 9.3 x 7.0 x 1.3 inches

HTML: The Definitive Guide is aimed at beginners as well as those who have more practice
in Web-page creation. The authors assume at least a basic knowledge of computers, includ-
ing how to use a word processor or text editor and how to deal with files. They teach you
that learning HTML is like learning any other language and that reading a book of rules can
only take you so far. Readers begin writing what may be their first Web page just two pages
into the book's second chapter. From there on, they provide a wide range of HTML coding to
allow readers to learn from good examples. The book includes a handy "cheat sheet" of
HTML codes for quick reference.

Learning Web Design, 2nd Edition
by Jennifer Niederst

• Paperback: 488 pages
• Publisher: O'Reilly; 2 edition (June 27, 2003)
• ISBN: 0596004842
• Product Dimensions: 9.8 x 8.1 x 1.1 inches

In Learning Web Design, author Jennifer Niederst shares the knowledge she's gained from
years of web design experience, both as a designer and a teacher. This book starts from the
beginning-- defining the Internet, the Web, browsers, and URLs-- so you don't need to have
any previous knowledge about how the Web works. After reading this book, you'll have a
solid foundation in HTML, graphics, and design principles that you can immediately put to
use in creating effective web pages. In the second edition, Jennifer has updated the book to
cover style sheets and reflect current web standards. She has also added exercises that help
you to learn various techniques and short quizzes that make sure you're up to speed with
key concepts. The companion CD-ROM contains material for all the exercises in the book.
Unlike other beginner books, Learning Web Design leaves no holes in your education. It
gives you everything you need to create basic web sites and will prepare you for more
advanced web work.

Chapter 3:Programming Techniques Page 609
In the previous section an example fetched the current weather for the 92648 zip code. In your web browser,
this page might look something like this:

Page 610 Panorama Formulas & Programming
As you can see, there is all kinds of interesting data that could be extracted from this page — the current time,
the latitude and longitude of this location, the current temperature (in Fahrenheit and Celsius), the humidity,
wind, pressure, and many other items. The page layout is designed to make it easy to pick this information
out when displayed in a browser. In the actual HTML source, however, it is much more difficult to locate this
information. Here we’ve used the browser’s View Source command to examine the underlying HTML code
for this page:

You’re first task is to visually locate the information you are looking for. In some cases this is fairly easy and
you can use your browser or text editor’s Search command to directly locate the information, for example the
Humidity, Dew Point, Wind and Pressure in the text above. In other cases, however, it can be more tricky.
There is no clearly identifying text near the temperature readings. In cases like this you’ll have to find the
information by looking at the original page for other items near the item you are looking for. For example,
looking at the original page we can see that the temperature readings are just above the humidity measure-
ment. The humidity is easily found, so looking above we quickly find the temperature.

temperature (Fahrenheit)

temperature (Celsius)

humidity

dew point

wind speed (miles per hour)

wind speed (kilometers per hour)

wind direction

barometric pressure

Chapter 3:Programming Techniques Page 611
Once you have managed to find the information visually the real trick begins — devising a means to auto-
matically locate this information with a program. Look around for something unique that can be easily
found. For example, the text Pressure: only occurs in one place in this web page, so it can be used with the
tagdata(function to help locate the barometric pressure measurement.

message tagdata(weatherPage,"Pressure:","in",1)

As you can see, this formula has removed almost all of the text except for a few tags around the pressure.

There are several methods that could be used to isolate just the pressure itself. Noticing that none of the tags
that are left contain any numbers or periods, we can use the stripchar(function to extract just the pres-
sure.

stripchar(tagdata(weatherPage,"Pressure:","in",1),"09..")

There is usually more than one method that could be used to extract a particular text item. For example, here
is another method that you could use:

tagdata(weatherPage,"Pressure:</td><td valign=top>"+lf()+" "," in",1)

Usually the simplest formula is the best, but not always. The goal is to create a method that is as reliable as
possible, a method that will hopefully continue to work even if there are minor changes made to the page
design. Of course it’s always possible that the site owners will completely redesign the page or even their
entire site at some point in the future. At that time you’ll also have to redesign your web scraping method.
Keeping your design modular will help minimize the work necessary when a redesign is necessary.

Panorama has several dozen statements and functions that can help you scrape information from web pages.
Use the Programming Reference wizard to study these tools before you begin your first web scraping
project.

Statement/Function Description

gettaglocation
This statement finds the position of the first matching tag within some text.
For example, you could find the position of the first <table> tag, or of the
word Pressure.

gettaglocations
This statement finds the positions of all matching tags within some text. For
example, you could find the position of every tag (not just the first
one.

htmldecode(
This function takes HTML text and converts any special characters in the
text into standard ASCII. For example © is converted to © and &
is converted to & .

htmlextractlinks This statement extracts the links from an HTML page. The result is a car-
riage return separated list of the links (URL’s) from this page to other pages.

htmlformitemnames
This statement returns a list of form elements (<INPUT tags, etc.). The result
is a carriage return separated list of these elements. This statement is very
handy for extracting any data that may be included in an HTML form.

htmltablecell(This function extracts the data from a cell in an HTML table. Any HTML
tags in the cell are removed, leaving only the actual text.

htmltablecellexists(This function checks to see whether a cell in an HTML table exists or not.
The result will be true if the cell exists, or false if it doesn't.

Page 612 Panorama Formulas & Programming
In addition to these statements and function that are specifically designed for HTML parsing you may also
need Panorama’s general text handling tools. See “Text Formulas” on page 67.

htmltablecellraw(This function extracts the data from a cell in an HTML table. Unlike the
htmltablecell(function, any HTML tags in the cell are retained.

htmltableheight(This function calculates the height (number of rows) in an HTML table. It
assumes that the table is a regular matrix (no rowspan tags).

htmltablerowraw(This function extracts the data from a row in an HTML table. Any HTML
tags in the row are retained.

htmltabletoarray
This statement converts an HTML table into a text array. The HTML table
must be a simple array with no nested table inside it. You can include all of
the columns in the final array, or just selected elements.

htmltablewidth(
This function calculates the height (number of rows) in an HTML table. It
assumes that the table is a regular matrix (no colspan tags) and that all of
the rows have the same number of columns as the top row in the table.

onespace(This function removes any extra spaces between words, so that there is
exactly one and only one space between each word.

onewhitespace(

This function removes any extra whitespace between words, making sure
that there is one and only one space between each word. Other whitespace
characters (carriage returns, tabs) are converted to spaces and removed if
there is more than one between words.

stripchar(
This function removes characters you don’t want from a text item. You spec-
ify exactly what kinds of characters you want and don’t want included in
the final output.

tagarray(
This function builds an array containing the body of all the specified tags
(usually HTML tags) in the text. Each element in the array is separated from
the next with the separator character (usually ¶ or ,).

tagcount(This function counts the number of times a specified tag (usually an HTML
tag) appears in the text.

tagdata(This function extracts the body of the specified tag (usually an HTML tag)
in the text.

tagend(This function returns the ending position of the specified tag (usually an
HTML tag) in the text.

tagnumber(This function checks to see if a specified position is inside of a tag (usually
an HTML tag).

tagparameter(This function extracts the value of a tag parameter embedded in some text,
where the tag parameter takes the form name=value.

tagparameterarray(This function extracts the value of multiple tag parameter embedded in
some text, where each tag parameter takes the form name=value.

tagstart(This function returns the starting position of the specified tag (usually an
HTML tag) in the text.

tagstrip(This function removes tags (usually an HTML tag) from within a piece of
text.

textafter(
This function extracts the text after the tag. The tag many be one or more
characters long. If the tag doesn't occur in the text then the entire original
string is returned.

textbefore(
This function extracts the text before the tag. The tag many be one or more
characters long. If the tag doesn't occur in the text then the entire original
string is returned.

urldecode(
This function takes standard ASCII text and converts into a format guaran-
teed to be legal in an internet URL (Universal Resource Locator). For exam-
ple the url my%20web%20page is converted to my web page.

Statement/Function Description

Chapter 3:Programming Techniques Page 613
Fetching Images

Fetching an image is simple. The saveurl statement has two parameters:

saveurl path,url

The path parameter is the path and filename of the file that you want the downloaded image stored in. The
url parameter is the web address of the image you want to load, for example "http://icons.wunder-
ground.com/graphics/conds/clear.GIF". (This statement isn’t limited to images, you can also save a regular
HTML web page directly into a file.) This example will download the icon for “sunny and clear” from the
weather underground web site.

saveurl "SunnyAndClear.gif","http://icons.wunderground.com/graphics/conds/clear.GIF"

Since the path includes only a filename (no disk or folders) the file will be stored in the same folder as the
database. If you have the Enhanced Image Pack (see “Displaying Non PICT Images (Enhanced Image Pack)”
on page 775 of the Panorama Handbook) you can display this GIF image in a form.

If you want to save the image in a subfolder of the current database folder then the path must begin with a
colon. This example will save the image in the Icons folder which is in the same folder as the current data-
base.

saveurl ":Icons:SunnyAndClear.gif",
"http://icons.wunderground.com/graphics/conds/clear.GIF"

You can also specify a complete path to store the image anywhere on your hard drive.

saveurl "My Disk:Documents:Web Icons:SunnyAndClear.gif",
"http://icons.wunderground.com/graphics/conds/clear.GIF"

No matter where the path points to, the folder must already exist. If it doesn’t you can use the
makenewfolder statement to create it.

Relative URLs

The loadurl and saveurl statements normally require a complete URL, like this:

loadurl thePage,"http://www.someserver.com/somefolder/somepage.html"

However, once you have loaded or saved a URL you can then access other url’s relative to that URL. For
example, suppose that there is an image in the same folder as somepage.html. You could fetch this image
with an absolute URL like this:

saveurl "someimage.jpg","http://www.someserver.com/somefolder/someimage.jpg"

However, if you have just loaded the somepage.html page with loadurl, you can then save the image with a
relative URL like this:

saveurl "someimage.jpg","someimage.jpg"

You don’t need to specify the complete URL because Panorama assumes that the missing part is the same as
the last URL. You can also use the common ../ prefix notation to move up the server’s directory structure.
Again assuming that you have just loaded the somepage.html page, then these two URL’s are the same.

"http://www.someserver.com/differentfolder/bigimage.jpg"
"../differentfolder/bigimage.jpg"

Page 614 Panorama Formulas & Programming
Remember, relative URL’s are relative to the last URL saved or loaded.

Submitting Forms

Many applications call for submitting information to a web site. This is called a “form.” An HTML form con-
tains one or more fields that are submitted to the web server. When using a web browser, you fill out a form
by typing and/or by selecting from pop-up’s, checkboxes and radio buttons. When you have entered all of
the information you press the Submit button.

When using Panorama you can submit information to a web site using the posturl statement.

loadurl page,url,field1,value1,field2,value2,field3,value3 ...

The page parameter is the name of the field or variable to store that you want the downloaded page stored in.
This is the server’s response to the data you have submitted. The url parameter is the web address of the
page you want to load, for example "http://www.fedex.com/cgi-bin/tracking". The field parameters are the
names of the data items being submitted to the server, while the value parameters supply the actual data for
each corresponding field. The statement can have as many field/value pairs as you need, but they must come
in pairs. This example will look up shipment information for a FedEx tracking number. The tracking number
must be in a field or variable named trackingNumber.

posturl webPage,"http://www.fedex.com/us/tracking/",
"tracknumbers",trackingNumber,
"action","track",
"language","english",
"cntry_code","us",
"mps","y",
"ascend_header","1"

In this case we are submitting six fields to the FedEx server. If we don’t submit the exact fields the FedEx
server is expecting to the right URL, the FedEx server will not respond. How can we find out what fields we
need to submit?

Chapter 3:Programming Techniques Page 615
To find out, first use your browser to go to the web server you want to access, and find the form you want to
submit using Panorama.

Now use View Source to look at the actual HTMl source code and find the HTML code for the form you want
to submit.

We’ve underlined the important parts of this form as far as Panorama is concerned. The action=/us/tracking
parameter of the <form> tag is added to the base URL for this page to form the URL for submitting the form

http://www.fedex.com/us/tracking/

In this form the <textarea> tag contains the name=tracknumbers of the field that is used for submitting the
tracking numbers. This becomes the first field parameter to our posturl statement (see above). All of the
other five <input> tags are hidden and have fixed tags, so these make up the additional posturl parame-
ters.

Page 616 Panorama Formulas & Programming
In this case the FedEx web authors created a nice compact form that is easy to decipher. Often forms will not
be this compact - you’ll have to wade through tons of additional tags and whitespace. Just let the tags guide
you — start by finding the opening and closing <form> tags (and remember that some pages have more than
one form on the page, so you have to make sure you have the right form). The opening <form> tag will con-
tain the action parameter, which will have a relative or absolute URL. Then look for <input>, <textarea> and
<select> tags to find out the data that needs to be submitted.

Once you’ve got the posturl statement working you are still not quite done. The server will return an
HTML page that contains the information you want to retrieve (if any - sometimes you may just want to sub-
mit information, for example to add information to an on-line database). If you need to retrieve information
from this response you’ll have to use the web scraping techniques discussed earlier in this chapter. (However,
for FedEx tracking numbers we’ve already done this work for you as you’ll see later in this chapter.)

Cookies

A “cookie” is a small piece of information sent by a web server to store on a web client so it can later be read
back from that browser. This is useful for having the browser remember some specific information, for exam-
ple user id’s, shopping baskets, and site preferences. By default Panorama ignores cookies, but some web
pages cannot be accessed unless the web client handles cookies. If you are accessing a site that requires cook-
ies you can turn them on with the cookies statement. (Note: Currently only the OS X version of Panorama
supports this statement.) For most applications you can simply place the cookies statement with no param-
eters near the top of your procedure, before any loadurl or posturl statements that would require cookies
to be saved.

cookies
loadurl …
posturl …

The cookies statement also has three optional parameters that give you more control over how cookies are
processed and stored.

cookies folder,file,options

The cookies statement keeps the information it gets from the web server in a file on your hard disk. The
folder and file parameters specify where this file should be stored and what name should be used. If the
folder parameter is empty, Panorama will keep the cookie file in the same folder as the current database. If
the file parameter is empty Panorama will automatically assign a name for you.

The options parameter allows you to specify one or more options. Each option is specified by a keyword from
the table below.

Keyword Description

global

By default cookies are only enabled for one database at a time. If you
enable cookies for more than one database, each will keep a separate
cookie file. However, if you include the global keyword in the
options parameter Panorama will create a global cookie file that will
be used no matter what database is currently active. If you don’t
specify the file and folder options this file will be called Pan-
orama.cookie and will be stored in the Extensions:Work Files folder.

suspend

The cookies statement normally turns cookies on, but if this key-
word is included cookies will be suspended. After this option is
used any cookies information sent from the server will be ignored.
You can re-enable cookies later, any cookie information that was
already saved when cookies were suspended will be retained.

reset

The reset option completely erases any cookie information that has
been saved. If you want to erase this information and turn cookies
off, use this option in combination with the suspend keyword. If you
want to erase global cookie information you must include the global
keyword as well.

Chapter 3:Programming Techniques Page 617
These keywords can be combined, for example “global suspend reset” to stop and erase any global cookies
that have been stored.

Accessing Web Content

The previous section described how to perform general access to any web server. Panorama also includes
pre-built tools designed for accessing specific types of information, for example maps, addresses, shipping
information, etc. We will be adding new tools for accessing web content on a regular basis, so check our web
site for updates.

Generating Map Images

The savewebmap statement makes it easy to download a map for any US address. If you have purchased the
Enhanced Image Pack you can display this image on a form. This statement has eight parameters.

savewebmap path,zoom,street,city,state,zip,country,mapurl,mapheight,mapwidth

The path parameter specifies the name and location of the image file to save. For example, if you wanted to
save the file in the folder that contains the current database this parameter only needs the file name:

savewebmap "Acme Widgets Map.jpg", …

If you want to store the image file in a subfolder of the current database folder, start the path with a colon (:).

savewebmap ":Maps:Acme Widgets.jpg", …

You can also specify a full path, including the disk name, to place the saved image anywhere on your hard
drive.

The image doesn’t have to be a .jpg file. You can also specify a file with the .png or .gif extensions.

The zoom parameter is the map zoom level. There are two ways to specify the zoom level. You can use a nine
step scale from 1 (entire country) to 9 (a few blocks). If you want more control you can also directly specify
the denominator of a scaling ratio, for example 500000 for a 1:500,000 scale (approximately city or county
level) or 2000 for a 1:2000 scale (zoomed in to a few blocks). Using a ratio allows you to specify any zoom
level you want. The nine standard rations are:

If no zoom level is specified the default is 8 (ratio of 1:13,600).

The street, city, state, zip and country parameters specify the address you want to map. Do not include the
suite or apartment number in the street address. The country parameter is currently ignored, this statement
only works for United States. Future versions may be more global.

The mapurl parameter must contain the name of a field or variable. When the statement is complete this field
or variable will contain the url of the map that was saved. If the address was not a valid address the field or
variable will be empty ("").

Level Ratio

9 1:3900

8 1:13,600

7 1:45,500

6 1:116,000

5 1:516,000

4 1:1,160,000

3 1:4,700,000

2 1:12,600,000

1 1:29,000,000

Page 618 Panorama Formulas & Programming
The mapheight and mapwidth parameters specify the dimensions of the generated map (in pixels). These
parameters are optional — if ommitted the default height and width supplied by the web site generating the
map (currently Yahoo) will be used.

This example creates a .jpg file that contains a map showing the location of Disneyland.

local mapurl
savewebmap "Disneyland Map.jpg",7,
 "1313 S. Harbor Blvd.","Anaheim","CA","92803","",mapurl,400,600

Here is the result of this program (displayed in Apple’s Preview program):

Note: The savewebmap statement works by reqesting maps from a web server. The current version of this
statement uses Yahoo! Maps (earlier versions used MapQuest). In the future the operation of this statement
may change based on changes to the underlying Yahoo! Maps server.

Generating the Same Map at Different Zoom Levels (Scales) or Sizes. A shortcut makes it faster to regener-
ate a map with a different zoom level or size than to generate an all-new map. To use this shortcut take the
result of the mapurl parameter and feed it back into the street parameter the next time you generate the map.
Here is an example that generates three different maps for Disneyland at different zoom levels.

local mapurl,mapzoom
mapzoom=7
savewebmap "Disneyland Map"+str(mapzoom)+".jpg",
 mapzoom,"1313 S. Harbor Blvd.","Anaheim","CA","92803","",mapurl,240,300
loop
 mapzoom=mapzoom-1
 savewebmap "Disneyland Map"+str(mapzoom)+".jpg",mapurl,"","","",mapurl,240,300
while mapzoom>5

Chapter 3:Programming Techniques Page 619
Here are the three maps generated by this program.

Adding an Interactive Map Interface to a Database

You can use the savewebmap statement with Super Flash Art object on a form to create a custom interactive
map. If you are in a hurry and are willing to have the map appear in a separate window, however, Panorama
can do virtually all of the work for you. All you need to do is add one line of code to your program using the
openmapwindow statement. This statement has 8 parameters:

openmapwindow street,city,state,postalcode,country,mapheight,mapwidth,options

The street, city, state, zip and country parameters specify the address you want to map. Do not include the
suite or apartment number in the street address. The country parameter is currently ignored, this statement
only works for United States. Future versions may be more global.

The mapheight and mapwidth parameters specify the initial dimensions of the map window (in pixels).
These parameters are optional — if ommitted the default height is 500 pixels and the default width is 620 pix-
els.

The options parameter is for additional options. Currently this parameter is not used and is ignored.

Lets look at how this statement could be used in a contact database. Start with any database that contains US
address information, like this:

Page 620 Panorama Formulas & Programming
Now add a procedure to open the map window. It only needs one line.

When you run this procedure (from the Action menu, a button, etc.) Panorama will open up a new window
and display a map for the current address in the database.

Chapter 3:Programming Techniques Page 621
You can zoom in and out by clicking on the numbers on the left edge of the map.

You can also resize the window. Making the map larger will increase the area displayed, and in some cases
increase the amount of detail displayed as well.

Page 622 Panorama Formulas & Programming
You can open additional maps without closing the first map (up to Panorama’s 64 window limit).

To open additional maps simply navigate within the database to the address you want to see, then run the
procedure that contains the OpenMapWindow statement again. Each map window can be independently
zoomed and resized. When you are done with a map window simply close it.

General Zip Code Information

The zipinfo statement queries the web to get general information about a zip code: city, state, area code,
etc.

zipinfo zipcode,info,channel

The zipcode parameter must contain a 5 digit zip code. This must be a text value, not a number (e.g. "95001"
not 95001).

The info parameter must be the name of a field or variable. When the statement is finished this field or vari-
able will contain a data dictionary that contains the information loaded from the web (see “Data Dictionar-
ies” on page 602). Depending on the channel you have selected (see below) this data dictionary will contain
one or more of the items listed below. You can retrieve individual items from this dictionary with the
getdictionaryvalue(function.

Item Description
Channel

USPS ZipInfo.com

CITY Primary name of the city associated with this
zip code. √ √

STATE Two letter abbreviation of the state this zip code
is in. √ √

COUNTY The name of the county this zip code is in. √ √

FIPS FIPS code. √

Chapter 3:Programming Techniques Page 623
This statement uses a channel to retrieve the zip code information from the web. You can set the default chan-
nel using the Channels wizard. You can use the channel parameter to override the default. At the time of
this writing the options for this parameter are "USPS" and "ZipInfo.com", but additional options may be
available in the future. Check the Channels wizard for the latest information.

This example displays the city and state associated with a zip code.

local z5,zinfo
z5=""
gettext "Zip Code:",z5
zipinfo z5,zinfo
message z5+": "+getdictionaryvalue(zinfo,"CITY")+", "+getdictionaryvalue(zinfo,"STATE")

Street Address Information

Given a US street address, the zipinfoplus statement uses the US Post Office web site to find out the zip+4,
carrier route, and other information.

zipinfoplus address1,address2,city,state,zip5,info

The address1 parameter is the first line of the address, address2 is the second line (optional). The city param-
eter is the name of the city, state is the two letter state abbreviation. The zip5 parameter is the five digit zip
code, but you can leave this blank.

The info parameter must be the name of a field or variable. When the statement is finished this field or vari-
able will contain a data dictionary that contains the information loaded from the web (see “Data Dictionar-
ies” on page 602). This data dictionary will contain items listed below. You can retrieve individual items from
this dictionary with the getdictionaryvalue(function.

AREACODE Name or the primary area code associated with
this zip code. √

TIMEZONE Time zone associated with this zip code. √

DAYLIGHTSAVINGS Yes/No √

LATITUDE Geographic co-ordinates of center of zip code. √

LONGITUDE Geographic co-ordinates of center of zip code. √

MSA Metropolitan statistical area √

Item Description

ADDRESS Corrected street address.

CITY Primary name of the city associated with this
address.

STATE Two letter abbreviation of the state this zip code
is in.

COUNTY The name of the county this zip code is in.

ZIP9 Nine digit zip code.

CARRIERROUTE Postal carrier route.

Item Description
Channel

USPS ZipInfo.com

Page 624 Panorama Formulas & Programming
This example checks an address in the database to see if it is correct. If it is completely invalid, an error mes-
sage is displayed. If it is not formatted correctly by USPS rules, the database is corrected.

local zinfo,correctAddress
zipinfoplus Address,"",City,State,Zip,zinfo
correctAddress=getdictionaryvalue(zinfo,"ADDRESS")
if correctAddress=""

message "Address is not valid!"
rtn

endif
if correctAddress=Address rtn endif
Address=correctAddress

White Pages

The querywhitepages statement queries the web to look up white page information.

querywhitepages first,last,city,state,zip,url,listings,info,channel

The first parameter is the first name of the person you are looking for. You can leave this blank if you don’t
know the first name, or use a partial first name (for example the first initial). The more detail you can supply,
the more likely it is that you will be able to find the person you are looking for.

The last parameter is the last name of the person you are looking for. You cannot leave this blank, but you can
use a partial name. Again, however, the more you supply the more likely you’ll get the information you’re
looking for.

The city is the city you are looking for. You can leave this blank if you don’t know, or if you are supplying the
zip code.

The state is the two letter state abbreviation. You can leave this blank, but unless the name you are looking for
is extremely unusual this is generally not a good idea (unless you supply a zip code).

The zip code can be supplied instead of the city and state.

The url parameter is normally set to "". If it is not blank, it must be a URL received from a previous invocation
of the querywhitepages statement. This allows you to download additional listings that match your search
criteria, and will be described in more detail below.

The listings parameter must be the name of a field or variable. When the statement is complete, this field or
variable will contain a carriage return separated list of names, addresses and phone numbers. Each line con-
tains information for a single person. Within in each line are seven tab separated fields:

We’ve found that sometimes entries earlier in the list contain more information that entries farther down. To
get the most detail about a specific person, narrow the search as much as possible.

First Last Address City State Zip Phone

Chapter 3:Programming Techniques Page 625
The info parameter must be the name of a field or variable. When the statement is complete, this field or vari-
able will contain a data dictionary with the following items, which you can retrieve with the
getdictionaryvalue(function:

This statement uses a channel to retrieve the white page listings from the web. You can set the default channel
using the Channels wizard. You can use the channel parameter to override the default. At the time of this
writing the only option for this parameter is "Switchboard", but additional options may be available in the
future. Check the Channels wizard for the latest information.

To see examples of how the querywhitepages statement can be used see the White Pages wizard that
comes with Panorama.

FedEx Shipment Tracking

The fedextracking statement queries the FedEx web site to determine the status of a shipment.

fedextracking trackingnumber,shipinfo

The trackingnumber parameter must contain a FedEx tracking number.

The shipinfo parameter must be the name of a field or variable. When the statement is complete, this field or
variable will contain a data dictionary with some of the following items (which items are available depends
on the current package status), which you can retrieve with the getdictionaryvalue(function:

Item Description

FOUND

This is the total number of people found. This number may be more than
the actual number in the list that is returned, this list normally contains no
more than 10 lines no matter how many people were found. If this number
is -1 then the total number of people found is a very large, but unknown
number.

INDEX
This is the index number of the first person in the list of returned names.
This value is always 1 unless you have used the url parameter to request
additional names (beyond the first ten).

MOREPEOPLEURL

If more than ten people are found, only the first ten are returned in the list.
In that case, this value will contain a URL that can be used to request addi-
tional names that match this search. You can pass this URL back to this
statement using the url parameter (in that case, leave the first, last, city,
state and zip parameters blank). Each time you request additional names
you can check this data dictionary entry to see if more names are available,
and if so, you can request them.

Item Description

TRACKING NUMBER This is the tracking number, a duplicate of the first parameter

STATUS Status of this shipment. Possible values are "Invalid", "Not Shipped", "In
Transit" and "Delivery Complete".

SHIP DATE This is the date the package was picked up by FedEx.

ESTIMATED DELIVERY DATE If the package is in transit, this is the estimated delivery date and time.

Page 626 Panorama Formulas & Programming
This example displays the status of a FedEx shipment.

local tracknum,trackinfo
tracknum=""
gettext "Tracking number:",tracknum
fedextracking tracknum,trackinfo
message "Shipment status: "+getdictionaryvalue(trackinfo,"STATUS")

For more a more detailed example of this statement see the FedEx Tracking wizard.

Controlling Web and E-Mail Clients

In addition to directly accessing web pages (see above) and sending e-mail (see below) Panorama can control
your default web and e-mail client to view pages and set up outgoing e-mail.

Displaying a Web Page

To display a web page use the shellopendocument statement.

shellopendocument url

The url must be a complete url, beginning with http://.

 shellopendocument "http://www.crazyapplerumors.com"

DELIVERY LOCATION The package destination (city and state).

DELIVERED TO If the package has been delivered, the location or person it was delivered to
(for example "Recipient", "Front Desk" or "Receiving Dock").

SERVICE TYPE "Priority Overnight", etc.

SIGNED FOR BY If the package has been delivered, the name of the person that signed for it.

DELIVERY DATE/TIME If the package has been delivered, the date and time that occurred.

SHIPMENT HISTORY
This is a carriage return separated array showing the progress of the ship-
ment. Each line contains 5 columns separated by tabs: Date, Time, Action/
Status, Location and Comments.

Item Description

Chapter 3:Programming Techniques Page 627
The HTML document will open in your default browser. On Windows this is normally Internet Explorer, on
MacOS X it is normally Safari.

Displaying a Web Page on a Local Hard Drive

To display a web page that is on your local hard drive (not on the web) use the openanything statement.

openanything folder,file

This statement will display an HTML file named MyLife.html. This file is located on My Disk in the My Stuff
folder.

openanything folder("My Disk:My Stuff:"),"MyLife.html"

Displaying a Map

Use the openwebmap statement to display the map for any US address.

openwebmap street,city,state,zip,country

The street, city, state, zip and country parameters specify the address you want to map. Do not include the
suite or apartment number in the street address. The country parameter is currently ignored, this statement
only works for United States. Future versions may be more global.

This example opens the default web browser and displays a map showing the location of Disneyland.

openwebmap "1313 S. Harbor Blvd.","Anaheim","CA","92803",""

Page 628 Panorama Formulas & Programming
Here’s the resulting map:

Remember that you can also automatically save this map to a disk file with the savewebmap statement (see
“Generating Map Images” on page 617).

Sending an E-Mail

In addition to displaying web pages, the shellopendocument statement can also be used to initiate the
process of creating a new e-mail. Instead of starting the url with http://, start it with mailto:, followed by the
e-mail address. This example creates a new message addressed to webmaster@myisp.com.

 shellopendocument "mailto:webmaster@myisp.com"

Running a procedure that contains this statement will open your default e-mail client and create a new e-mail
message addressed to the specified person.

Chapter 3:Programming Techniques Page 629
To specify a subject for the new e-mail, add a suffix beginning with ?. (Note: Not all e-mail clients support
this suffix.) This example creates a new message addressed to lynn@mt.com with a subject of Your next
assignment.

 shellopendocument "mailto:lynn@mt.com?Your next assignment"

Running a procedure that contains this statement will open your default e-mail client and create a new e-mail
message addressed to the specified person and with the subject already typed in.

All you need to do is type in the body of the message and press the Send button.

Sending E-Mail

Panorama cannot send e-mail by itself. However, through the use of a channel Panorama can interface with
external software to send e-mails automatically. Panorama comes with several ready to use channels, and it is
also possible to write your own channels.

Page 630 Panorama Formulas & Programming
Channel Configuration

Before sending e-mail you’ll need to select and configure the e-mail channel you are planning to use. This is
done with the Channels wizard, which is in the Preferences submenu.

The first step is to click on E-mail in the left column, then select the module you want to use. In this case
we’ve picked 24 Email OSAX, which uses a software package, called, surprisingly enough 24 Email OSAX
(this must be purchased separately from another company). You’ll want to pick the module for whatever
external software you already have or plan to acquire.

The exact setup details depend on the module you choose. We’ll show how to set up for 24 Email OSAX as an
example. Since 24 Email OSAX communicates directly with an SMTP server, you’ll need the same SMTP
account information you used when setting up your e-mail client. To start, click on Server= and type in the
URL for the SMTP server your ISP provides.

Chapter 3:Programming Techniques Page 631
Now click on From= and type in your e-mail address.

Repeat to type in any additional information required by your ISP, then close the Channels wizard when you
are done.

Sending a single e-mail

Once you have set up a channel you are ready to send e-mails. To send a single e-mail to a single recipient use
the sendoneemail statement.

sendoneemail from,to,subject,body

The from parameter is the sender's email address. If blank, the default from address will be used. However,
some channels may ignore the from address specified by this channel and always use the default from
address.

In addition to the actual email address you can also specify the senders actual name after a comma, for exam-
ple joe@acme.net,Joe Smith. However, not all channels will use this information. It will be ignored if the chan-
nel doesn’t support this option.

The to parameter is the recipient’s e-mail address, the address of the person you are sending the e-mail to.

The subject parameter is a line of text that will become the subject of the e-mail.

The body parameter is the main body of the e-mail message. Panorama only supports text messages, it
doesn’t support attachments.

This example sends an e-mail to joe@aol.com.

sendonemail "","joe@aol.com","Next Week’s meeting",
"Dear Joe"+¶+¶+"Please bring the new XRF-89 specs with you to the meeting."

Sending multiple e-mails

Panorama has two statements for sending multiple copies of the same e-mail to different recipients —
sendbulkemail and sendarrayemail. Use sendbulkemail if the recipient e-mail addresses are in a
database field. Use sendarrayemail if the recipient e-mail addresses are in a text array.

The sendbulkemail statement has five parameters.

sendbulkemail from,database,recipient,subject,body

The from parameter is the sender's email address. If blank, the default from address will be used. However,
some channels may ignore the from address specified by this channel and always use the default from
address.

In addition to the actual email address you can also specify the senders actual name after a comma, for exam-
ple joe@acme.net,Joe Smith. However, not all channels will use this information. It will be ignored if the chan-
nel doesn’t support this option.

The database parameter is the name of the database to extract the e-mail addresses from. Use "" for the cur-
rent database.

Page 632 Panorama Formulas & Programming
The recipient parameter is the name of the field that contains the e-mail addresses you want to send this mes-
sage to.

The subject parameter is a line of text that will become the subject of the e-mail.

The body parameter is the main body of the e-mail message. Panorama only supports text messages, it
doesn’t support attachments.

This example sends an e-mail to every selected person in the Contacts database.

sendbulkemail "","Contacts",Email,"Next Week’s Meeting",
"Don’t forget, the XRF-89 specification meeting is next Tuesday at 10:30 AM. "+
"Joe Wilson will be presenting the new specifications."

The sendarrayemail statement sends multiple e-mails to recipients listed in a comma separated array.

sendarrayemail from,to,subject,body

The from parameter is the sender's email address. If blank, the default from address will be used. However,
some channels may ignore the from address specified by this channel and always use the default from
address.

In addition to the actual email address you can also specify the senders actual name after a comma, for exam-
ple joe@acme.net,Joe Smith. However, not all channels will use this information. It will be ignored if the chan-
nel doesn’t support this option.

The to parameter is a comma separated array containing recipient's e-mail addresses.

The subject parameter is a line of text that will become the subject of the e-mail.

The body parameter is the main body of the e-mail message. Panorama only supports text messages, it
doesn’t support attachments.

This example sends an e-mail to three recipients: joe, jack and sue.

sendarraymail "","joe@aol.com,jack@earthlink.com,sue@hotmail.net",
"Next Week’s Meeting",
"Don’t forget, the XRF-89 specification meeting is next Tuesday at 10:30 AM. "+
"Joe Wilson will be presenting the new specifications."

Panorama also has one additional statement for sending e-mail to multiple recipients — sendemail. This
statement is a bit more complicated but gives you more precise control over your e-mail, for example you can
send e-mail to some recipients as CC and some as BCC. For more information on using this statement see the
Programming Reference wizard.

Chapter 3:Programming Techniques Page 633
Programming Graphic Objects on the Fly

Graphic objects are usually manipulated manually in Graphics Mode. A procedure can also be programmed
to perform manipulations on graphic objects. For example a procedure can move or change the size of
objects, change the color of objects, change the font of text objects, etc. When a procedure manipulates
graphic objects it does so directly in Data Mode (not in Graphic Mode).

Although procedures can manipulate graphics, they cannot do everything that you can do manually in
Graphics Mode. A procedure cannot create new objects or delete existing objects, and it cannot make any
change that would change the amount of memory used by the graphic object. (For example a procedure can-
not change the text in an auto-wrap text object.)

Basics of Graphic Object Programming

Working with graphic objects is a two step process. First, the program must identify the object or objects that
need to be modified. This is called selecting the objects. The process is similar to manually selecting a graphic
object by clicking on it or dragging around it. (However, unlike objects that are selected manually in graphics
mode, no handles appear at the corners of objects that are selected by a procedure.) Of course a procedure
cannot click on an object, so it has to use one or more properties of the object to identify it. For example, you
can select an object based on its name, based on its position, based on its color, or based on a number of other
attributes (or combinations of attributes).

Once at least one object is selected the procedure can use the changeobjects statement to change the object
or objects. The changeobjects statement can change one property of an object (or objects) at time. If you
need to change more than one property (for example position and color) you’ll need to use more than one
changeobjects statement.

Selecting an Object by Name

If an object has a unique name within a form, the simplest way to select the object is using that name. Any
graphic object can have a name that can be used to identify that object. To give an object a name first select the
object (in Graphics Mode), then use the Object Name command in the Edit menu or click on the object name
in the Graphic Control Strip (see “Object Type/Object Name” on page 533 of the Panorama Handbook). (The
Graphic Control Strip can also display the name of the object when you click on the object.)

To select an object by name use the object statement. This statement has one parameter—the name of the
object to select. For example, to select an object named Swiss Cheese use this procedure:

object "Swiss Cheese"

The parameter must match the object name exactly, including upper and lower case. If there is more than one
object named Swiss Cheese this statement will select the one farthest to the back. (To select multiple objects at
a time use the selectobjects statement, described in the next section.)

If the user is currently editing using a SuperObject (text editor or word processor) the procedure can find out
the name of the object being edited with the info("editing") function. You can use this function with the
object statement to select the object, and possibly change one or more of its attributes. (Note: This function
scans all the objects in the current form, so if you are going to use it over and over again it might be faster to
use it once and copy the name into a local variable, then use the local variable.)

Selecting Multiple Objects

To select multiple objects at once use the selectobjects statement. This statement scans the objects in the
current form and selects some of them based on a formula. The formula can use the objectinfo(function
(see the next section) to examine each object as it is scanned and decide whether or not the object should be
selected. For example, the statement below scans the current form and selects all objects that are pure blue.

selectobjects objectinfo("color")=rgb(0,0,65535)

Page 634 Panorama Formulas & Programming
To quickly select all of the objects in the current form, use the selectallobjects statement. To quickly un-
select all of the objects in the current form, use the selectnoobjects statement.

No matter how the objects are selected, they will remain selected until you close the form, switch the form
into graphics mode, or perform another statement that selects objects. Once one or more objects are selected
you can use the changeobjects statement to change many of the attributes of the object (more on this later
in this chapter).

Getting Information About Individual Objects

A procedure does not have eyes to see the graphic objects in a form. Instead of eyes or a camera, the proce-
dure uses the objectinfo(function to gather information about graphic objects. The objectinfo(func-
tion has one parameter—the type of information you want to collect (object location, size, color, font, etc.).

Like a camera, the objectinfo(function must be “pointed” at a specific object. There are several state-
ments that can “point” at a specific object, including the object statement and the selectobjects state-
ment (see previous sections).

Here is an example of the object statement and objectinfo(function in action. This example finds out the
font and text size of the object named MySpecialButton.

local myFont, mySize
object "MySpecialButton"
if info("found")

myFont=objectinfo("font")
mySize=objectinfo("textsize")

endif

There are about a dozen types of information the objectinfo(function can extract from an object.

objectinfo(function Description

objectinfo("rectangle")

This option returns the dimensions (location and size) of the object. The
dimensions are returned using the rectangle data type (see “Rectangles”
on page 149). The rectangle is returned in form relative co-ordinates (see
“XYTOXY(” on page 5910).

The example below selects the data cell(s) the user clicked on. The proce-
dure uses the inrectangle(function to determine which object (if any)
was clicked on. (Note: Presumably this procedure would be triggered by
a push button which covers the data cell objects.)

local hitPt, hitField
hitPt=xytoxy(info("click"),"Screen","Form")
selectobjects
inrectangle(hitPt,objectinfo("rectangle")) and

objectinfo("type") beginswith "Data Cell:"
objectnumber 1
hitField=objectinfo("type")[":",-1][-2,-1]
if hitField="" stop endif
field hitField
editcell

If the user did click on a data cell, the procedure activates the cell.

Chapter 3:Programming Techniques Page 635
objectinfo("name")

This option returns the name of the object. This is the name that is
assigned by the Object Name dialog (in the Edit menu, or Graphic Con-
trol Strip). The two lines shown below are basically equivalent.

object "Swiss Cheese"
selectobjects objectinfo("name")="Swiss Cheese"

These two statements are not completely equivalent. If there is more than
one object named Swiss Cheese the selectobjects statement will select all
of them. The object statement will select only the one closest to the back.

The objectinfo("name") function can be used in a formula to decode
object names. For example, if a form contains rows and columns you can
give each cell a name like c1r1, c1r2, … c4r12. Using the object-
info("name") function a procedure could decode these names and select a
specific column or row. For example, here is a procedure that selects the
third column:

selectobjects objectinfo("name")[1,2]="c3"

Here is another procedure that selects the seventh row:

selectobjects objectinfo("name")[3,4]="r7"

By carefully assigning object names you can often simplify the design of
your procedures tremendously. Look for patterns that you can take
advantage of.

objectinfo("type")

This option returns the type of the object. The object types are:

Rectangle
Rounded Rectangle
Oval
Line
Picture
Auto-Wrap Text
Click Text
Data Cell:<field>
Button
Chart
Flash Art
Flash Sound
Balloon Help
SuperObject:<type of SuperObject>
Tile:<type of tile>
Group

To see a complete list of SuperObject types see the objectinfo("custom")
function (Page 639). To see a complete list of tile types see the object-
info("tile") function (Page 638).

Here is a procedure that uses this function to select all of the rectangles in
the current form.

selectobjects objectinfo("type")="Rectangle"

objectinfo("font")

This option returns the font for this object. If the option does not have a
font (an oval, for example) this option will return empty text.

This procedure converts all Courier text to American Typewriter.

selectobjects objectinfo("font")="Courier"
changeobjects "font","American Typewriter"

objectinfo(function Description

Page 636 Panorama Formulas & Programming
objectinfo("textsize")

This option returns the size of the text displayed by this object. If the
object does not have a text size (an oval, for example) this option will
return zero. Here is a procedure that selects all objects with a text size
greater than 18 points (1/4 inch) and changes them to American Type-
writer.

selectobjects objectinfo("textsize")>18
changeobjects "font","American Typewriter"

objectinfo("textstyle")

This option returns the text style of text displayed by the object. The text
style is a number that is created by adding up the numbers for each indi-
vidual style from the table below. For example, for bold italic text the
style will be 3.

0 Plain
1 Bold
2 Italic
4 Underline
8 Outline
16 Shadow

The example below selects all italic objects and then changes the color of
the italic objects to blue.

selectobjects objectinfo("textstyle") and 2
changeobjects "color",rgb(0,0,65535)

objectinfo("color")

This option returns the color of the object (see “Colors” on page 154). For
example, this procedure selects all objects with brightness below 50%,
then changes it to a minimum brightness of 50%.

selectobjects brightness(objectinfo("color"))<32768
changeobjects "color",

hsb(
hue(objectinfo("color")),
saturation(objectinfo("color")),
32768

)

objectinfo("selected") This option returns whether or not the object is already selected (by a pre-
vious selectobjects statement).

objectinfo("locked")

This option returns true or false depending on whether or not the object
is locked. (A locked object cannot be modified when in graphic editing
mode, see “Locked Objects” on page 575 of the Panorama Handbook.) The
example below selects all rectangles that are not locked.

selectobjects objectinfo("type")="Rectangle"
 and not objectinfo("locked")

objectinfo("expandable")
This option returns true or false depending on whether or not the object
can expand depending on the amount of data to be printed (see “Variable
Height Records” on page 1123 of the Panorama Handbook).

objectinfo("expandshrink")
This option returns true or false depending on whether or not the object
can expand or shrink depending on the amount of data to be printed (see
“The Expand/Shrink Option” on page 1130 of the Panorama Handbook).

objectinfo(function Description

Chapter 3:Programming Techniques Page 637
objectinfo("text")

This option returns the text in auto-wrap text objects or click text objects
(see “Fixed Text Objects” on page 587 of the Panorama Handbook). When
used with any other type of object it returns empty text.

This example changes all text objects that contain the word Phone to
italic.

selectobjects objectinfo("text") contains "Phone"
changeobjects "textstyle",
 objectinfo("textstyle") or 2

objectinfo("fillpattern")

This option returns the fill pattern of the object (if any, see “Fill Pattern”
on page 521 of the Panorama Handbook). Patterns are 8 bytes of raw data
(see “Raw Binary Data” on page 156). Here are some formulas for typical
patterns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally mil-
lions of patterns that can be created.

objectinfo("linepattern")

This option returns the line pattern of the object (if any, see “Line Pattern”
on page 523 of the Panorama Handbook). Patterns are 8 bytes of raw data
(see “Raw Binary Data” on page 156). Here are some formulas for typical
patterns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally mil-
lions of patterns that can be created

objectinfo("linewidth")
This option returns the line width of the object (if any, see “Line Width”
on page 525 of the Panorama Handbook). The line width is a number from 1
to 8, or zero if this object does not support a line width.

objectinfo(function Description

Page 638 Panorama Formulas & Programming
objectinfo("tile")

This option returns the type of tile (if the object is a tile, otherwise it
returns ""). You can also get this information using the objectinfo("type")
function. The tile type will be one of the names in this list.

"1st page Header"
"1st page Header (Center) "
"1st page Header (Right) "
"Header"
"Header (Center) "
"Header (Right) "
"Table Header "
"Group Header (1) "
"Group Header (2) "
"Group Header (3) "
"Group Header (4) "
"Group Header (5) "
"Group Header (6) "
"Group Header (7) "
"Group Sidebar (1) "
"Group Sidebar (2) "
"Group Sidebar (3) "
"Group Sidebar (4) "
"Group Sidebar (5) "
"Group Sidebar (6) "
"Group Sidebar (7) "
"Data "
"Summary (1) "
"Summary (2) "
"Summary (3) "
"Summary (4) "
"Summary (5) "
"Summary (6) "
"Summary (7) "
"Table Footer "
"Footer"
"Footer (Center) "
"Footer (Right) "
"Left Margin "
"Right Margin "
"BackDrop "
"Spacer"
"Data (Page 2) "
"Data (Page 3) "
"Data (Page 4) "
"Data (Page 5) "
"Data (Page 6) "
"Data (Page 7) "
"Data (Page 8) "
"Data (Page 9) "
"Top Margin"
"Data Overflow"
"Last page Header"
"Last page Header (Center)"
"Last page Header (Right)"

For more information on report tiles see “Working with Tiles” on
page 1062 of the Panorama Handbook.

objectinfo(function Description

Chapter 3:Programming Techniques Page 639
Modifying Selected Objects

A program can use the changeobjects statement to modify certain attributes of selected objects. The
changeobjects statement has two parameters:

changeobjects how,data

The how parameter specifies how the objects should be adjusted—a new font, a new color, new position, etc.
The data parameter specifies the new object attributes—"Palatino", rgb(5000,12000,48000), rectan-
gle(100,120,410,240), etc. The following table describes each of the options available.

objectinfo("custom")

This option only works with SuperObjects. It returns the type of Super-
Object (see list below). This information can also be obtained by using the
objectinfo("type") function.

"Text Display"
"Text Editor"
"PgCell" (word processor)
"Super Flash Art"
"Push Button"
"Flash Art Push Button"
"Data Button"
"Sticky Push Button"
"Flash Art Data Button"
"PopUp Menu"
"Text List" (scrollable list)
"Scroll Bar"
"Super Matrix"
"Auto Grow" (elastic form)

objectinfo("ID")

This option returns a unique number that can be used to identify this
object later. The number is valid as long as the form is not edited in
graphics mode. The objectid statement can use this unique ID number to
re-locate this object later (see “Object ID Values” on page 643).

objectinfo("count")

This option applies not to a specific object, but to the entire form. It
counts the number of currently selected objects. For example, this exam-
ple displays the number of rectangles in the current form.

selectobjects
 objectinfo("type") contains "rectangle"
message "This form contains "+
 str(objectinfo("count"))+ " rectangles."

objectinfo("boundary") This option applies not to a specific object, but to the entire form. It calcu-
lates the minimum rectangle that encloses all of the selected objects.

Option Description

rectangle

This option changes the rectangle of all selected objects. This example moves all selected objects down
and to the right by 36 pixels (1/2 inch).

changeobjects "rectangle",
 rectangleadjust(objectinfo("rectangle"),
 36,36,36,36)

objectinfo(function Description

Page 640 Panorama Formulas & Programming
fieldname

This option applies only to data cells. It changes the field associated with the any selected data cells.
The example below changes all Qty cells to Price cells (Qty1 to Price1, Qty2 to Price2, etc.)

selectobjects objectinfo("fieldname") match "Qty?"
changeobjects "fieldname",
 "Price"+objectinfo("fieldname")[4,-1]

font

This option changes the font of selected objects. Non text objects will not be affected. The example
below sets the font of all data cells to Times Roman.

selectobjects objectinfo("type")="Data Cell"
changeobjects "font","Times Roman"

textsize

This option changes the text size of selected objects. Non text objects will not be affected. The example
below reduces the text size of all data cells by 3 points, down to a minimum of 9 points.

selectobjects objectinfo("type")="Data Cell"
changeobjects "textsize",
 maximum(9,objectinfo("textsize")-3)

textstyle

This option changes the text size of selected objects. Non text objects will not be affected. The text style
is a number that is created by adding up the numbers for each individual style from the table below.
For example, for bold italic text the style will be 3.

0 Plain
1 Bold
2 Italic
4 Underline
8 Outline
16 Shadow

The example below sets the style of all data cells to bold italic.

selectobjects objectinfo("type")="Data Cell"
changeobjects "textstyle",3

color

This option changes the color of the selected objects (see “Colors” on page 154). The example proce-
dure below changes any pure red objects on the current form into blue objects.

selectobjects objectinfo("color")=rgb(65535,0,0)
changeobjects "color",rgb(0,0,65535)

Option Description

Chapter 3:Programming Techniques Page 641
fillpattern

This option changes the fill pattern of the selected objects (see “Fill Pattern” on page 521 of the Pan-
orama Handbook). Patterns are 8 bytes of raw data (see “Raw Binary Data” on page 156). Here are some
formulas for typical patterns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally millions of patterns that can be
created. The example procedure below sets the Check Background object to a dark gray pattern.

selectobjects objectinfo("name")="Check Background"
changeobjects "fillpattern",radix(16,"DD77DD77DD77DD77")

linepattern

This option changes the line pattern of the selected objects (see “Line Pattern” on page 523 of the Pan-
orama Handbook). Patterns are 8 bytes of raw data (see “Raw Binary Data” on page 156). Here are some
formulas for typical patterns.

Formula Pattern

radix(16,"FFFFFFFFFFFFFFFF") black
radix(16,"00000000000000") white
"" none (transparent)
radix(16,"AA55AA55AA55AA55") 50% gray pattern
radix(16,"8822882288228822") light gray
radix(16,"DD77DD77DD77DD77") dark gray
radix(16,"8888888888888888") vertical lines
radix(16,"FF000000FF000000") horizontal lines
radix(16,"FF888888FF888888") cross-hatch

This list shows only a few of the possible patterns—there are literally millions of patterns that can be
created. The example procedure below sets the Check Background object to a 50% gray pattern (which
will display a dotted line).

selectobjects objectinfo("name")="Check Border"
changeobjects "linepattern",radix(16,"AA55AA55AA55AA55")

linewidth

This option changes the line width of the selected objects (see “Line Width” on page 525 of the Pan-
orama Handbook). The example below sets the line width of the Check Background object to 4 pixels.

selectobjects objectinfo("name")="Check Border"
changeobjects "linewidth",4

expandable

This option allows a procedure to make an object expandable (so that it will expand when printed in a
custom report, see “Variable Height Records” on page 1123 of the Panorama Handbook). Use -1 to make
the selected objects expandable and 0 to make the objects fixed height. This example makes every
auto-wrap text object on the current form expandable.

selectobjects objectinfo("type")="Auto-Wrap Text"
changeobjects "expandable",-1

Option Description

Page 642 Panorama Formulas & Programming
The changeobjects statement is designed to work closely with the selectobjects statement and the
objectinfo(function. See the previous section (“Modifying Selected Objects” on page 639) for several
additional examples of how these statements can work together.

Getting Information About Selected Objects

The selectobjects statement can select dozens or even hundreds of graphic objects. To get information
about one of these objects use the objectnumber statement. This statement has one parameter, a number
which specifies which selected object you want to get information about. After the objectnumber statement
the procedure should have one or more assignment statements that use the objectinfo(function to get
information about the object.

Suppose there are 5 objects selected. To find out the name of the first selected object (closest to the back) use
the procedure:

local objName
objectnumber 1
objName=objectinfo("name")

To find out the name of the last selected object (closest to the front) use the procedure:

local objName
objectnumber 5
objName=objectinfo("name")

If there are not enough selected objects to fulfill the request, the info("found") function will return false.
In other words, if there are only 3 objects selected and you try to get information about number 7,
info("found") will be set to false. The procedure below takes advantage of this feature to build a list of all
the names of all the SuperObjects in the current form.

local objectNames,X
X=1
objectselect objectinfo("type") beginswith "SuperObject"
loop

objectnumber X
stoploopif (not info("found"))
objectNames=sandwich("",objectNames,¶)+objectinfo("name")
X=X+1

while forever

expandshrink

This option allows a procedure to make an object expandable/shrinkable (so that it will expand or
shrink as necessary when printed in a custom report, see “The Expand/Shrink Option” on page 1130
of the Panorama Handbook). Use -1 to make the selected objects expand/shrinkable and 0 to make the
objects fixed height. This example makes every auto-wrap text object on the current form expand/
shrinkable.

selectobjects objectinfo("type")="Auto-Wrap Text"
changeobjects "expandshrink",-1

lock

This option can lock or unlock a graphic object (see “Locked Objects” on page 575 of the Panorama
Handbook). Use -1 to lock the selected objects and 0 to unlock the objects. This example locks every
object on the form.

selectallobjects
changeobjects "lock",-1

Option Description

Chapter 3:Programming Techniques Page 643
You can also use the objectinfo("count") function to find out how many objects are selected. Here is
another procedure that does the same job as the last example but in a slightly different way.

local objectNames,maxObject,X
X=1
objectselect objectinfo("type") beginswith "SuperObject"
maxObject=objectinfo("count")
loop

stoploopif X>maxObject
objectnumber X
objectNames=sandwich("",objectNames,¶)+objectinfo("name")
X=X+1

while forever

The example below finds the name of the top object the user clicked on. The procedure uses the
inrectangle(function to determine which object (if any) was clicked on. (Note: Presumably this proce-
dure would be triggered by a transparent push button which covers all the other objects. This button is not
counted as the object the user clicked on.)

local hitPt, hitObject
hitPt=xytoxy(info("click"),"Screen","Form")
selectobjects inrectangle(hitPt,objectinfo("rectangle")) and

objectinfo("type") ≠ "Button"
objectnumber objectinfo("count
hitObject=objectinfo("name")

Object ID Values

Each graphic object has a unique ID value that can be used to identify that object. The ID value is a number
that is guaranteed to be unique for that object only. (However, if you edit the form in graphic editing mode
the ID value may change.)

A procedure can use the objectinfo("ID") function to find out the ID of an object. The procedure can
store the ID value and later use it with the objectid statement to re-select the object. For example, here is a
procedure that finds and stores the ID of an object the user clicks on (see previous section for more details on
this example.)

global hitObject
local hitPt
hitPt=xytoxy(info("click"),"Screen","Form")
selectobjects inrectangle(hitPt,objectinfo("rectangle")) and

objectinfo("type") ≠ "Button"
objectnumber objectinfo("count")
hitObject=objectinfo("ID")

Later another procedure can re-select this object with a single statement.

objectid hitObject

You can also use the object ID value to determine the relative front-to-back order of two or more objects.
Objects that are closer to the front will have higher ID values, while objects that are closer to the back will
have lower ID values.

Redrawing an Object

It’s usually not necessary to explicitly redraw an object (or objects), but if it is necessary you can do so with
the drawobjects statement. This statement has no parameters, and must be preceded by the object,
selectobjects, or objectid statements. This example redraws the object called Swiss Cheese (see
“Selecting an Object by Name” on page 633).

object "Swiss Cheese"
drawobjects

Page 644 Panorama Formulas & Programming
This example redraws all of the objects in the current form that are displayed in the font Courier (see “Select-
ing Multiple Objects” on page 633).

selectobjects objectinfo("font")="Courier"
drawobjects

The drawobjects statement normally redraws objects in the current window, but it may be used with
“magic windows” to redraw objects in other open windows (see ““Magic” Windows” on page 456).

Dragging a Rectangle

Dragging is the standard interface technique for moving items from one place to another. A Panorama proce-
dure can allow a user to drag a gray rectangle from one spot to another spot. When the user releases the
mouse, the procedure can be programmed to move an item or to copy data to another spot or another data-
base (drag and drop).

The key to dragging is a special statement called draggraybox. This statement is designed to be used in a
procedure that is triggered by a transparent button with the click/release option turned off. When the user
presses on the button, the procedure is triggered immediately. The procedure calculates size and location of
the original rectangle to drag around, as well as the limits to where this rectangle can be dragged. Then the
draggraybox statement takes over. As long as the user continues to hold down the mouse a gray box will
follow the mouse around. (Note: Mac OS X only allows you to drag within the current window.) When the
user lets up on the mouse button the draggraybox statement tells the procedure the final position of the
box. The procedure can then take whatever action is appropriate (moving a graphic object, copying data, etc.)

The draggraybox statement has four parameters. The first three of these parameters are rectangles, the
fourth is a number.

draggraybox dragrectangle,limits,slop,axis

The dragrectangle parameter is the original co-ordinates of the rectangle the user will drag around. Often
these co-ordinates are the same as the co-ordinates for the button the user pressed on. (Note: the co-ordinates
for this rectangle, along with the next two, are relative to the upper left hand corner of the screen.) This
parameter should be a field or variable (not a more complex formula) because after the user has released the
mouse Panorama will copy the final co-ordinates into this parameter.

The limits parameter is the co-ordinates of a boundary rectangle that defines how far the dragrectangle can
be dragged in each direction. For example if you don’t want the user to be able to drag the box outside of the
current window you should supply the co-ordinates of the current window for limits. If the limits parameter
is empty ("") there will be no limit on how far the rectangle can be dragged. (Note: When using Mac OS X
you cannot drag outside of the current window, even if the limit parameter is empty.)

The slop parameter is the co-ordinates of a boundary rectangle past the limits boundary. If the user drags the
mouse beyond the slop rectangle the gray rectangle will disappear completely (until the user drags back
inside the slop rectangle). If the slop parameter is empty ("") it will be the same as the limits boundary rect-
angle.

The axis parameter allows the procedure to restrict the direction the rectangle can be dragged to either hori-
zontal or vertical. If the axis parameter is 0 the rectangle can be dragged in any direction. If the axis is 1 the
rectangle can only be dragged horizontally. If the axis is 2 the rectangle can only be dragged vertically.

Chapter 3:Programming Techniques Page 645
Here is a procedure that allows the user to drag a button around the window.

When the user releases the mouse, the procedure moves the button to the new location.

(Remember, this procedure should be triggered by a button with the click/release option turned off.)

➊ local drag,insidewindow
➋ drag=info("buttonrectangle")
➌ selectobjects xytoxy(drag,"s","f")=objectinfo("rectangle")
➍ insidewindow=rectangle(

rtop(info("windowrectangle"))+20,
rleft(info("windowrectangle"))+26,
rbottom(info("windowrectangle"))-16,
rright(info("windowrectangle"))-16)

➎ draggraybox drag,insidewindow,info("windowrectangle"),0
➏ if drag="" stop endif
➐ drag=xytoxy(drag,"s","f")
➑ changeobjects "rectangle",drag

This example is a bit complicated, so let’s take a look at it statement by statement.

➊ We start by allocating the variables we need: drag and insidewindow.

➋ This statement finds the original location of the button, relative to the upper left hand corner of the screen.

Page 646 Panorama Formulas & Programming
➌ The selectobjects statement selects the button the user clicked on. It identifies the button by its location on
the form. If there are any other objects with the exact same dimensions, they will be selected (and moved)
also.

➍ This assignment calculates the inside dimensions of the window. It takes the raw window dimensions and
moves the top down by 20 pixels (for the drag bar), the left side over by 26 pixels (for the tool palette), and the
bottom and right sides in by 16 pixels (for the scroll bars). This will define the limits beyond which the button
cannot be dragged.

➎ Here’s where dragging actually takes place. The parameters define the starting point for the drag (the orig-
inal button location), the limits of dragging (the inside boundary of the window) and the limits beyond
which the gray box completely disappears (the outside boundary of the window). The final parameter indi-
cates that the button may be dragged in any direction.

➏ If the user dragged the button completely out of the window the drag variable will be set to "". In that case
the procedure simply stops without moving anything.

➐ The new co-ordinates for the button are in drag. However, these co-ordinates are relative to the upper left
hand corner of the screen, and the changeobjects statement needs them relative to the upper left hand corner
of the form. The xytoxy(function will convert the co-ordinates.

➑ The changeobjects statement moves the button (and any other objects with the same co-ordinates to the
new position.

With a few changes the procedure can be modified to move multiple objects at once.

Chapter 3:Programming Techniques Page 647
With this new procedure when the mouse is released all of the objects inside the boundaries of the button will
move also.

This procedure moves all the objects inside the boundaries of the button.

➊ local drag,dragstart,insidewindow,deltaV,deltaH
➋ drag=info("buttonrectangle")
➌ dragstart=drag
➍ selectobjects

unionrectangle(xytoxy(drag,"s","f"),objectinfo("rectangle"))
=xytoxy(drag,"s","f")

➎ insidewindow=rectangle(
rtop(info("windowrectangle"))+20,
rleft(info("windowrectangle"))+26,
rbottom(info("windowrectangle"))-16,
rright(info("windowrectangle"))-16)

➏ draggraybox drag,insidewindow,info("windowrectangle"),0
➐ if drag ="" stop endif
➑ deltaV=rtop(drag)-rtop(dragstart)
➒ deltaH=rleft(drag)-rleft(dragstart)
➓ changeobjects "rectangle",rectangle(

rtop(objectinfo("rectangle"))+deltaV,
rleft(objectinfo("rectangle"))+deltaH,
rbottom(objectinfo("rectangle"))+deltaV,
rright(objectinfo("rectangle"))+deltaH)

This procedure is similar to the last example, but with a couple of twists. Statement ➍ , selectobjects, uses
a trick with the unionrectangle(function (see “Rectangles” on page 149) to select all the objects inside the
button. If the union of the button rectangle and object X‘s rectangle is equal to the button’s rectangle then
object X is completely inside the button rectangle.

The other twist is in how the objects are moved after the drag is completed. The procedure can’t simply
change all the objects to the new drag rectangle, because each object has a different position within the but-
ton. Instead, the procedure calculates the vertical and horizontal offsets between the old position and the new
position (statements ➑ and ➒) and then adds this offset to each of the selected objects (statement ➓).

Page 648 Panorama Formulas & Programming
Movable Dividers

Using the draggraybox statement you can create a movable divider between two elements on a form. The
user can slide this divider to change the division point between the two form elements. To illustrate this con-
sider the form shown below. The form has three sliding dividers that divide the four different sections.

Each sliding divider consists of a button and a rectangle. When you press on the button a procedure is trig-
gered (see below). That procedure allows the divider to move left or right. For example you could slide the
divider between the purple and blue sections to the right.

When the mouse is released the purple section expands and the blue section gets smaller.

The dividers can be moved at any time to adjust the form as his or her needs change.

Building a sliding divider like this requires three (optionally four) graphic objects. First are the two primary
elements being divided. For our example we’re assuming that these two elements are side-by-side and are
the same height. Between the two main elements is a small gap. This gap should be filled with a regular
pushbutton (see “Push Buttons” on page 823 of the Panorama Handbook). The pushbutton must exactly match
the gap between the two objects, so that the edges of the pushbutton are exactly on top of the edges of the pri-
mary elements. The pushbutton must have the click/release option turned off (see “Click/Release” on
page 829 of the Panorama Handbook). You can optionally include another graphic element (for example a black
rectangle or a flash art object) with the same dimensions as the pushbutton.

sliding divider
(consists of button and rectangle)

Chapter 3:Programming Techniques Page 649
Here is the procedure that allows the user to slide the divider back and forth.

local drag,dragstart,deltaV,deltaH,slider,slidebox
drag=info("buttonrectangle")
dragstart=drag
slider=xytoxy(drag,"s","f")
slider=rectangle(

rtop(slider),
rleft(slider),
rbottom(slider)+1,
rright(slider)+1)

selectobjects
intersectionrectangle(xytoxy(drag,"s","f"),objectinfo("rectangle"))

≠rectangle(0,0,0,0)
slidebox=xytoxy(objectinfo("boundary"),"f","s")
slidebox=rectangleadjust(slidebox,0,16,0,-16)
draggraybox drag,slidebox,info("windowrectangle"),1
if drag="" stop endif
deltaV=rtop(drag)-rtop(dragstart)
deltaH=rleft(drag)-rleft(dragstart)
changeobjects "rectangle",

adjustxy(objectinfo("rectangle"),slider,deltaV,deltaH)

In this procedure, the variable slider is the dimensions of the button in the gap. The variable slidebox is the
area the slider can slide back and forth in. This area includes most of the two primary elements, with a 16
pixel buffer on each end.

The last statement of this procedure uses the adjustxy(function to actually adjust the slider and the pri-
mary elements (see “Rectangles” on page 149). This function has four parameters: the original rectangle, a
boundary rectangle, the vertical offset and the horizontal offset. The function takes the original rectangle and
adjusts each corner of the rectangle by the offsets, but only if the corner is inside the boundary rectangle. If a
corner is outside the boundary rectangle, it is not adjusted. Using this function it is easy for the procedure to
shift the slider and gap between the two primary elements without shifting the outside edges of the primary
elements.

You may have noticed that the procedure does not directly refer to either the primary objects or the slider
objects. Instead it refers to everything by position. You can use this same procedure to drive several sliders in
your form, or even in several forms. You can also stack several primary elements end-to-end with sliders in
between each. The user can move the sliders back and forth any way they want to adjust the size of each pri-
mary element.

Here is an example of a more practical use for this procedure. The invoice contains four columns.

Page 650 Panorama Formulas & Programming
The width of each column may be adjusted at any time simply by dragging on a divider (without going into
graphics mode).

Drag and Drop

Panorama supports the ability to drag data from one location to another (usually called drag-and-drop). On
MacOS computers you can drag data within Panorama, and also drag data from other applications to Pan-
orama or drag data from Panorama to other applications. On Windows systems you can only drag within
Panorama, drag and drop between Panorama and other applications is not supported.

Drag Items and Flavors

It’s possible to drag all sorts of data: text, images, files, sounds, etc. It’s possible to drag more than one item at
a time (for example several files from the desktop). It’s also possible to drag more than one type of data at a
time per item, for example an image along with text describing the image. Each type of data being dragged is
called a flavor. Flavors are identified by a four character code. The table below lists some of the common fla-
vors you may encounter.

You can also invent your own drag flavors. Just give them a unique four letter code. Of course only your
application will understand your custom flavor — you won’t be able to drag items using your custom flavor
to any other application. (Since you can drag more than one flavor at once you can get around this by also
including one of the standard flavors, if necessary.)

Flavor Description

TEXT Normal text

PICT Picture

hfs File or folder

furl UNIX file path

url Web URL

vCrd VCard (contact info)

Chapter 3:Programming Techniques Page 651
The Dropalyzer Wizard

The Dropalyzer wizard is a handy tool for analyzing, writing and testing drag and drop procedures. You’ll
find this wizard in the Developer Tools submenu of the Wizard menu. When you first open this wizard it is
completely blank, but you can drag anything you want onto this wizard and it will display some information
about what was dropped. The illustration below shows the display if you drop two folders from the Finder
onto the Dropalyzer wizard.

The wizard shows you that two items were dropped on it. Each item has two flavors, hfs and furl.

Any time you are wondering what is really going on with a drag and drop problem the Dropalyzer wizard is
a lifesaver. If you are trying to figure out what an application is giving you just drop the items on the wizard.
If you are trying to debug a procedure that drags from Panorama just drag to the Dropalyzer wizard and
you’ll see exactly what your procedure is generating.

Page 652 Panorama Formulas & Programming
Dragging Items from Panorama

Dragging data from Panorama always starts with clicking on a button. To allow dragging, the button’s click
release option must be turned off.

You can use a regular button, but usually you’ll want to use a graphical button. You can either use a Flash
Push Button (see “Flash Art™ Push Button SuperObjects™” on page 833 of the Panorama Handbook) or a reg-
ular push button with the Transparent option turned on. If you are using a transparent button just lay it on
top of the graphic image or icon.

Like any push button you must set up a procedure that is triggered by the button. This procedure will collect
the information to be dragged and start the actual drag operation. The actual code in this procedure depends
on whether you are dragging one or more flavors.

Dragging a Single Flavor

If you are only dragging a single flavor the procedure only needs one statement to start the drag: DragDrop.

dragdrop rectangle,flavor,data

Rectangle is the dimensions of the dragged area in global co-ordinates. If you want to drag an area that is the
same size as the button just use the info("buttonrectangle") function.

Flavor is the four letter flavor code for the data being dragged, for example "TEXT" or "PICT".

Data is the actual data to be dragged. If this is text you can simply supply a formula to calculate the text.

Here is an example that drags the current date. The form contains a graphic covered by a transparent push
button.

Chapter 3:Programming Techniques Page 653
The button is designed to trigger a procedure named .DragDate. This procedure has a single statement:

DragDrop info("buttonrectangle"),"TEXT",datepattern(today(),"mm/dd/yy")

To copy the date to another location, click on the calendar and begin to drag.

When you drop this item on any application that accepts drag and drop text the current date will be trans-
ferred in the format mm/dd/yy, for example 5/30/06.

Dragging Multiple Flavors

If you want to include more than one flavor a multi-step procedure is required. The first step is the
DragDrop statement (see above), but the Flavor and Data parameters must be left blank (""). This tells Pan-
orama that there are additional flavors to follow.

The next step is to add flavors (with data) to the drag. This is done with the DragDropData statement,
which has two parameters: Flavor and Data. You can add as many flavors as you like by simply repeating the
statement over and over.

Flavor is the four letter flavor code.

Data is the actual data to be included in the flavor.

Once all of the flavors have been added the final step is to use the StartDragDrop statement. This tells Pan-
orama that all of the flavors have been specified and it should start the drag operation. This statement has no
parameters.

Here is an example that drags today's date in two formats:

DragDrop info("buttonrectangle"),"",""
DragDropData "TEXT",datepattern(today(),"Month ddnth, yyyy")
DragDropData "DATE",datepattern(today(),"MM/DD/YY")
StartDragDrop

current date

Page 654 Panorama Formulas & Programming
Dragging from this button to the Dropalyzer now shows that both flavors have been included in the drag.

Note: The Dropalyzer wizard doesn’t know how to display the contents of the DATE flavor, but it does show
that it exists and contains 8 characters.

Receiving Dragged Data

What happens when an item is dragged and dropped onto a Panorama window? If the window is not a stan-
dard form window nothing will happen. Panorama does not support dropping on a data sheet or view-as-list
window, only a standard single record form window. Any data dropped on other types of windows will be
ignored.

If the window dropped on is a standard form window, Panorama checks to see if the drop was on top of an
object. If not, the drop is ignored.

If the data was dropped on an object, Panorama checks the name of the object. If the object name does not
begin with DROP[, the dropped data is ignored.

If the object name contains one or more flavors followed by] after DROP (for example DROP[TEXT]), Pan-
orama checks to see if data being dropped is in the list of flavors. If not, the dropped data is ignored. If the
object name begins with DROP[], then any kind of flavor will be accepted.

If the all these criteria are met then Panorama triggers the .DropProcedure procedure. This procedure pro-
cesses the incoming dropped data, we’ll discuss this procedure in more detail in a moment.

As you can see, the object name is an important component of drag and drop. Only objects with the proper
name can receive dropped data. To review, you can set an objects name by selecting the object and choosing
Object Name from the Edit menu, or by clicking on the object name in the Graphic Control Strip.

Any text in the object name after the] can be retrieved with the info("droptrigger") function. This
allows the .DropProcedure procedure to figure out where on the form the data was dropped. The procedure
can also find out the entire object name with the info("dropobject") function.

The .DropProcedure

The .DropProcedure procedure can use several statements and functions to find out information about the
drag:

info("droptrigger") returns the trigger of the object that received the drag.

Chapter 3:Programming Techniques Page 655
info("dropobject") returns the name of the object that received the drag (not just the trigger). This is
handy if you use a Text Editor SuperObject as a drop object, allowing you to easily write a single procedure
that allows you to drop on multiple objects.

info("dropdatabase") returns the name of the database that was dropped on.

info("dropwindow") function returns the name of the window that was dropped on. Since this may not
be the current window, the first step usually taken by the .DropProcedure is to make this window current
with this statement:

window info("dropwindow")

info("dropform") returns the name of the form that was dropped on

GetDragItemCount variable This statement returns the number of items in the drag. For example, if
you select 5 items in the Finder and then drag them this statement will return 5. Items are numbered starting
with 1.

GetDragFlavors itemnum,array This statement returns a carriage return delimited array of flavors for a
particular item. Each array element is 4 characters long. The item # must be between 1 and the number of
items that were dragged.

GetDragData num,flavor,variable This statement returns the data in a flavor.

DragComplete This statement frees the scratch memory used when receiving a drag. After you use this
statement you can no longer use the statements and functions above (until the next drag is received).

The Sales database example included with Panorama (in the Guided Tour submenu of the Wizard menu)
allows you to drag items from the Catalog to the invoice. Here is the .DropProcedure for this database.

The procedure starts by making sure the invoice window is the top window (the window statement). It then
checks the drop trigger to see if the data was dropped on the contact info section of the form. If so, it uses the
dropimportvcards statement (described later in this chapter) to import the Vcard info that was dropped (if
any). Otherwise it gets the text that was dropped into a variable named data, and passes that to the .AddItem
procedure. This procedure adds the item to the invoice.

Page 656 Panorama Formulas & Programming
Dropping Files and Folders on Panorama

Want your Panorama application to process files and/or folders that are dropped onto one of your forms?
The dropfromfinder statement will do much of the work for you!

dropfromfinder filter,filelist

The filter parameter specifies types of files that you want to accept. The parameter must be 1 or more four
character type codes, for example TEXT, PICT, etc. If no type codes are supplied then all files will be accepted.
Any folders dropped are normally expanded (including subfolders) into a list of files contained in the folders.
However, if the filter begins with ƒ folders will not be expanded. In that case you would be responsible for
checking for and processing folders yourself.

The files parameter is the name of a field or variable. When the statement is complete this field or variable
will contain a carriage return separated list of every file that was dropped, including the path of the file. If
any folders were dropped the statement will automatically list every file within the folder, including within
subfolders (unless the filter parameter begins with ƒ).

The example .DropProcedure below will accept files dropped from the finder. Any Picture files (PICT) will be
added to the database in the Photo field.

local pictFiles,pf,n
dropfromfinder "PICT",pictFiles
n=1
loop

pf=array(pictFiles,n,¶)
stoploopif pf=""
addrecord
Photo=pf
n=n+1

while forever

The photos added to the database could be displayed with a Flash Art SuperObject.

VCard Drag and Drop

Once generic fields have been set up for a database (see ““Generic” Fields” on page 230 of the Panorama
Handbook) it is very easy to add drag and drop support so that you can exchange data with Apple’s Address
Book (or other databases or VCard enabled applications) without using a wizard.

Dragging VCard information is just like anything else, you set up a button and a procedure. The procedure
only needs a single statement:

dragvcard

That's all there is to it! Now you can drag from your button to any VCard enabled application.

Chapter 3:Programming Techniques Page 657
Adding the ability to drop VCards on a form is not much more difficult. The object for dropping must be set
up with the proper object name, as always. This procedure only also needs only one statement

dropimportvcards

(If your database can handle other types of data dropped on it you’ll need a more complex procedure that
decides what has been dropped. If you detect that a VCard has been dropped, use the dropimportvcards
statement.) Now you can drop VCards on this object to import them into the database.

Remember, you must set up Generic Fields for this database before you use these statements. You’ll get all
kinds of error messages if you don’t set Generic Fields first.

Page 658 Panorama Formulas & Programming
Drag and Drop (Obsolete Method)

This section describes an older technique for drag and drop that uses draggraybox. Since this statement can
no longer be used to drag outside of the current window we no longer recommend this technique. We are
retaining this section of the manual to help you understand any old databases that you have that may use
this method. The technique will continue to work on OS 9 and Windows, but we recommend that you con-
vert to the new method as soon as possible.

Dragging and dropping involves two active areas: a launching pad and a landing zone. Dragging starts when
the user presses the mouse on an active launching pad, which is usually a pushbutton with the click/release
option turned off. The user drags from the launching pad to a landing zone, an area that can receive the data
from the launching pad. The landing zone may be on the same form as the launching pad, or it may be on a
different form. A single launching pad can have several possible landing zones. Here is a form with three
“launching pads,” one per record.

“launch pads”

Chapter 3:Programming Techniques Page 659
The launch pads all come from a single pushbutton on the data tile in this view-as-list form (see “View-As-
List Forms” on page 899 of the Panorama Handbook).

The launching pad is a pushbutton. What defines a landing zone? A landing zone is whatever your proce-
dure defines it to be. It could be an object, a collection of objects, or even an entire window.

The launch pad pushbutton triggers a procedure. This procedure uses the draggraybox statement to let the
user drag to another location. When the user releases the mouse, the procedure must decide whether or not
the mouse is over a suitable landing zone. The procedure can use the findwindow(function to find out
what window the mouse is on top of (see “FINDWINDOW(” on page 5250 of the Panorama Reference). If this
is a window that can contain a landing zone the procedure can bring that window to the front and then use
the selectobjects statement to find out if the mouse is over an object that is a suitable landing zone (this
step is unnecessary if the whole window can be a landing zone). If the mouse is over a landing zone, the pro-
cedure then copies the data appropriately.

pushbutton on top
of flash art

Page 660 Panorama Formulas & Programming
Now that you are familiar with the theory of drag and drop, let’s take a look at some practical examples.
We’ll start with a catalog and invoice database, like the one’s shown below. The goal is to be able to drag an
item from the catalog onto the invoice and have that item added to the invoice, as shown in this illustration.

Here is the procedure that is triggered by the pushbutton. Remember, the pushbutton must have the click/
release option turned off.

local drag,landingWindow,landingDatabase,landingFields
local dragItem
dragItem=Item /* copy the data for later */
drag=info("buttonrectangle") /* initial co-ordinates of box */

/* drag the box around */
draggraybox drag,"","",0
if drag="" stop endif
landingWindow=findwindow(info("mouse"))

/* if we landed (mouse up)outside a window then stop */
if landingWindow="" stop endif

/* what database did we land on? */
landingDatabase=stripchar(landingWindow[1,":"],"!9;ÿ")

/* if landed in catalog then stop */
if landingDatabase=info("databasename") stop endif

/* does the database we landed on contain the right fields? */
landingFields=dbinfo("fields",landingDatabase)
if (not (landingFields contains "Description1" and landingFields contains "Price1" and

landingFields contains "Quantity1"))
message "Cannot drag item to this database" stop endif

/* copy the data from the catalog into the invoice */
window landingWindow
emptyfield "QuantityΩ"
QuantityΩ=1
DescriptionΩ==dragItem

Chapter 3:Programming Techniques Page 661
The procedure starts by copying the data that may be dragged into local variables (dragItem). Then it
allows the user to drag. The drag limits are set to "", so the user can drag anywhere on the screen.

After the user releases the mouse, the procedure continues. First, it checks to see what window (if any) the
user dragged to. If the user did drag to a window, the procedure strips off any extra information to figure out
the name of the database. If the user released the mouse over the original database (the catalog) then the drag
and drop is aborted. Otherwise, the procedure checks to see if the database has Description, Price and
Quantity line item fields. If not, the drag and drop is aborted. If it does, the procedure brings the new win-
dow to the front and copies the data into the appropriate fields. (In this case, the landing zone is the entire
window, so no further checking is required once the procedure has determined that the database the user
dragged to can accept the data.

The following illustrations show the final result. When you press on one of the buttons a gray rectangle
appears. This gray rectangle can be dragged over the Invoice database.

gray outline of button follows mouse as you drag

Page 662 Panorama Formulas & Programming
It doesn’t matter where you release the mouse, as long as it is somewhere over the Invoice database. When
the mouse is released the Invoice window comes to the front and the new item is added to the invoice. By
using the double equals sign (see “Triggering Automatic Calculations” on page 523) the procedure triggers
the automatic calculations built into the Invoice database to lookup the price and calculate the line total, sub-
total, tax and grand total (as shown by the arrows).

Chapter 3:Programming Techniques Page 663
Our second drag and drop example has one launching pad, a List SuperObject, and four landing zones, each
a text display SuperObject. The finished example will allow items from the list to be dragged into one of the
four landing zones.

When the mouse is released the item is dropped onto the list.

Page 664 Panorama Formulas & Programming
Here is the procedure that performs this drag and drop operation. It assumes that the four Text Display
Objects that are acting as landing zones are named DragList1, DragList2, DragList3 and DragList4 (see
“Object Type/Object Name” on page 533 of the Panorama Handbook) and that they are configured to display
fileglobal variables with these same four names (the variables must be created in the .Initialize procedure).

/* the Click/Release option must be turned OFF!!! */

local cell,cellbox,newcell,mouse,mouseStart,landingObject,newWorkList
mouseStart=info("click")
cell=1

/* what cell did user click on */
superobject "Work List","FindCell",cell,dragItem

/* what are the dimensions of this cell */
superobject "Work List","cellrectangle",cell,cellbox

/* we need screen relative dimensions, not window relative */«
cellbox=xytoxy(cellbox,"w","s")

/* drag the box around */
draggraybox cellbox,info("windowrectangle"),info("windowrectangle"),0

/* if dragged outside of window, stop */
if cellbox="" rtn endif

/* where did we end up? */
mouse=xytoxy(info("mouse"),"s","w")

/* did we land on an object? */
selectobjects inrectangle(mouse,objectinfo("rectangle"))
objectnumber 1
landingObject=objectinfo("name")
selectnoobjects

/* if landed on one of the lists, add item to the list */
if landingObject beginswith "DragList"

/* isn't execute cool?
 this will generate something like this:

DragList1=sandwich("",DragList1,¶)+"Carbon" showvariables DragList1

*/
execute landingObject+{=sandwich("",}+landingObject+{,¶)+"}+

dragItem+{" showvariables}+landingObject

endif

Chapter 3:Programming Techniques Page 665
With a slight addition this procedure can also allow the main list itself to be re-arranged by dragging around
the items. For example, the Carbon could be dragged up to the top of the list.

When the mouse is released, Carbon moves to the top spot and all of the other items move down.

This capability can be added by appending the steps below to the previous procedure.

/* if we landed on the list itself, re-arrange the order of the list */
if landingObject = "Work List"

/* what cell did we land on? */
superobject "Work List","pointtocell",mouse,newcell

/* if didn't actually drag (just stayed in the same place) then stop */
if cell=newcell stop endif

/* check if we are off the end of the list */
if newcell≥arraysize(workList,¶)

newcell=newcell-1 /* make adjustment to stay in the list */
 newcell=0 /* add to end of list */

endif

 /* delete dragged item from list */
newWorkList=arraydelete(workList,cell,1,¶)

/* add dragged item back into list in the new position */
if newcell>0

newWorkList=arrayinsert(newWorkList,newcell,1,¶)
newWorkList=arraychange(newWorkList,dragItem,newcell,¶)

else
newWorkList=newWorkList+¶+dragItem

endif

/* update and display the list in the new order */
workList=newWorkList
superobject "Work List","FillList"
showvariables dragItem

endif

Because Panorama uses a procedure to implement drag and drop, the possibilities are endless.

Page 666 Panorama Formulas & Programming
Program Control of SuperObjects™

In addition to the general graphic program techniques described in the previous sections (changing position
and size of objects, font, color, etc.) most types of SuperObjects™ have an additional set of specific commands
that it can respond to. For example, a Text Editor SuperObject can be commanded to select a particular sec-
tion of text, while a List SuperObject can be commanded to add or remove items from the list it displays. To
send a command to a specific SuperObject a procedure must use the superobject statement.

superobject <name of object>,<command>,<additional parameters>

To send a command to a SuperObject the object must have a name. See “Object Type/Object Name” on
page 533 of the Panorama Handbook to learn how to set or change the name of an object. The form shown
below contains two Text Editor SuperObjects, one named Alpha and the other named Beta (these names are
completely arbitrary, you can use whatever names you like). In this case the objects have been configured to
edit database fields A and B respectively.

This short procedure sends two commands to the Alpha object (the left object). The first command tells the
object to open itself for editing (the same as clicking on it). The second command tells the object to select char-
acters 12 through 24 (the same as dragging to select these characters.)

superobject "Alpha","Open"
superobject "Alpha","SetSelection",12,24

Here’s the result of running this procedure.

click here to change object name

the name of this object is Alpha
the name of this object is Betathe field edited by this object is A

the field edited by this object is B

Chapter 3:Programming Techniques Page 667
By changing the first parameter of the superobject statement the procedure can control which object the
commands are sent to.

superobject "Beta","Open"
superobject "Beta","SetSelection",12,24

Here’s the result of running this revised procedure.

Another option is to specify the object to be manipulated in a separate object, selectobjects or
objectid statement (see “Selecting an Object by Name” on page 633, “Selecting Multiple Objects” on
page 633 and “Object ID Values” on page 643). The command will be sent to every selected object in the cur-
rent form.

object "Beta"
superobject "","Open"
superobject "","SetSelection"

The advantage of this technique is that it makes it possible to control what objects are affected on the fly. For
example you could send a command to all blue objects, or all text editor objects that appear in 12 point Times-
Roman.

The superobject statement normally sends a command to an object(s) in the current window. If you want
to send a command to an object in a different window use the magicwindow statement (see ““Magic” Win-
dows” on page 456).

The Active SuperObject

In the case of SuperObjects that edit text (Text Editor, Word Processor) only one object can be “active” at a
time. The active object is the object that is currently being edited. If your procedure attempts to send a com-
mand to an editor SuperObject that is not active the procedure will stop with an error. For example the fol-
lowing procedure will not work.

superobject "Alpha","Open"
superobject "Beta","SetSelection",12,24

Sometimes you may want a procedure to work with whatever SuperObject happens to be open. This can be
done with the activesuperobject statement, which always sends commands to the currently active
SuperObject. Here is a procedure that will select all of the text that is currently being edited.

activesuperobject "SetSelection",0,-1

Page 668 Panorama Formulas & Programming
If the text on the left is being edited…

then running this procedure selects all of the text on the left.

But if the text on the right is being edited, then running this procedure selects all of the text on the right.

A procedure can find out which text editor object is active (if any) with the info("activesuperobject")
function. This function will return the object name of the active object, or "" if no text is currently being
edited.

A procedure can close the currently open text editor object with the superobjectclose statement. This
statement checks to see if any text editing object (Text Editor or Word Processor) is currently open, and if so,
closes it. If none is open, the procedure simply continues. This statement is often useful at the beginning of a
procedure where you need to make sure that no text editing is happening before continuing with the proce-
dure.

Chapter 3:Programming Techniques Page 669
Accessing and Modifying a SuperObject’s Internal Data

Most SuperObject’s contain internal data for options and object status. For example a matrix object contains
data that specifies the number of rows and columns, while a Super Flash Art object has internal data control-
ling how the image is aligned within the object. The objectinfo(function and changeobjects statement
each have a “back door” that allows you to access, and in some cases modify this internal object data. Each
internal data item is identified with a special identifier that may be used to access the data item. This identi-
fier always begins with a # symbol, for example —

#SUPER MATRIX COLUMNS
#SUPER MATRIX ROWS
#SUPER FLASH ART ALIGNMENT

A procedure can find out what the current value of an internal data item is by using the objectinfo(func-
tion with the identifier for that data item. Here is an example procedure that finds out the number of rows
and columns in the SuperObject Matrix named Photo Matrix.

local mCols,mRows
object "Photo Matrix"
mCols=objectinfo("#SUPER MATRIX COLUMNS")
mRows=objectinfo("#SUPER MATRIX ROWS")

Some (but not all) internal data items can be modified by using the changeobjects statement with the
identifier for that data item. Here is an example that sets the Photo Matrix object to 3 rows by 4 columns.

selectobjects objectinfo("name")="Photo Matrix"
changeobjects "#SUPER MATRIX ROWS",4
changeobjects "#SUPER MATRIX COLUMNS",3

This mechanism is truly a “back door” — it changes the internal data but it does not cause the object to
redraw if necessary. It’s up to you as the procedure writer to force the object to redraw somehow, perhaps
using the showpage statement or by overlaying a Text Display SuperObject with a variable so that a
showvariables statement forces both objects to redraw.

This mechanism is a “back door” in another sense as well — it doesn’t do any error checking. For some inter-
nal data items you may be able to change the value to something that doesn’t make sense, does not work, or
even causes a crash. Be careful, and save your work often.

Internal Data Types

Internal data items come in several flavors, as shown in this table.

When changing an internal data type you must be careful to supply the correct type of data.

Type Description

Bit This is a single binary digit, either 0 (off) or -1(on)

Byte This is a number from 0 to 255 (8 bits)

Word This is a number from 0 to 65,535 (16 bits)

Long Word This is a number from 0 to 2,100,000,000 (32 bits)

Text This is a string of characters

Page 670 Panorama Formulas & Programming
Text Editor SuperObject Commands

The Text Editor SuperObject understands about a dozen commands that can be sent to it with the
superobject or activesuperobject statements in a procedure (see “Program Control of SuperOb-
jects™” on page 666). This table describes each of these commands in detail.

Command Parameters Description

"Open"

This command opens the SuperObject for editing, if it is not already
active. This command is the equivalent of clicking on the object to start
editing it. Since the object isn’t active yet, you can’t use the activesuper-
object statement. The example below opens the Memo SuperObject.

SuperObject "Memo","Open"
if info("ActiveSuperObject")≠"Memo"

beep
stop

endif

If another data cell or SuperObject is currently active, it’s possible that
Panorama won’t be able to open the SuperObject. If there is an error
while attempting to close the currently active item (for example, incorrect
date format or an illegal character in a number), the user may choose to
cancel and re-edit the incorrect data. The example above checks to make
sure that the SuperObject has really been opened for editing—if not, the
procedure beeps and stops.

"Close"

This command closes the SuperObject. This is equivalent to pressing the
Enter key.

If there is an error in the data that was being edited (for example, incor-
rect date format or an illegal character in a number), the user may choose
to cancel and re-edit the incorrect data. The procedure below checks for
this and stops if this happens.

ActiveSuperObject "Close"
if info("ActiveSuperObject")≠""

stop
endif

An alternate method for closing the currently active SuperObject is to use
the SuperObjectClose statement. This statement, which has no parame-
ters, simply closes the currently active SuperObject, if any. Unlike the
"Close" command, the SuperObjectClose statement will not cause an
error if there is no SuperObject currently open for editing.

"Cut"

This command copies the currently selected text to the clipboard, then
deletes the selected text. This is the same as choosing Cut from the Edit
Menu. (Technical factoid: The Edit menu actually works by sending this
command to the currently active SuperObject.)

"Copy"

This command copies the currently selected text to the clipboard, but
does not delete the text. This is the same as choosing Copy from the Edit
Menu. (Technical factoid: The Edit menu actually works by sending this
command to the currently active SuperObject.)

"Paste"

This command pastes the text in the clipboard into the text being edited.
The new text will replace any currently selected text, or the text will be
inserted at the current insertion point if no text is currently selected. This
is the same as choosing Paste from the Edit Menu. (Technical factoid: The
Edit menu actually works by sending this command to the currently
active SuperObject.)

"Clear"

This command deletes the selected text (without copying it to the clip-
board). This is the same as choosing Clear from the Edit Menu. (Technical
factoid: The Edit menu actually works by sending this command to the
currently active SuperObject.)

Chapter 3:Programming Techniques Page 671
"GetSelection" Start,End

This command gets the start and end points of the currently selected text.
For the purpose of the GetSelection command (and the SetSelection com-
mand) each character is numbered, starting with zero in front of the first
character. For example, if the first character was currently selected, GetSe-
lection will return 0 and 1. If the 3rd through 8th characters are currently
selected, GetSelection will return 2 and 8. If there is currently an insertion
point, the starting and ending point will be the same. This command only
returns the position of the selected text; if you want to get the text itself,
use the "GetSelectedText" command.

The example procedure below counts and displays the number of charac-
ters selected.

local SelStartPoint,SelEndPoint
SelStartPoint=0 SelEndPoint=0
if info("activesuperobject")≠""

ActiveSuperObject "GetSelection",
SelStartPoint,SelEndPoint

endif
message str(SelEndPoint-SelStartPoint)+

" characters selected"

This procedure checks to make sure that a SuperObject is active. If there is
no SuperObject active, it will display the message 0 characters selected. If
the procedure did not check, Panorama would stop the procedure and
display an error message if there was no active SuperObject. For example,
suppose this text was selected.

Running this procedure will display this message.

Command Parameters Description

Page 672 Panorama Formulas & Programming
"SetSelection" Start,End

This command allows a procedure to change the selection area. It is
equivalent to clicking or dragging on the text to select it. For the purpose
of the "SetSelection" command (and the "GetSelection" command), each
character is numbered, starting with zero in front of the first character.
For example, the procedure below would put the insertion point in front
of the first character in the text.

if info("activesuperobject")≠""
ActiveSuperObject "SetSelection",0,0

endif

Here is the location of the insertion point after running this procedure.

The next example will select all of the text. Notice that the end position
may be past the end of the text…Panorama will automatically adjust this
for you.

if info("activesuperobject")≠""
ActiveSuperObject "SetSelection",0,32768

endif

After this procedure is run all of the text is selected.

Here’s a similar example that places the insertion point at the end of the
text.

if info("activesuperobject")≠""
ActiveSuperObject "SetSelection",32768,32768

endif

Here is the location of the insertion point after running this procedure.

This final example will increase the length of the current selection by one
character.

Local SelStartPoint,SelEndPoint
SelStartPoint=0 SelEndPoint=0
if info("activesuperobject")≠""

ActiveSuperObject "GetSelection",
SelStartPoint,SelEndPoint

SelEndPoint=SelEndPoint+1
ActiveSuperObject "SetSelection",

SelStartPoint,SelEndPoint
endif

If the selection was an insertion point it will now be one character, if it
was one character it will be two, if two then now three, etc.

Command Parameters Description

Chapter 3:Programming Techniques Page 673
"GetText" Text

This command gets all of the text being edited and puts it in a variable
you specify. (Note: If you want only the selected text, use the "GetSelect-
edText" command.)

The example procedure below searches for text in chevrons («») and if
found, selects it. Using this procedure you could create templates with
blanks to be filled in, for example …«Gallery»…«Artist»…«Title». (Of
course it might be better to store this information in fields and merge it
into the text with a formula.)

local someText,selStart,selEnd
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetText",someText
selStart=search(someText,"«")
selEnd=search(someText,"»")
if selStart>0 selStart=selStart-1 endif
if selEnd<selStart selEnd=selStart+1 endif
ActiveSuperObject "SetSelection",selStart,selEnd

To illustrate this, consider the text being edited below.

After running the procedure, «Name» will be highlighted, like this.

"SetText" Text

This command replaces the text currently being edited with completely
new text! This is a very powerful command.

Here is a very simple example that simply erases all of the text. This is
similar to Clear, except that all the text is erased, not just the selected text.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetText",""

The next example adds a new line with a date and time stamp to the cur-
rently edited text. It also moves the insertion point to the end of the new
time and date stamp, so the user can immediately type in a note.

local someText
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetText",someText
ActiveSuperObject "SetText",someText+¶+

datepattern(today(),"mm/dd/yy")+" @"+
timepattern(now(),"hh:mm am/pm")+" - "

ActiveSuperObject "SetSelection",32768,32768

Here is the result of running this procedure.

Command Parameters Description

Page 674 Panorama Formulas & Programming
"InsertText" Text

This command inserts text. The new text replaces the currently selected
text, or is inserted at the insertion point if no text is selected. The example
below inserts the current time into the text.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "InsertText",

timepattern(now(),"hh:mm am/pm")

To use this procedure start by clicking to set the insertion point where
you want the time to be inserted.

Running the procedure inserts the current time.

"GetSelectedText" Text

This command gets the selected text and puts it into a variable. The
example below uses this command to change the case of the selected text.
Each time the procedure is used the case will toggle: if the text is all lower
case, it will be converted to initial caps; if it is initial caps, it will be con-
verted to all upper case; otherwise it will be converted to all lower case.

local someText,editStart,editEnd
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetSelection",editStart,editEnd
ActiveSuperObject "GetSelectedText",someText
case someText=lower(someText)

someText=upperword(someText)
case someText=upperword(someText)

someText=upper(someText)
defaultcase

someText=lower(someText)
endcase
ActiveSuperObject "InsertText",someText
ActiveSuperObject "Clear"
ActiveSuperObject "SetSelection",editStart,editEnd

To use this procedure, start by selecting some text.

Each time you run the procedure the text is converted to a different
upper/lower case combination.

Command Parameters Description

Chapter 3:Programming Techniques Page 675
"Find"

This command displays a dialog asking the user what they would like to
find, then locates the word or phrase within the text being edited. This is
the same as using the Find in Cell command in the Edit Menu (see
“Searching for Text Within the Input Box” on page 319 of the Panorama
Handbook).

Another way to find is to use the search(function. For an example of this,
see the "GetText" command earlier in this section.

"FindNext"

This command locates the next occurrence of the word or phrase
searched for with the "Find" command. This is the same as using the Find
Next in Cell command in the Edit Menu (see “Searching for Text Within
the Input Box” on page 319 of the Panorama Handbook).

"Change"

This command displays a dialog asking the user what they would like to
change, then changes every occurrence it finds in the text being edited.
This is the same as using the Change in Cell command in the Edit Menu
(see “Replacing Words or Phrases Within a Cell” on page 321 of the Pan-
orama Handbook).

Another way to change is to use the "GetText" command and the replace(
function. The example below replaces the initials rdb with Robert D.
Bryce, then moves the insertion point to the end of the text.

local someText
if info("activesuperobject") = "" stop endif
ActiveSuperObject "GetText",someText
ActiveSuperObject "SetText",

replace(someText,"rdb","Robert D. Bryce")
ActiveSuperObject "SetSelection",32768,32768

"Spell"

This command locates the next misspelled word in the text being edited.
This is the same as using the Spelling command in the Edit Menu (see
“Using the Spelling Checker within a Cell” on page 322 of the Panorama
Handbook). Note: This command does not work if the optional Panorama
spelling dictionary has not been installed.

"GetScroll" Vertical,Horizontal This command returns the status of the scroll bars and returns the
amount scrolled (in pixels). If the text is not scrolled this will return 0,0.

"SetScroll" Vertical,Horizontal

This command scrolls the text. It is the automatic equivalent to dragging
on the scroll bars. To scroll to the top, use

activesuperobject "setscroll",0,0

To scroll down four inches, use

activesuperobject "setscroll",72*4,0

"GetLineCount" Count
This command querys the object to find out how many lines of text are
currently being displayed. Count must be the name of a field or variable
to receive the count.

Command Parameters Description

Page 676 Panorama Formulas & Programming
Text Editor Internal Data

This table describes the internal data in a Text Editor SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 669. To learn more about how these options work
see “Text Editor Options” on page 643.

Identifier Data Type Changeable? Description

"#TEXT EDITOR FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, padding,
grow box, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#THIN SCROLL" Bit Yes -1 if thin scroll bars are enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#TEXT WRAP" Bit Yes -1 if wrap at end of line is enabled, 0 if disabled.

"#PROCEDURE EVERY
KEYSTROKE" Bit Yes -1 if procedure every key is enabled, 0 if disabled.

"#PROCEDURE MOST
KEYSTROKES" Bit Yes -1 if procedure most keys is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#AQUA BORDER" Bit Yes -1 if aqua borders (os x style) are enabled, 0 if disabled.

"#3D BORDER" Bit Yes -1 if 3D border is enabled, 0 if disabled.

"#FOCUS RING" Bit Yes -1 if blue editing focus ring is enabled, 0 if disabled.

"#TERMINATE RETURN" Bit Yes -1 if terminate when return is enabled, 0 if disabled.

"#TERMINATE TAB" Bit Yes -1 if terminate when tab is enabled, 0 if disabled.

"#TERMINATE UP/DOWN" Bit Yes -1 if terminate when up/down arrows is enabled, 0 if
disabled.

"#NON-WHITE BACKGROUND" Bit Yes -1 if non-white background is enabled, 0 if disabled.

"#UPDATE VARIABLE EVERY
KEY" Bit Yes -1 if update variable every key is enabled, 0 if dis-

abled.

"#FOUR SPACE TAB" Bit Yes -1 if tab = 4 spaces is enabled, 0 if disabled.

"#PADDING" Bit Yes -1 if padding is enabled, 0 if disabled.

"#NO NEOTEXT" Bit Yes -1 if alternate editing style is enabled, 0 if disabled.

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#SELECT STARTUP" Byte Yes Insertion point option. 0 = end of text, 1 = beginning of
text, 2 = all text selected.

"#TEXT EDITOR
AUTO CAPITALIZATION" Byte Yes Auto caps option. 0 = off, 1= all, 2 = word, 3 = sen-

tence.

"#PROCEDURE" Text Yes Procedure to be triggered automatically.

"#FORMULA" Text No Field name, variable name, or formula.

Chapter 3:Programming Techniques Page 677
Text Display SuperObject Internal Data

This table describes the internal data in a Text Display SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 669. To learn more about how these options work
see “Text Display Options” on page 611.

Identifier Data Type Changeable? Description

"#TEXT DISPLAY FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, align-
ment, grow box, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#THIN SCROLL" Bit Yes -1 if thin scroll bars are enabled, 0 if disabled.

"#EVALUATE FORMULA TWICE" Bit Yes -1 if evaluate formula twice is enabled, 0 if disabled.

"#NO TEXT WRAP" Bit Yes -1 if don’t wrap text is enabled, 0 if disabled.

"#AQUA TEXT" Bit Yes -1 if aqua text (anti-aliased) is enabled, 0 if disabled.

"#3D TEXT" Bit Yes -1 if 3D text is enabled, 0 if disabled.

"#AUTO SIZE TEXT" Bit Yes -1 if scale text size is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#TEXT DISPLAY ALIGNMENT" Byte Yes

Align option.

 0 = upper left
 1 = upper center
 2 = upper right
 3 = middle left
 4 = middle center
 5 = middle right
 6 = bottom left
 7 = bottom center
 8 = bottom right

"#TEXT DISPLAY
SCALE FACTOR" Long Word Yes

If the #AUTO SIZE TEXT option is enabled this value
controls the number of lines that will be displayed.
The value is an integer that is 100 times the actual
value. For example, if you want to display 2.5 lines in
the text display object this value must be set to 250.

"#FORMULA" Text No Formula used to display text.

Page 678 Panorama Formulas & Programming
Word Processor SuperObject Commands

The Word Processor SuperObject understands about two dozen commands that can be sent to it with the
superobject or activesuperobject statements in a procedure (see “Program Control of SuperOb-
jects™” on page 666). Many of these commands are identical or nearly identical to the same commands for
the Text Editor SuperObject (see previous section). This table describes each of these commands in detail.

Command Parameters Description

"Open" Identical to Text Editor SuperObject (see Page 670).

"Close" Identical to Text Editor SuperObject (see Page 670).

"Undo" Undo’s the most recent editing operation.

"Cut" Identical to Text Editor SuperObject (see Page 670).

"Copy" Identical to Text Editor SuperObject (see Page 670).

"Paste" Identical to Text Editor SuperObject (see Page 670).

"Clear" Identical to Text Editor SuperObject (see Page 670).

"GetSelection" Start,End Identical to Text Editor SuperObject (see Page 671).

"SetSelection" Start,End Identical to Text Editor SuperObject (see Page 672).

"GetText" Text
Almost identical to Text Editor SuperObject (see Page 673). However,
only the text itself is copied into the variable. Style information (font, size,
bold, italic, etc.) is not copied into the variable.

"SetText" Text

Almost identical to Text Editor SuperObject (see Page 673). However, the
new text is inserted into the document using the default font and style.
All pre-existing style information (font, size, bold, italic, etc.) in the docu-
ment is removed. To insert text without disturbing the style of existing
text use the "InsertText" command.

"InsertText" Text
Almost identical to Text Editor SuperObject (see Page 674). The new text
is inserted into the document using the font and style of the text at the
current insertion point.

"GetSelectedText" Text
Almost identical to Text Editor SuperObject (see Page 674). However,
only the text itself is copied into the variable. Style information (font, size,
bold, italic, etc.) is not copied into the variable.

"Find" Identical to Text Editor SuperObject (see Page 675).

"FindNext" Identical to Text Editor SuperObject (see Page 675).

"Change" Identical to Text Editor SuperObject (see Page 675).

"Spell" Identical to Text Editor SuperObject (see Page 675).

Chapter 3:Programming Techniques Page 679
"GetFont" FontName

This command gets the name of the font used for the selected text. If the
selected text contains more than one font, only the first font is listed. The
example below displays the font of the selected text.

local MyFont,MyFontSize
ActiveSuperObject "GetFont",MyFont
ActiveSuperObject "GetFontSize",MyFontSize
message "The current font is: "+

str(MyFontSize)+"pt "+MyFont

For example, suppose the word Pointers is selected as shown here.

Running this procedure displays the current font and size of this word.

Command Parameters Description

Page 680 Panorama Formulas & Programming
"SetFont" FontName

This command changes the font of the selected text. All the selected text is
changed to the same font. The example below inserts the current time
into the text using 24 point Arial Black.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetFont","Arial Black"
ActiveSuperObject "SetFontSize",24
ActiveSuperObject "InsertText",

timepattern(now(),"hh:mm am/pm")

To use this procedure start by selecting an insertion point.

Then run the procedure to insert the time.

Any additional text inserted at this point will also use 24 pt Arial Black.

"GetFontSize" Size
This command gets the font size of the selected text. If the selected text
contains more than one size, only the first size is listed. See "GetFont"
(Page 679) for an example illustrating this command.

"SetFontSize" Size
This command changes the size of the selected text. All the selected text is
changed to the same size. See "SetFont" (Page 680) for an example using
this command.

Command Parameters Description

Chapter 3:Programming Techniques Page 681
"GetJustification" Alignment

This command gets the text justification status of the selected text. The
result may be one of these values: Left, Center, Right or Full. If the
selected text contains more than one justification, only the first justifica-
tion is listed. Here is another procedure that inserts a time stamp into the
file.

local theStamp,textAlign
theStamp=timepattern(now(),"hh:mm am/pm")
ActiveSuperObject "GetJustification",textAlign
if textAlign="Center"

theStamp="*** "+theStamp+" ***"
endif
ActiveSuperObject "SetTextColor",rgb(65535,0,0)
ActiveSuperObject "InsertText",theStamp

If the text is inserted in centered text three asterisks are added on each
side of the time.

If the text is inserted in left or right justified text only the time is inserted.

"SetJustification" Alignment

This command changes the justification of the selected text. The new jus-
tification may be one of these values: Left, Center, Right or Full. All the
selected text is changed to the same justification. The example below
adds a new, right justified line to the end of the document.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetSelection",999999,999999
ActiveSuperObject "InsertText",¶+¶
ActiveSuperObject "SetJustification","Right"
ActiveSuperObject "InsertText",

"Document Completed on "+
datepattern(today(),

"DayOfWeek, Month ddnth, yyyy")+" at "+
timepattern(now(),"hh:mm am/pm")

Here is the result of running this procedure.

Command Parameters Description

Page 682 Panorama Formulas & Programming
"GetLeading" Spacing

This command gets the leading of the selected text (an integer). If the
selected text contains more than one leading, only the first leading is
returned. For normal single spaced text the leading value is zero.

For 12 point text a leading value of 6 is about 1 1/2 spacing.

This text has a leading value of 12, which is double spaced for this font
size.

You can set the leading of selected text with the ruler or the Paragraph
Settings dialog (see “Line Spacing” on page 691).

"SetLeading" Spacing

This command changes the leading of the selected text. All the selected
text is changed to the same leading. For normal single spaced text the
leading value should be zero.

Here is a procedure that makes the currently selected text double spaced.

local fontSize
activesuperobject "GetFontSize",fontSize
activesuperobject "SetLeading",fontSize

This procedure makes the currently selected text single spaced.

activesuperobject "SetLeading",0

Command Parameters Description

Chapter 3:Programming Techniques Page 683
"GetLeftIndent"

Indent

These three commands get the indents distances of the selected text. If the
selected text contains more than one indent value, only the first indent
value is returned. The "GetLeftIndent" and "GetRightIndent" com-
mands return the left and right indent values, respectively. The "Get-
FirstIndent" command returns the indent of the first line of the
paragraph.

All indent values are specified in points (72 points per inch). See “Mar-
gins (Indents)” on page 682 to learn how to set indents with the ruler or
Paragraph Settings dialog.

"GetRightIndent"

"GetFirstIndent"

"SetLeftIndent"

Indent

These three commands change the indents of the selected text. All the
selected text is changed to the same indents. All indent values are speci-
fied in points (72 points per inch). The example below sets the margins
for the currently selected text at 1/2 inch (36 points).

ActiveSuperObject "SetLeftIndent",36
ActiveSuperObject "SetFirstIndent",36
ActiveSuperObject "SetRightIndent",36

"SetRightIndent"

"SetFirstIndent"

"ClearTabs" This command clears all tabs from the selected text.

Command Parameters Description

fFirst Indent
Left Indent Right Indent

Page 684 Panorama Formulas & Programming
"GetTab" Tab,Position,Type,Leader

This command gets information about a tab stop active with the currently
selected text (see “Tab Stops” on page 685). The first parameter, Tab, is
the number of the tab you want to get information about (starting with 1).

The remaining three parameters are filled in by the command. The
Position is the position of the tab, in points. The Type is the type of tab.
The possible types are Left, Center, Right, Decimal and None. A Type of
None indicates that the requested tab does not exist. In that case values of
the Position and Leader characters are not defined. The Leader parameter
is the tab leader character, if any. The example below will display a list of
the current tab stops.

local tabList,theTab,tabSpot,tabType,tabLeader
theTab=1
tabList=""
tabType="None"
loop

ActiveSuperObject "GetTab",theTab,
tabSpot,tabType,tabLeader

stoploopif tabType = "None"
tabList=sandwich("",tabList,", ")+

tabType+" "+pattern(tabSpot/72,"#.##")+{"}
theTab=theTab+1

while forever
message tabList

When you run this procedure it will display a message something like
this.

There is no "SetTab" command. To change a tab setting you must clear all
tabs and then use the "AddTab" command.

Command Parameters Description

tab #1 tab #2 tab #3

Chapter 3:Programming Techniques Page 685
"AddTab" Position,Type,Leader

This command adds a new tab stop. The Position is the position of the
tab, in points. The Type is the type of tab. The possible types are Left,
Center, Right and Decimal. The Leader parameter is the tab leader char-
acter, if any. The example below will add a tab stop and then add several
lines of pricing information.

if info("activesuperobject") = "" stop endif
ActiveSuperObject "SetSelection",999999,999999
ActiveSuperObject "InsertText",¶
ActiveSuperObject "ClearTabs"
ActiveSuperObject "AddTab",220,"Decimal",""
ActiveSuperObject "InsertText",

"Widget"+¬+"6.56"+¶+
"Micro Widget"+¬+"3.12"+¶+
"Deluxe Widget"+¬+"18.63"

Here is the finished result of this procedure.

Command Parameters Description

Page 686 Panorama Formulas & Programming
"GetStyle" StyleName,Status

This command will check the selected text to see if it is a certain style. If
there is more than one style in the selected text, the style of the first char-
acter will be returned. If the selected text matches the specified cell the
result is -1, if it does not match, the result is 0. The style names are:

Plain Bold Italic Outline
Shadow Condensed Extended Hidden Text
Strikeout SuperScript SubScript SmallCaps
AllCaps AllLowerCase FormulaMerge UnderLine
DoubleUnderLine WordUnderLine
DottedUnderLine OverLine

A text selection may contain more than one of these styles. You must test
for each style separately. Here is procedure that makes a list of all the
styles enabled for the first character of the currently selected text.

local allstyles,n,checkstyle,stylelist,styletrue
allstyles="Plain,Bold,Italic,Outline,Shadow,"+

"Condensed,Extended,Hidden Text,"+
"Strikeout,SuperScript,SubScript,"+
"SmallCaps,AllCaps,AllLowerCase,"+
"FormulaMerge,UnderLine,"+
"DoubleUnderLine,WordUnderLine,"+
"DottedUnderLine,OverLine"

stylelist=""
n=1
loop

checkstyle=array(allstyles,n,",")
stoploopif checkstyle=""
activesuperobject "GetStyle",

checkstyle,styletrue
if styletrue

stylelist=
sandwich("",stylelist,",")+checkstyle

endif
n=n+1

while forever
message stylelist

This text illustrates the operation of the procedure.

This text has three styles — bold, italic, and small caps.

Command Parameters Description

Chapter 3:Programming Techniques Page 687
"SetStyle" StyleName,Status

This command will change the style of the selected text. A procedure can
only set one style at a time, from this list.

Plain Bold Italic Outline
Shadow Condensed Extended Hidden Text
Strikeout SuperScript SubScript SmallCaps
AllCaps AllLowerCase FormulaMerge UnderLine
DoubleUnderLine WordUnderLine
DottedUnderLine OverLine

If the Status is -1, the specified style is turned on. If the Status is 0, the
specified style is turned off. The style names are listed in the previous sec-
tion.

The "SetStyle" command adds or subtracts the specified style from the
styles the selected text already has. If you want to make sure the selected
text has only the styles you specify, start by making the text plain. The
example below sets the selected text to bold double underline.

ActiveSuperObject "SetStyle","Plain",-1
ActiveSuperObject "SetStyle","Bold",-1
ActiveSuperObject "SetStyle","DoubleUnderLine",-1

Whatever text is selected when this procedure is run will be made bold
with a double underline.

"GetTextColor"

Color

These two commands will return the color of the selected text. See “Col-
ors” on page 154 for a complete discussion of colors.

"GetTextBack-
groundColor"

"SetTextColor"

Color

This command will set the color of the selected text. See “Colors” on
page 154 for a complete discussion of colors. The example below sets the
selected text to a pure blue on a light green background.

ActiveSuperObject "SetTextColor",rgb(0,0,65535)
ActiveSuperObject "SetTextBackGroundColor",

rgb(40000,65535,40000)

Here is the result of selecting text and running this procedure.

"SetTextBack-
groundColor"

Command Parameters Description

text color background color

Page 688 Panorama Formulas & Programming
"ShowRuler" Status

This command will turn the display of the ruler on and off. If the Status is
-1, the ruler will be visible; if the Status is 0, the ruler will not be visible.
The example below makes sure the ruler is visible.

ActiveSuperObject "ShowRuler",-1

The ruler allows you to manually set indents, alignment and tab stops.

This procedure makes the ruler invisible.

ActiveSuperObject "ShowRuler",0

With the ruler turned off you can still edit text, but changing indents,
alignment and tab stops can only be done through dialogs.

"LockDocument" Status

This command allows the document to be locked. If the Status is -1, the
document will be locked and cannot be edited. If the Status is 0, the docu-
ment will be unlocked and may be edited again. The example below
locks the current document.

ActiveSuperObject "LockDocument",-1

Command Parameters Description

Chapter 3:Programming Techniques Page 689
Word Processor Internal Data

This table describes the internal data in a Word Processor SuperObject that can be accessed and modified
using the “back door” described in “Internal Data Types” on page 669. To learn more about how these
options work see “Configuring the Word Processor” on page 696.

Identifier Data Type Changeable? Description

"#WORD PROCESSOR FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, padding,
grow box, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#TEXT WRAP" Bit Yes -1 if wrap at end of line is enabled, 0 if disabled.

"#PROCEDURE EVERY
KEYSTROKE" Bit Yes -1 if procedure every key is enabled, 0 if disabled.

"#PROCEDURE MOST
KEYSTROKES" Bit Yes -1 if procedure most keys is enabled, 0 if disabled.

"#PROCEDURE ON DEACTIVE" Bit Yes -1 if procedure termination is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#TERMINATE RETURN" Bit Yes -1 if terminate when return is enabled, 0 if disabled.

"#TERMINATE TAB" Bit Yes -1 if terminate when tab is enabled, 0 if disabled.

"#TERMINATE UP/DOWN" Bit Yes -1 if terminate when up/down arrows is enabled, 0 if
disabled.

"#NON-WHITE BACKGROUND" Bit Yes -1 if non-white background is enabled, 0 if disabled.

"#UPDATE VARIABLE EVERY
KEY" Bit Yes -1 if update variable every key is enabled, 0 if dis-

abled.

"#3D BORDER" Bit Yes -1 if 3D border is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#OVERFLOW PRINTING" Bit Yes -1 if handle overflow is enabled, 0 if disabled.

"#FILE ON DISK" Bit Yes -1 if file on disk is enabled, 0 if disabled.

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#TEXT EDITOR
AUTO CAPITALIZATION" Byte Yes Auto caps option. 0 = off, 1= all, 2 = word, 3 = sen-

tence.

"#PROCEDURE" Text Yes Procedure to be triggered automatically.

"#FORMULA" Text No Field name, variable name, or formula.

Page 690 Panorama Formulas & Programming
Super Flash Art Commands (Including Movie Control)

The Super Flash Art SuperObject understands about a dozen commands that can be sent to it with the
superobject statement in a procedure (see “Program Control of SuperObjects™” on page 666). Many of
these commands work with QuickTime movies (see “Displaying Movies in a Form” on page 819). This table
describes each of these commands in detail.

Command Parameters Description

"Dimensions" Rectangle

This command obtains the original height and width of the currently dis-
played image and places it in the rectangle you supply (usually a vari-
able, see “Rectangles” on page 149). The dimensions are in pixels (1/72
inch). You should use the rheight(and rwidth(functions to extract the
height and width of the rectangle.

Here is a procedure that examines the photo being displayed in the object
named Photo and decides whether it is portrait, landscape, or panoramic.

local photoRect,photoHeight,photoWidth
superobject "Photo","Dimensions",photoRect
photoHeight=rheight(photoRect)
photoWidth=rwidth(photoRect)
case photoWidth>photoHeight*2

message "Panoramic Photo"
case photoWidth>photoHeight

message "Landscape Photo"
default

message "Portrait Photo"
endcase

"FindText" Point,Text

This command only works when displaying an Apple PICT format image
that contains vector text (not bitmap). (See “Preparing Pictures with
Extractable Text” on page 697.) When the procedure issues this command
it must supply an x,y position (Point) within the PICT image. The com-
mand will scan the image and see if there is any text at this point. If so,
the command will fill in the Text parameter (usually a variable) with the
text. This command is usually used to create a web like hypertext system
within Panorama — see “Building Web Like HyperText Systems with
Super Flash Art” on page 697.

"ExtractText" Font,Size,Style,Sep,Text

This command only works when displaying an Apple PICT format image
that contains vector text (not bitmap). (See “Preparing Pictures with
Extractable Text” on page 697.) The procedure specifies what Font, Size,
and Style it wants to extract (for example "Helvetica",12,0) and the com-
mand scans the image looking for text that matches. If it finds any it is
placed in the Text parameter. If there is more than one section of text that
matches the sections are appended together with the Sep character in
between. For more detail about this command see “Extracting All Text of
a Specific Style” on page 701.

"GetDuration" Time

This command allows you to get the duration of a movie. The result is in
600ths of a second. This example displays the length of the currently
playing movie.

local mTime
superobject "MyMovie","GetDuration",mTime
message "Movie Length: "+str(mTime/600))+" seconds"

Chapter 3:Programming Techniques Page 691
"GetRate"

Rate

These commands allows you to get and set the current movie playback
speed. If a movie is stopped, the rate is zero. Normal speed is 65536, 1/2
speed (slow motion) is 32768, double speed is 131072. The example below
cuts the current playback speed in half.

local mSpeed
superobject "MyMovie","GetRate",mSpeed
superobject "MyMovie","SetRate",mSpeed/2

"SetRate"

"GetPreferred
Rate"

Rate

These commands allows you to get and set the default movie playback
speed. Normal speed is 65536, 1/2 speed (slow motion) is 32768, double
speed is 131072. The example below restores the default playback speed
(for example, after you have set the speed to slow motion. (Note: Pressing
the Play button on the movie controller automatically sets the playback
speed to the preferred speed).

local mSpeed
superobject "MyMovie","GetPreferredRate",mSpeed
superobject "MyMovie","SetRate",mSpeed

"SetPreferred
Rate"

"GetTime"

Position

These commands allows you to get and set the current movie playback
location. You can use these commands to implement "bookmarks" within
a movie. The value returned by the GetTime command is a binary value
that represents the location within the movie. It is not a number (# of sec-
onds, etc.) and cannot be used in calculations within Panorama. How-
ever, you can pass this value to the SetTime command to move the movie
back to this location later. The example below shows two procedures for
creating and using bookmarks within a movie. The first procedure adds a
“bookmark” recording the current spot within the movie.

/* Procedure 1: Add a bookmark */
global movieMarks
define movieMarks,""
local markName,markSpot
markName=""
gettext "Bookmark Name",markName
superobject "MyMovie","GetTime",markSpot
movieMarks=sandwich("",movieMarks,¶)+

markName+chr(9)+radixstr("hex",markSpot)

The second procedure is designed to be used with a pop-up menu or list
superobject. When the user selects a bookmark in the menu or list the
movie jumps to that spot.

/* Procedure 2: Goto a bookmark */
global movieMarks,movieSpot
/* assume movieSpot contains name of bookmark,
perhaps from pop-up menu */
local movieMark,markSpot,mNum
mNum=arraysearch(

movieMarks,movieSpot+chr(9)+"*",1,¶)
movieMark=array(movieMarks,mNum,¶)
movieMark=array(movieMark,2,chr(9))
markSpot=radix("hex",movieMark)
superobject "MyMovie","SetTime",markSpot

"SetTime"

Command Parameters Description

Page 692 Panorama Formulas & Programming
"GetVolume"

Level

These commands allows you to get and set the current movie playback
volume. Full volume is 255, zero volume is 0. The example below cuts the
current playback volume in half.

local mVol
superobject "MyMovie","GetVolume",mVol
superobject "MyMovie","SetVolume",mVol/2

"SetVolume"

"GetPreferred
Volume" Level

This command allows you to get the default movie playback volume. Full
volume is 255, zero volume is 0. The example below sets the current play-
back volume to 1/3 of the default.

local mVol
superobject "MyMovie","GetPreferredVolume",mVol
superobject "MyMovie","SetVolume",mVol/3

"Play"

This command starts the movie playing from the current location.

superobject "MyMovie","Play"

"Stop"

This command stops the movie playing.

superobject "MyMovie","Stop"

"GoToBeginning"

This command resets the current location to the beginning of the movie.

superobject "MyMovie","GoToBeginning"

"GoToEnd"

This command resets the current location to the end of the movie.

superobject "MyMovie","GoToEnd"

"PlayFinished"

This command checks to see if the movie has reached the end. The exam-
ple starts the movie playback. If the movie is already at the end, the pro-
cedure resets the movie to the beginning before beginning playback.

local mStatus
superobject "MyMovie","PlayFinished",mStatus
if mStatus=1

superobject "MyMovie","GoToBeginning"
endif
superobject "MyMovie","Play"

Command Parameters Description

Chapter 3:Programming Techniques Page 693
Super Flash Art Internal Data

This table describes the internal data in a Super Flash Art SuperObject that can be accessed and modified
using the “back door” described in “Internal Data Types” on page 669. To learn more about how these
options work see “Super Flash Art™ Options” on page 786.

Identifier Data Type Changeable? Description

"#SUPER FLASH ART FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — scroll bars, borders, grow box,
etc. You can also access each of these options sepa-
rately (see following entries). Being able to access all
of these values at once makes it easy to save all the
flags, modify selected flags, and then restore all of the
original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#INCLUDE PICTURES ON DISK" Bit Yes -1 if include pictures on disk is enabled, 0 if disabled.

"#DISPLAY GROUP OF
PICTURES" Bit Yes -1 if display group of pictures is enabled, 0 if disabled.

"#TOP BORDER" Bit Yes -1 if top border is enabled, 0 if disabled.

"#LEFT BORDER" Bit Yes -1 if left border is enabled, 0 if disabled.

"#BOTTOM BORDER" Bit Yes -1 if bottom border is enabled, 0 if disabled.

"#RIGHT BORDER" Bit Yes -1 if right border is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#OVERFLOW PRINTING" Bit Yes
-1 if overflow is enabled, 0 if disabled (see “Printing
Multiple Page Records” on page 1114 of the Panorama
Handbook).

"#DROP SHADOW DEPTH" Byte Yes 0 if drop shadow is disabled. Non zero values specify
the drop shadow offset (standard depth is 2 pixels).

"#SUPER FLASH ART
ALIGNMENT" Byte Yes

Align option (see “Align” on page 797 of the Panorama
Handbook).

 0 = upper left
 1 = upper center
 2 = upper right
 3 = middle left
 4 = middle center
 5 = middle right
 6 = bottom left
 7 = bottom center
 8 = bottom right
 9 = scale to fit
 10 = scale to fit (proportional)
 11 = tile

"#FLASH ART FILE" Text Yes
Alt File (tells Panorama to look in another database for
Flash Art scrapbook, see “Alt File” on page 788 of the
Panorama Handbook).

"#FLASH ART DEFAULT
CAPTION" Text Yes Default image name (see “Default” on page 787 of the

Panorama Handbook).

"#FORMULA" Text No
Field name, variable name, or formula. If you want to
be able to change the formula on the fly see “Formula”
on page 786 of the Panorama Handbook.

Page 694 Panorama Formulas & Programming
Converting Between Image Formats

If the optional Enhanced Image Pack is installed a procedure can convert an image file from one format into
another (for example from PICT into JPEG or JPEG into TIFF). (The Enhanced Image Pack requires that
Apple Quicktime 4.0 or later be installed on your computer. If Quicktime is not already installed on your sys-
tem you can download it from www.apple.com. It is also included on the Panorama CD.) Image conver-
sions are performed with the convertimage statement.

convertimage input,output,type,height,width

The input parameter specifies the original image file. If the image file is in the same folder as the currently
active database then only the file name is required (for example "Cool Sunset.jpg"). If the image file is in a dif-
ferent folder then both the folder and file name must be included (for example "D:\Photography\Cool Sun-
set.jpg"). (Note: The original image file may be a GIF file, but convertimage cannot produce a GIF output file.)

The output parameter specifies the new, converted image file. If you want to put this new image file in the
same folder as the current database then only the file name is required, if you want to put it in a different
folder then both the folder and file name must be included. If a file with this name already exists in this loca-
tion it will be erased.

The type parameter specifies the type of image that will be created. If the output file has an extension (for
example .jpg, .pct, .tif) you should leave this parameter blank ("") and let Panorama automatically figure out
the type. If the output file does not have an extension you must specify the type from the list below.

The height and width parameters are the height and width of the new image (in pixels). If either (or both) of
these parameters is zero then the height and/or width of the original image will be used.

Here is an example that converts a BMP image into a TIFF image. Since the output file has an extension (.tif)
the output image type does not need to be specified. The TIFF image will have the same dimensions as the
original PICT image.

convertimage "my picture.bmp","my picture.tif","",0,0

This example converts an image into a 32 by 32 pixel icon. Since the files do not have any extensions this
example can only work on a Macintosh, not on a Windows PC.

convertimage "my picture","my icon","PICT",32,32

Here is a similar example that can work on a Windows PC (it can work on a Macintosh also, if the file names
have extensions).

convertimage "my picture.jpg","my icon.jpg","",32,32

Image Type PC Extensions Notes

PICT .pct Apple PICT bitmap

BMP .bmp Windows and OS/2 bitmap

JPEG .jpg .jpeg JPEG compressed image

PNG .png Portable Network Graphics bitmap

TIFF .tif .tiff Tagged Image Format

PHOTOSHOP .psb Adobe Photoshop

FLASHPIX .fpx FlashPix bitmap

TARGA .targa

Chapter 3:Programming Techniques Page 695
When the output file is in JPEG format you can use the imagequality statement to control the compression
level of the JPEG conversion. This statement has one parameter, a number from 0 (very low quality, high
compression) to 100 (high quality, least compression).

imagequality level

The imagequality statement must be used just before the convertimage statement. Here is an example
that creates two JPEG images from a TIFF original, one low quality and one high quality. Each is placed in a
different subfolder of the current database folder.

imagequality 80
convertimage "Sunset.tif",":Hi Quality:Sunset.jpg","",0,0
imagequality 20
convertimage "Sunset.tif",":Lo Quality:Sunset.jpg","",0,0

For more information on ordering the Enhanced Image Pack visit our website at http://www.provue.com.

Working with JPEG Images

Panorama has some statements specifically for working with JPEG images. The jpegdimensions statement
will calculate the dimensions (height and width) of a JPEG image on the disk.

jpegdimensions path,height,width

The path parameter is the path and filename of the jpeg image to be measured, for example
MyDisk:MyFolder:Star.jpg.

The height and width parameters specify variables to receive the dimensions of the image (in pixels).

The bestfitjpeg procedure copies a JPEG image. In the process of copying the file the procedure also
resizes it to fit within a rectangle.

bestfitjpeg input,output,boundary

The input parameter specifies the original image file. If the image file is in the same folder as the currently
active database then only the file name is required (for example "Cool Sunset.jpg"). If the image file is in a dif-
ferent folder then both the folder and file name must be included (for example "D:\Photography\Cool Sun-
set.jpg").

The output parameter specifies the new, converted image file. If you want to put this new image file in the
same folder as the current database then only the file name is required, if you want to put it in a different
folder then both the folder and file name must be included. If a file with this name already exists in this loca-
tion it will be erased.

The boundary parameter specifies the maximum dimensions of the copied image. The bestfitjpeg state-
ment will make the image as large as possible without distorting the image within the rectangle.

This example will make a 48 by 48 pixel thumbnail of an image of a flower.

bestfitjpeg "Flower.jpg","Flower.Tiny.jpg",rectanglesize(0,0,48,48)

Page 696 Panorama Formulas & Programming
Taking an iSight Snapshot

If your MacOS X computer has an iSight camera a Panorama procedure can take a picture and save it to disk.

isightsnapshot folder,file,options

The folder parameter is the folder to save the snapshot in, or "" to save the snapshot in the same folder as the
current database.

The file parameter specifies the name of the new snapshot (the file name). If this parameter is a variable that
contains "" or does not contain any value Panorama will automatically assign a unique name and return it
into this variable.

The options parameter is optional, and can be used to specify the type and size of the snapped image. The
options parameter may contain a format specification (format=jpg, format=pnf, format=tiff, or format=bmp)
and/or a scale (scale=100%, scale=25%, etc.). If no format is specified the statement will look at the filename
to see if it can figure out the image type (ending with .jpg, .tiff, .bmp, etc.). If all else fails it will default to
jpeg. If no scale is specified the default is 100% (640 by 480). This example takes a 1/2 size snapshot and saves
it as a JPEG file.

isightsnapshot "Say Cheese.jpg","scale=50%"

This image can now be displayed using Panorama’s Super Flash Art feature (assuming you have the
Enhanced Image Pack installed).

Chapter 3:Programming Techniques Page 697
Building Web Like HyperText Systems with Super Flash Art

Apple’s PICT image format allows an image to contain text as well as bitmap information. For example the
image below (shown in Deneba’s Canvas 3.5) contains both text and bitmap graphics.

Depending on how the picture was created, it can be possible to extract the text in a picture based on certain
specifications: location, style, color, font, etc. This feature gives Panorama the power to turn a collection of
pictures into a linked hypertext system. The Panorama On-Line Reference is an example of such a system.
This system is basically just a collection of PICT images. When the user clicks on a word or phrase within an
image (for example the word ASCII in the image above) a simple procedure decodes what word or phrase
they clicked on and switches to the new page (a new picture) based on that information.

Preparing Pictures with Extractable Text

Not all text in every picture can be extracted. Text that has been converted to a pixel (bitmap) image cannot be
extracted. As a general rule, if the text can be edited as text in your drawing program, the text can be
extracted. For example, Photoshop does not allow text to be edited after it has been created, so text in an
image created by Photoshop cannot be extracted. (Of course, Photoshop does allow the text to be manipu-
lated with graphic tools, but that doesn’t count. You must be able to insert and delete text, type in new text,
etc.)

Some programs that work well for creating extractable text include Canvas and Freehand. (In Canvas, you
must make sure that the text is in a text object, not a paint object.) For other programs we recommend that
you try a small picture before you do a lot of work. Our favorite program for creating images with extractable
text is Deneba Canvas (see http://www.deneba.com).

text bitmap

Page 698 Panorama Formulas & Programming
To create extractable text with Canvas you start by selecting the Text tool.

Next, you drag the mouse over the location where you want to create the text, just like creating auto-wrap
text in Panorama.

Now type in the text.

When the image is complete, be sure to save it using PICT format.

Chapter 3:Programming Techniques Page 699
Programming a HyperText Engine

When text is saved as part of an image in PICT format the text is split up internally into chunks. A new chunk
starts: 1) whenever there is any change in the text font, size, style or color, or 2) whenever a new line begins.
The image created in the previous section actually consists of six separate text chunks.

The Super Flash Art "FindText" command takes a point within the image (x,y co-ordinates) and checks to see
if a chunk of text is at that location. If there is, it extracts the text chunk and returns it to the procedure for fur-
ther processing. Using this command a procedure can find out what chunk of text has been clicked on (if any)
and take appropriate action.

Finding out what chunk of text has been clicked on takes three components: 1) a Super Flash Art object (see
“Creating Super Flash Art Objects” on page 751 of the Panorama Handbook), 2) a transparent “Classic” Push-
button with the click/release option turned off (see “Transparent Push Buttons” on page 832 of the Panorama
Handbook), and 3) a procedure triggered by the “Classic” pushbutton. The transparent button should be over-
laid exactly on top of the Super Flash Art object…use the Align command to get exact alignment (see “Align-
ing Objects” on page 553 of the Panorama Handbook). If the Super Flash Art object has scroll bars, however,
they should not be covered by the button. Only cover the area where the actual image is displayed.

The example below shows a procedure that will figure out what text was clicked on, and what font, size, and
style the text is. The example assumes that the Super Flash Art object is named HyperFlash. (To give an object
a name, first select the object, then use the Object Name command in the Edit menu or click on the object
name in the Graphic Control Strip, see “Object Type/Object Name” on page 533 of the Panorama Handbook.)

local v,h,clickPoint
local clickText, clickFont, clickSize, clickStyle
v=v(info("mouse"))-rtop(info("buttonrectangle"))
h=h(info("mouse"))-rleft(info("buttonrectangle"))
clickPoint=point(v,h)
superobject "HyperFlash","FindText",clickPoint,clickText
clickFont=objectinfo("font")
clickSize=objectinfo("textsize")
clickStyle=objectinfo("textstyle")

This example uses the special superobject "FindText" command. This command only works with Super
Flash Art objects. The command has two additional parameters: 1) the location within the picture object (in
this case clickPoint) and the field or variable the extracted text should be placed into (in this case clickText).

Page 700 Panorama Formulas & Programming
If the click was over a chunk of text, the "FindText" command will extract that chunk. After the chunk has
been extracted the procedure can use the objectinfo(function to find out the font, text size, and style of
the chunk (as shown in the program above). The style is a number that is calculated by adding up the follow-
ing numbers for each possible style:

For example, if the chunk is bold-italic, the objectinfo("textstyle") function will return the value 3.

The statements shown below could be added to the end of the previous program to ignore all text that is not
underlined.

if (clickStyle and 4) <> 4
stop

endif

The and operator isolates only the underline attribute. If the statement was simply if clickStyle<>4 the
procedure would stop if the chunk was a combination style like bold-underline or italic-underline.

The sample database Extractable Text demonstrates Panorama’s ability to extract chunks of text. When you
click on the image it uses the procedure listed above to extract the text, along with its font, size, and style. For
example, if you click on the word ASCII as shown here it extracts and displays the chunk of text (ASCII)
along with all of the attributes of the chunk.

As you can see the chunk of text is ASCII, the font is Geneva 12, and the style is bold (4).

0 Plain

1 Bold

2 Italic

4 Underline

8 Outline

16 Shadow

Chapter 3:Programming Techniques Page 701
You can click on any location to see what chunk of text is there.

If there is no chunk of text at the spot that was clicked the clickText variable will contain empty text ("").

Extracting All Text of a Specific Style

The superobject "ExtractText" command allows all the text that matches specified criteria to be extracted
from the picture currently displayed in a Super Flash Art object. This command has several parameters as
shown here:

SuperObject "Object Name","ExtractText",Font,Size,Style,Sep,Result

The first parameter, Font, specifies the font of the text you want to extract. If you don’t care what the font is,
leave this parameter empty ("").

The second parameter, Size, specifies the size of the text you want to extract. If you don’t care, this parameter
should be zero.

The third parameter, Style, specifies the style of the text you want to extract. This parameter allows you
extreme flexibility in selecting what styles you want to extract.

If the Style parameter is zero, any style is ok. For example, if you want to extract all Monaco 9 point text of
any style into a variable named Samples, here’s how you would do it:

local Samples
superobject "HyperFlash","ExtractText","Monaco",9,0,";",Samples

If the Style parameter is 1-255, it specifies the exact style you want. Add up the numbers for each individual
style. For example, for underlined text you would specify 4, for bold text, 1. The example below will extract
all bold text, but not bolditalic or bold underlined.

local Samples
superobject "HyperFlash","ExtractText","",0,1,¶,Samples

If the Style parameter is 256 or greater, it specifies both the style and a mask for the style. The mask allows
you to isolate individual styles. The mask uses the same style numbers as the individual styles, but multi-
plied by 256. (Why 256? 256 is 2 the 8th power (28), an even number in the computer's binary numbering sys-
tem.) For example, suppose you wanted to extract all bold text, even bold text that is combined with other
styles. By using a mask of 4*256 you tell the "ExtractText" command that you only care about the underlined
style. The example below will extract all underlined, underlined-italic, underlined-bold; any text that is
underlined no matter what other attributes it may have.

local Samples
superobject "HyperFlash","ExtractText","",0,(4*256)+4,¶,Samples

Page 702 Panorama Formulas & Programming
The fourth parameter, Sep, specifies what separator character(s) should be used between text chunks as they
are extracted. Usually this is a carriage return (¶), comma, space, slash, etc. (see “Picking a Separator Charac-
ter” on page 93).

The character "t" is a special separator. When this separator is used, Panorama checks each piece of
extracted text to see if it is on the same line as the previously extracted piece of text. If it is on the same line,
Panorama will connect the pieces with a space. If the two pieces are on different lines, they will be connected
with a carriage return. This allows the extracted text to be more or less reconstructed in its original form.
(Note: Either "t" or "T" will trigger this special operation.)

The final parameter, Result, is the field or variable that you want the extracted text placed into.

The procedure below displays the number of underlined segments in the current picture.

local KeywordList
superobject "HyperFlash","ExtractText","",0,4,¶,KeywordList
message arraysize(KeywordList,¶)

The next example takes all the Monaco 9 pt text in the current picture and combines it. It then copies the text
onto the clipboard.

local SampleText
superobject "HyperFlash","ExtractText","Monaco",9,0,"t",SampleText
clipboard=SampleText

Creating Multi-Page Pictures

Most pictures fit on a single page. However, if you are creating a HyperText system, you may want to build
pictures that are several pages long. On the screen, the user can use scroll bars to see the entire picture. But
what about printing?

To allow printing of multi-page text or pictures, Panorama includes a feature called an “overflow” tile. The
“overflow” tile works in conjunction with a regular data tile to print any leftover data that would not fit on
the data tile. See “Printing Data that Overflows a Page” on page 1116 of the Panorama Handbook to learn how
to set up multi-page printing.

If you use this picture overflow system, you can build special objects into your pictures that will tell Pan-
orama where to split the picture into separate pages when printing. This will prevent the printout from split-
ting the page in the middle of a graphic or in the middle of a line of text. To specify a page break, you must
draw a short horizontal line (a few pixels wide) near the right edge of the picture (within 16 pixels of the right
edge) as shown in this example.

short horizontal line forces page break

Chapter 3:Programming Techniques Page 703
Push Button Internal Data

This table describes the internal data in a Push Button SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 669. To learn more about how these options work
see “Super Object Push Button” on page 823.

Identifier Data Type Changeable? Description

"#PUSH BUTTON FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — 3D text, click/release, etc. You
can also access each of these options separately (see
following entries). Being able to access all of these val-
ues at once makes it easy to save all the flags, modify
selected flags, and then restore all of the original set-
tings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#3D TEXT" Bit Yes -1 if 3D text is enabled, 0 if disabled.

"#HIDE BUTTON TITLE" Bit Yes -1 if hide title is enabled, 0 if disabled.

"#COLOR TITLE" Bit Yes -1 if color:title is enabled, 0 if disabled.

"#COLOR BORDER" Bit Yes -1 if color:border is enabled, 0 if disabled.

"#COLOR FILL" Bit Yes -1 if color:fill is enabled, 0 if disabled.

"#COLOR HIGHLIGHT" Bit Yes -1 if color:highlight is enabled, 0 if disabled.

"#PUSH BUTTON STYLE" Byte Yes

Style option (see “Push Button Styles” on page 826 of
the Panorama Handbook).

 -1 = transparent
 0 = plain rectangle
 1 = plain rounded rectangle
 2 = plain circle
 3 = Standard Push Button (default)
 4 = 3D rectangle
 5 = 3D rounded rectangle
 6 = 3D circle
 7 = Beveled Rectangle

"#BUTTON TITLE OFFSET" Byte Yes +/- vertical title offset (see “Title Positioning” on
page 828 of the Panorama Handbook).

"#BUTTON TITLE" Text Yes

Title of button (maximum 31 characters). The example
procedure below changes a button’s title from Go to
Stop to Go to Stop each time the procedure runs.

local bTitle
selectobjects

objectinfo("name")="Signal"
bTitle=objectinfo("#BUTTON TITLE")
if bTitle="Go"

bTitle="Stop"
else

bTitle="Go"
endif
changeobjects "#BUTTON TITLE",bTitle
selectnoobjects

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

Page 704 Panorama Formulas & Programming
Flash Art Push Button Internal Data

This table describes the internal data in a Flash Art Push Button SuperObject that can be accessed and modi-
fied using the “back door” described in “Internal Data Types” on page 669. To learn more about how these
options work see “Flash Art™ Push Button SuperObjects™” on page 833.

Data Button SuperObject Internal Data

This table describes the internal data in a Data Button SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 669. To learn more about how these options work
see “Super Data Button Options” on page 849.

Identifier Data Type Changeable? Description

"#PUSH BUTTON FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — click/release, include pictures
on disk, etc. You can also access each of these options
separately (see following entries). Being able to access
all of these values at once makes it easy to save all the
flags, modify selected flags, and then restore all of the
original settings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#INCLUDE PICTURES ON DISK" Bit Yes -1 if include pictures on disk is enabled, 0 if disabled.

"#BUTTON TITLE" Text Yes Title of button (maximum 31 characters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FLASH ART FILE" Text Yes
Alt File (tells Panorama to look in another database for
Flash Art scrapbook, see “Alt File” on page 788 of the
Panorama Handbook).

"#FORMULA" Text No Formula used to select which flash art image to dis-
play.

Identifier Data Type Changeable? Description

"#DATA BUTTON FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — allow multiple values,
“radio” button, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#MULTIPLE VALUES" Bit Yes -1 if allow multiple values is enabled, 0 if disabled.

"#RADIO BUTTON" Bit Yes -1 if “radio” button is enabled, 0 if disabled.

"#BUTTON TITLE" Text Yes Title of button (maximum 49 characters).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#BUTTON ON VALUE" Text Yes Value of button (maximum 49 characters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FORMULA" Text No Name of field or variable that will contain data value.

Chapter 3:Programming Techniques Page 705
Flash Art Data Button SuperObject Internal Data

This table describes the internal data in a Flash Art Data Button SuperObject that can be accessed and modi-
fied using the “back door” described in “Internal Data Types” on page 669. To learn more about how these
options work see “Flash Art Data Button SuperObjects™” on page 852.

Identifier Data Type Changeable? Description

"#FLASH STICKY BUTTON
FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — allow multiple values,
“radio” button, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#BUTTON ANIMATION" Bit Yes -1 if f/x is enabled, 0 if disabled.

"#HIDE BUTTON TITLE" Bit Yes -1 if hide title is enabled, 0 if disabled.

"#INCLUDE PICTURES ON DISK" Bit Yes -1 if include pics on disk is enabled, 0 if disabled.

"#MULTIPLE VALUES" Bit Yes -1 if allow multiple values is enabled, 0 if disabled.

"#RADIO BUTTON" Bit Yes -1 if “radio” button is enabled, 0 if disabled.

"#BUTTON TITLE OFFSET" Byte Yes +/- vertical title offset (see “Title Positioning” on
page 828 of the Panorama Handbook).

"#BUTTON TITLE" Text Yes Title of button (maximum 49 characters).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#BUTTON ON VALUE" Text Yes Value of button (maximum 49 characters).

"#FLASH ART FILE" Text Yes
Alt File (tells Panorama to look in another database for
Flash Art scrapbook, see “Alt File” on page 788 of the
Panorama Handbook).

"#FLASH ART FORMULA" Text No Formula used to select which flash art image to dis-
play.

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FORMULA" Text No Name of field or variable that will contain data value.

Page 706 Panorama Formulas & Programming
Sticky Push Button SuperObject Internal Data

This table describes the internal data in a Sticky Push Button SuperObject that can be accessed and modified
using the “back door” described in “Internal Data Types” on page 669. To learn more about how these
options work see “Sticky Push Button SuperObjects™” on page 855.

Identifier Data Type Changeable? Description

"#STICKY PUSH BUTTON
FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — allow multiple values,
“radio” button, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#3D TEXT" Bit Yes -1 if 3D text is enabled, 0 if disabled.

"#HIDE BUTTON TITLE" Bit Yes -1 if hide title is enabled, 0 if disabled.

"#MULTIPLE VALUES" Bit Yes -1 if allow multiple values is enabled, 0 if disabled.

"#RADIO BUTTON" Bit Yes -1 if “radio” button is enabled, 0 if disabled.

"#COLOR TITLE" Bit Yes -1 if color:title is enabled, 0 if disabled.

"#COLOR BORDER" Bit Yes -1 if color:border is enabled, 0 if disabled.

"#COLOR FILL" Bit Yes -1 if color:fill is enabled, 0 if disabled.

"#COLOR HIGHLIGHT" Bit Yes -1 if color:highlight is enabled, 0 if disabled.

"#PUSH BUTTON STYLE" Byte Yes

Style option (see “Push Button Styles” on page 826 of
the Panorama Handbook).

 0 = rectangle
 1 = rounded rectangle
 2 = circle
 3 = 3D rectangle
 4 = 3D rounded rectangle
 5 = 3D circle
 6 = Beveled Rectangle

"#BUTTON TITLE OFFSET" Byte Yes +/- vertical title offset (see “Title Positioning” on
page 828 of the Panorama Handbook).

"#BUTTON TITLE" Text Yes Title of button (maximum 49 characters).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#BUTTON ON VALUE" Text Yes Value of button (maximum 49 characters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FORMULA" Text No Name of field or variable that will contain data value.

Chapter 3:Programming Techniques Page 707
Pop-Up Menu SuperObject Internal Data

This table describes the internal data in a Pop-Up Menu SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 669. To learn more about how these options work
see “Pop-Up Menu Options” on page 866.

Identifier Data Type Changeable? Description

"#POP-UP MENU FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — multi-column menus, combo
box, show value, etc. You can also access each of these
options separately (see following entries). Being able
to access all of these values at once makes it easy to
save all the flags, modify selected flags, and then
restore all of the original settings.

"#POP-UP 2 PIXEL DROP
SHADOW" Bit Yes -1 if drop shadow:2 pixels is enabled, 0 if disabled.

"#POP-UP 1 PIXEL DROP
SHADOW" Bit Yes -1 if drop shadow:1 pixel is enabled, 0 if disabled.

"#POP-UP SHOW VALUE" Bit Yes -1 if show value is enabled, 0 if disabled.

"#POP-UP CHICAGO" Bit Yes -1 if Chicago 12 is enabled, 0 if disabled.

"#POP-UP MENU WRAPPING" Bit Yes -1 if multi-column is enabled, 0 if disabled.

"#POP-UP TRIANGLE" Bit Yes -1 if show triangle is enabled, 0 if disabled.

"#COMBO BOX" Bit Yes -1 if combo box is enabled, 0 if disabled.

"#SMART POP UP COMBO BOX" Bit Yes -1 if mac popup/windows combo box is enabled, 0 if
disabled.

"#POP-UP FILL COLOR" Text Yes Fill color for pop-up menu (see “Colors” on page 154).

"#POP-UP LAST ITEM" Word No

Last menu item selected (number from 1 to maximum
number of items in menu). For example if the menu
contains four items (Red, Green, Blue, Orange) and the
user picks Blue this value will be 3.

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this but-
ton is pressed.

"#FIELD" Text Yes Name of field or variable that contains value of pop-
up menu (maximum 31 characters).

"#FORMULA" Text No Formula for calculating contents of menu.

Page 708 Panorama Formulas & Programming
List SuperObject™ Commands

The List SuperObject understands about a dozen commands that can be sent to it with the superobject
statement in a procedure (see “Program Control of SuperObjects™” on page 666). This table describes each of
these commands in detail.

Command Parameters Description

"FillList" Formula,Database

This command re-fills the specified list. You can use this command to
update the list, or to fill it with completely new information.

To update the list using the settings in the List Configuration Dialog (see
“List Options” on page 883 of the Panorama Handbook) leave off the
Formula and Database. For example, if the pizza toppings list was
derived from a pizza toppings database, you would want to use this pro-
cedure when the pizza toppings database had changed:

superobject "Toppings","FillList"

You can also use the "FillList" command to fill the list with entirely new
information, completely ignoring the formula and database originally
specified in the List dialog. The same list can be filled and refilled again
and again with different items as conditions change. Below are three sam-
ples that could be used to fill a list from the Pizza Toppings database. The
first sample lists all toppings, the next veggie only, the final meat only.

superobject "Toppings","FillList",
Topping,"Pizza Toppings"

superobject "Toppings","FillList",
?(Category="Veggie",Topping,""),"Pizza Toppings"

superobject "Toppings","FillList",
?(Category="Meat",Topping,""),"Pizza Toppings"

Of course you can also use the "FillList" command to directly specify the
contents of the list. In this case the database should be set to "".

superobject "Toppings","FillList",
"Pepperoni"+¶+"Sausage"+¶+"Meatballs"+¶+
"Mushrooms"+¶+"Olives"+¶+"Onions"
,""

Off course the topping list could also be created with variables. Here’s an
example:

local MeatToppings,VeggieToppings,SpecialtyToppings
MeatToppings="Pepperoni"+¶+"Sausage"+¶+"Meatballs"
VeggieToppings="Mushrooms"+¶+"Olives"+¶+"Onions"
SpecialtyToppings="Anchovies"+¶+"Garlic"
superobject "Toppings","FillList",VeggieToppings,""

"AutoScroll"

This command scrolls the list so that the first selected item is visible. For
example, this procedure selects Pineapple and scrolls the list to make sure
that the Pineapple item is visible. (The procedure assumes that the
selected list value is stored in a field named ListCell — see “Data” on
page 883 of the Panorama Handbook).

ListCell="Pineapple"
SuperObject "Toppings","AutoScroll"

Chapter 3:Programming Techniques Page 709
"CellRectangle" Item,Rectangle

This command allows a procedure to determine the physical location and
size (i.e. rectangle) of any item in the list. This command has two parame-
ters as shown below: the Item number (from 1 to the maximum number
of items in the list) and the Rectangle. The Rectangle should be a variable
that will contain the final result.

Here is an example that fills in the variable dragRectangle with the
dimensions of the third item in the list.

superobject "My List",
 "CellRectangle",3,dragRectangle

Note: The rectangle that is returned by this command is in window rela-
tive co-ordinates (see “Rectangles” on page 149). You can change this to
screen or form relative co-ordinates using the xytoxy(function (see
“XYTOXY(” on page 5910).

"PointToCell" Point,Cell

This command allows a procedure to determine what list item (if any)
corresponds to any point on the screen. For example, if someone drags
something onto the list, this command allows the procedure to determine
where in the list the item should be placed. This command has two
parameters as shown below: the Point and the Cell. The Cell parameter
should be a variable that will contain the final result.

superobject "object name","PointToCell",Point,Cell

"GetList" List
This command produces a list of all the items in the list, with each item
separated from the next by a carriage return. The list is placed into the
field or variable specified by List.

"GetSelected" List

This command produces a list of all the selected items in the list, with
each item separated from the next by a carriage return. The list is placed
into the field or variable specified by List. (Note: This command is redun-
dant if the list is already associated with a field or variable. Instead of
using the command the procedure can simply examine (or change!) the
value of the field or variable.)

"GetCount" Number This command returns a count of the total number of items currently in
the list into the field or variable specified by Number.

"GetCell" Item,Value

This command extracts the contents of a particular item in the list. The
command treats the list as a series of numbered items, starting from 1 at
the top of the list. This example will copy the first item in the list PartsList
into the variable NextPart.

local NextPart
superobject "PartsList","GetCell",1,NextPart

This example will copy the last item in the list PartsList into the variable
NextPart.

local NextPart,ListCount
superobject "PartsList","GetCount",ListCount
superobject "PartsList",
 "GetCell",ListCount,NextPart

Command Parameters Description

Page 710 Panorama Formulas & Programming
"FindCell" Cell,Text

This command searches the list to find a specified value. The list item
must match exactly, or the search will be unsuccessful. The search starts
with the item specified by Cell. If successful, the number of the item con-
taining the searched for value will be placed in Cell, otherwise Cell will
be set to zero. The example below will locate Garlic in the list of pizza
toppings and select it (tasty!).

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Garlic"
if ListCell≠0

superobject "Toppings","SelectCell",ListCell
endif

Keep in mind that the word or phrase must match exactly. In this case
only Garlic will be located; garlic or Roasted Garlic will not.

Note: This command is redundant if the list is already associated with a
field or variable. Instead of using the "FindCell" command the procedure
can simply set the value of the field or variable. Here is a much simpler
procedure that performs the same function as the procedure above. (The
procedure assumes that the selected list value is stored in a field named
ListCell — see “Data” on page 883 of the Panorama Handbook).

ListCell="Garlic"
showvariables ListCell

"SelectCell" Cell
This command selects a specified item in the list. The item is specified by
Cell, which should be a number from 1 to the maximum number of items
in the list.

"UnSelectCell" Cell

This command unselects a specified item in the list. The item is specified
by Cell, which should be a number from 1 to the maximum number of
items in the list. The example below makes sure that there are no ancho-
vies on the pizza!

local ListCell
ListCell=1
SuperObject
"Toppings","FindCell",ListCell,"Anchovies"
if ListCell≠0

superobject "Toppings","UnSelectCell",ListCell
endif

Note: This command is usually redundant if the list is already associated
with a field or variable. Instead of using the "UnSelectCell" command
the procedure can simply set the value of the field or variable. Here is a
much simpler procedure that performs the same function as the proce-
dure above. (The procedure assumes that the selected list value is stored
in a field named ListCell that is a carriage return separated array — see
“Data” on page 883 of the Panorama Handbook).

ListCell=replace(ListCell,"Garlic","")
ListCell=arraystrip(ListCell,¶)
showvariables ListCell

Command Parameters Description

Chapter 3:Programming Techniques Page 711
"SetCell" Cell,Value

This command changes the contents of a specified item in the list. The
item is specified by Cell, and should be from 1 to the maximum number
of items in the list. The example below changes the Cheese item to Extra
Cheese.

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Cheese"
if ListCell<>0

superobject "Toppings","SetCell",ListCell,
"Extra Cheese"

endif

"AddCell" Value

This command adds a new item to the end of the list. This example adds
the item Sun Dried Tomatoes to the end of the list of pizza toppings.

superobject "Toppings","AddCell",
"Sun Dried Tomatoes"

"InsertCell" Cell,Value

This command inserts a new item into the middle of the list. The Cell
parameter specifies where the new item should be inserted. This parame-
ter must be a number from 1 up to the number of items in the list. The
new item will go above the item specified. For example, you could insert
the item Extra Cheese at the very top of the pizza topping list:

superobject "Toppings",
"InsertCell",1,"Extra Cheese"

This more complex example inserts Grilled Onions after Onions.

local ListCell
ListCell=1
superobject "Toppings","FindCell",ListCell,"Onions"
if ListCell≠0

ListCell=ListCell+1
superobject "Toppings","InsertCell",

ListCell,"Grilled Onions"
endif

Notice that the example adds one to ListCell before inserting the new
item. This is so the new item (Grilled Onions) will be inserted after the
original item (Onions) instead of before it.

"DeleteCell" Start,End

This command deletes one or more items from the list. If you just want to
delete a single cell, then only one number is needed. This example deletes
the first item in the list.

superobject "Toppings","DeleteCell",1

To delete a bunch of cells at once, specify two numbers — the first and
last cell to delete. This example deletes the first 5 items in the list.

superobject "Toppings","DeleteCell",1,5

This example will delete the entire list in a big hurry!

superobject "Toppings","DeleteCell",1,10000

Command Parameters Description

Page 712 Panorama Formulas & Programming
Using Drag and Drop to Change the Order of Items in a List

This example shows how to set up a procedure that allows the user to drag items up or down in a list to
change the order of a list. This example assumes that there is a list of names in a field called Names, with each
name separated from the next by a carriage return. The current form must contain a List SuperObject named
Names List (see “Object Type/Object Name” on page 533 of the Panorama Handbook). The Names List object
displays the Names field, it is also linked to a global variable named theName (see “Data” on page 883 of the
Panorama Handbook).

global theName
local cell,cellbox,listbox,mouse,newcell,newNames
cell=1
superobject "Names List","findselected",cell
superobject "Names List","cellrectangle",cell,cellbox
cellbox=xytoxy(cellbox,"w","s")
object "Names List"
listbox=xytoxy(objectinfo("rectangle"),"f","s")
draggraybox cellbox,listbox,listbox,0
if cellbox="" stop endif /* user dragged out of the list */
mouse=xytoxy(info("mouse"),"s","w")
/* where is the new location for this item? */
superobject "Names List","pointtocell",mouse,newcell
if cell=newcell stop endif /* item did not move */
if newcell>cell

newcell=newcell-1 /* adjust for deleting item in old spot */
endif
/* delete item from old spot */
newNames=arraydelete(Names,cell,1,¶)
if newcell>0

/* insert item in new spot */
newNames=arrayinsert(newNames,newcell,1,¶)
newNames=arraychange(newNames,theName,newcell,¶)

else
/* add item to end of list */
newNames=newNames+¶+theName

endif
Names=newNames /* update original field */
superobject "Names List","filllist" /* re-display list */
showvariables theName /* and select correct item */

"FindSelected" Cell

This command finds the next selected cell, starting with Cell. The result is
placed in Cell, or zero if there are no selected cells below the starting spot.
The example below deletes all the selected items from the list.

Local Spot
Spot=1
loop

SuperObject "Toppings","FindSelected",Spot
if Spot=0

stop
endif
SuperObject "Toppings",DeleteCell,Spot

next

Command Parameters Description

Chapter 3:Programming Techniques Page 713
The illustration below shows this procedure in action. You can click on any item in the list and drag it into a
new position on the list.

List SuperObject Internal Data

This table describes the internal data in a List SuperObject that can be accessed and modified using the “back
door” described in “Internal Data Types” on page 669. To learn more about how these options work see “List
Options” on page 883.

Identifier Data Type Changeable? Description

"#LIST FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — sort up, no duplicates, click/
release, etc. You can also access each of these options
separately (see following entries). Being able to access
all of these values at once makes it easy to save all the
flags, modify selected flags, and then restore all of the
original settings.

"#LIST SORT" Bit Yes -1 if sort up is enabled, 0 if disabled.

"#LIST NO DUPLICATES" Bit Yes -1 if no duplicates is enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#THIN SCROLL" Bit Yes -1 if thin scroll bars are enabled, 0 if disabled.

"#LIST CLICK FLAGS" Byte Yes

This value controls the click action configuration (see
“Click Action” on page 892 of the Panorama Handbook).

 0 = Normal
 128 = One Cell Only
 32 = Contiguous Cells Only
 118 = Extend w/o Shift

"#LIST DATABASE" Text Yes Name of database to scan ("" if formula builds list
directly).

"#SEPARATOR" Text Yes Value separator for multiple values (maximum 5 char-
acters).

"#PROCEDURE" Text Yes Name of the procedure that is triggered when this list
is pressed.

"#FIELD" Text Yes Name of field or variable that contains value of pop-
up menu (maximum 31 characters).

"#FORMULA" Text No Formula for calculating contents of list.

Page 714 Panorama Formulas & Programming
Auto Grow SuperObject™ Commands (Elastic Forms)

The Auto Grow SuperObject (see “Elastic Forms” on page 922 of the Panorama Handbook) understands a small
set of commands that can be sent to it with the superobject statement in a procedure (see “Program Con-
trol of SuperObjects™” on page 666). This table describes each of these commands in detail.

Auto Grow SuperObject Internal Data

This table describes the internal data in an Auto Grow SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 669. To learn more about how these options work
see “Building an Elastic Form” on page 925 of the Panorama Handbook.

Command Parameters Description

"GetMinSize" Height,Width This command gets the minimum window size (see “Building an Elastic
Form” on page 925 of the Panorama Handbook).

"SetMinSize" Height,Width This command sets the minimum window size (see “Building an Elastic
Form” on page 925 of the Panorama Handbook).

"GetMaxSize" Height,Width This command gets the maximum window size (see “Maximum Window
Size” on page 929 of the Panorama Handbook).

"SetMaxSize" Height,Width This command sets the maximum window size (see “Maximum Window
Size” on page 929 of the Panorama Handbook).

Identifier Data Type Changeable? Description

"#AUTO GROW FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — sort up, no duplicates, click/
release, etc. You can also access each of these options
separately (see following entries). Being able to access
all of these values at once makes it easy to save all the
flags, modify selected flags, and then restore all of the
original settings.

"#AUTO GROW HORIZONTAL" Bit Yes -1 if slave (horizontal) is enabled, 0 if disabled.

"#AUTO GROW VERTICAL" Bit Yes -1 if slave (vertical) is enabled, 0 if disabled.

"#NO AUTO GROW" Bit Yes -1 if don’t adjust form is enabled, 0 if disabled.

"#AUTO GROW ICON" Bit Yes -1 if draw grow icon is enabled, 0 if disabled.

"#AUTOGROW PROCEDURE" Bit Yes -1 if .Autogrow proc is enabled, 0 if disabled.

Chapter 3:Programming Techniques Page 715
Super Matrix SuperObject™ Commands

The Super Matrix SuperObject (see “Super Matrix Objects” on page 939 of the Panorama Handbook) under-
stands a small set of commands that can be sent to it with the superobject statement in a procedure (see
“Program Control of SuperObjects™” on page 666). This table describes each of these commands in detail.

Command Parameters Description

"ReDraw" Area,Start,End

This command redraws some or all of the cells in a super matrix. The first
parameter, Area, defines the area that will be redrawn. Legal options for
this parameter are: "all", "column", "row", and "cell".

The Start and End parameters define the start and end of the area to be
redrawn. For example, if the Area parameter was "column" and the last
two parameters were 3 and 5, then columns 3 thru 5 would be redrawn.
(Note: The start and end values are ignored if the "all" area is chosen.)

The following examples illustrate different ways a matrix might be
updated. This calendar example redisplays the entire month.

superobject "Month","redraw","all",0,0

This example redisplays only weekdays.

superobject "Month","redraw","column",2,6

This example works with a matrix of photographs. The procedure redis-
plays photo 7 only.

superobject "Photographs","redraw","cell",7,7

This example redisplays all photos after photo 12. This procedure would
be used if someone inserts or deletes a photograph at position 12.

superobject "Thumbnails","redraw","cell",12,9999

"CellRectangle" Cell,Rectangle

This command returns the dimensions of an individual cell in the matrix.
The dimensions are in window co-ordinates. The Cell parameter should
be a number from 1 to the maximum number of cells in the matrix. The
Rectangle parameter should be a field or variable where the rectangle will
be stored.

This example uses the "CellRectangle" command to open a new window
over the current matrix cell (the matrix cell that was clicked on).

local subWindowRectangle
superobject "Calendar","CellRectangle",

info("matrixcell"),subWindowRectangle
setwindowrectangle

xytoxy(subWindowRectangle,"w","g"),""
openform "Day"

"CellToXY" Cell,Row,Col

This command converts a matrix cell number into a row and column. The
example below displays what row and column were clicked on.

local mRow,mCol
superobject "Thumbnail",

"CellToXY",info("matrixcell"),mRow,mCol
message "You clicked on row "+str(mRow)+

" and column "+str(mCol)

Page 716 Panorama Formulas & Programming
"XYToXY" Cell,Rectangle

This command converts a rectangle within the matrix frame object into a
rectangle within an individual cell in the matrix. The intended use for this
command is allow a procedure to test whether the mouse is over a spe-
cific object within the cell, or to pop-up a text editor over a specific section
of the cell. The Cell parameter should be a number from 1 to the maxi-
mum number of cells in the matrix. The Rectangle parameter should be a
rectangle inside the frame rectangle. For an example of this command in
action see the .matrixClick procedure in the Albums example database.

"MatrixShape" Row,Column

This command changes the shape of the matrix. The parameters specify
the visible rows and columns. For example, if you want to display 3 by 5
matrix the parameters should be 3,5. If negative, these are fixed heights/
widths (in pixels). For example, to display 64 by 64 icons use -64,-64.

"MatrixGetShape" Row,Column

This command returns the current shape of the matrix. Positive numbers
indicate the number of rows or columns, negative numbers indicate a
fixed height or width in pixels. For example -20,1 indicates that there is
one column, with a variable number of rows that are each 20 pixels high.

"MatrixScroll" Row,Column

This command moves the upper left hand corner of the matrix to the
specified coordinates, adjusting the scroll bars as necessary. The co-ordi-
nates are number from 1..N. If there is only one scroll bar then the other
parameter is ignored.

"MatrixGetScroll" Row,Column Get the coordinates of the upper left hand cell, starting from 1. As you
scroll down and to the right, the numbers will increase.

"PointToCell" Point,Cell Given a point in local co-ordinates, it returns the corresponding cell # (or
zero if not in a cell).

"MatrixBounds" Cells/Rows,Columns

This command sets the bounds of the scrollable area. If there is only one
scroll bar, then only the first parameter is used and it is treated as the
number of CELLS in the matrix. For example, if your matrix is displaying
97 items then you would set the number of cells to 97. This means that
when you drag the scroll thumb to the bottom you'll see the last row of
items, up to number 97. If there are two scroll bars then the parameters
are rows and columns. Until this statement is used the default is 100 cells
or rows/columns. (Note: If you have specified the matrix data formula
and separator then the matrix bounds will be calculated automatically,
and you should not use this command.)

"MatrixSize" Cells

This command calculates the current number of cells in the matrix. Here
is a procedure that displays all the vital statistics for a matrix.

local mCells,mRows,mCols
superobject "Images","MatrixSize",mCells
superobject "Images","CellToXY",mCells,mRows,mCols
message "This matrix contains "+

str(mCells)+" cells ("+
str(mRows)+" rows by "+
str(mCols)+ "columns).

"Scroll" Rows,Cols

This command slides the display of the matrix up or down and/or right
or left. This command simply slides the matrix display — it’s up to you to
adjust the underlying data structure. If the Rows parameter is positive
the matrix display will slide up by the specified number of rows, if nega-
tive it will slide down. If the Cols parameter is positive the matrix display
will slide right by the specified number of columns, if negative it will
slide left. For either parameter a value of 0 may be used to maintain the
same position on that axis. Note: This command is obsolete, it was
designed before matrix objects had scroll bars.

Command Parameters Description

Chapter 3:Programming Techniques Page 717
Super Matrix SuperObject Internal Data

This table describes the internal data in a Super Matrix SuperObject that can be accessed and modified using
the “back door” described in “Internal Data Types” on page 669. To learn more about how these options work
see “Designing a Matrix Template” on page 949 of the Panorama Handbook.

Identifier Data Type Changeable? Description

"#SUPER MATRIX FLAGS" Long Word Yes

This internal data item contains all of the on/off
options for the object — matrix order, fixed width,
fixed height, click/release, etc. You can also access
each of these options separately (see following
entries). Being able to access all of these values at once
makes it easy to save all the flags, modify selected
flags, and then restore all of the original settings.

"#VERTICAL SCROLL BAR" Bit Yes -1 if vertical scroll bar is enabled, 0 if disabled.

"#HORIZONTAL SCROLL BAR" Bit Yes -1 if horizontal scroll bar is enabled, 0 if disabled.

"#THIN SCROLL BARS" Bit Yes -1 if thin scroll bars are enabled, 0 if disabled.

"#GROW BOX" Bit Yes -1 if grow box is enabled, 0 if disabled.

"#SUPER MATRIX SHOW
FRAME" Bit Yes -1 if display:frame object is enabled, 0 if disabled.

"#SUPER MATRIX ORDER" Bit Yes -1 if horizontal is enabled, 0 if vertical.

"#SUPER MATRIX FIXED WIDTH" Bit Yes -1 if fixed width (pixels) is enabled, 0 if fixed # of
columns.

"#SUPER MATRIX FIXED
HEIGHT" Bit Yes -1 if fixed height (pixels) is enabled, 0 if fixed # of

rows.

"#CLICK/RELEASE" Bit Yes -1 if click/release is enabled, 0 if disabled.

"#SUPER MATRIX GROW
METHOD" Bit Yes -1 if slide is enabled, 0 if proportional.

"#SUPER MATRIX BORDERS" Bit Yes -1 if cell borders is enabled, 0 if disabled.

"#OVERFLOW" Bit Yes -1 if overflow is enabled, 0 if disabled.

"#SUPER MATRIX COLUMNS" Long Word Yes
Number of columns if fixed # of columns is enabled,
or width of each column (in pixels) if fixed width is
enabled.

"#SUPER MATRIX ROWS" Long Word Yes Number of rows if fixed # of rows is enabled, or width
of each column (in pixels) if fixed height is enabled.

"#SUPER MATRIX GROW
BOUNDARY" Long Word Yes

Point specifying slide boundaries (used if slide is
enabled). Use v(and h(functions to extract individual
dimensions (see “Points” on page 147).

"#SUPER MATRIX FRAME" Text Yes Name of matrix frame object (maximum 31 charac-
ters).

"#PROCEDURE" Text Yes Name of procedure triggered when matrix is clicked
on, if any.

"#SEPARATOR" Byte Yes Array separator character, if any.

"#FORMULA" Text Yes Formula for data array, if any.

Page 718 Panorama Formulas & Programming
Scroll Bar SuperObject™ Commands

The Scroll Bar SuperObject (see “Scroll Bars” on page 979 of the Panorama Handbook) understands a small set
of commands that can be sent to it with the superobject statement in a procedure (see “Program Control of
SuperObjects™” on page 666). This table describes each of these commands in detail.

Command Parameters Description

"GetScrollMin" Value This command gets the minimum scroll bar value and places into the
field or variable specified by Value.

"SetScrollMin" Value
This command sets the minimum scroll bar value to any numeric value
(must be integer) between 1 and 65535. (This value is normally set by the
Min value in the Scroll Bar dialog.)

"GetScrollMax" Value This command gets the maximum scroll bar value and places into the
field or variable specified by Value.

"SetScrollMax" Value

This command sets the maximum scroll bar value to any numeric value
(must be integer) between 1 and 65535. (This value is normally set by the
Max value in the Scroll Bar dialog.) Here is an example that sets the max-
imum value of the scroll bar named Slider to the number of elements in
the array People:

superobject "Slider",
 "SetScrollMax",arraysize(People,¶)

"GetScrollPage" Value

This command gets the scroll bar page amount and places into the field
or variable specified by Value. This value is the amount the scroll bar
value will increase or decrease if the user clicks on the gray area above or
below the thumb of the scroll bar.

"SetScrollPage" Value

This command sets the scroll bar page amount to any numeric value
(must be integer) between 1 and 65535. This value is the amount the scroll
bar value will increase or decrease if the user clicks on the gray area
above or below the thumb of the scroll bar. (This value is normally set by
the Page Up/Down value in the Scroll Bar dialog.)

"GetScrollValue" Value
This command gets the current position of the scroll bar. This command
is redundant because you can always get the position by examining the
field or variable linked to the scroll bar.

"DisableScroll" This command disables the scroll bar. The scroll bar is still visible, but it
turns white and the thumb disappears.

"EnableScroll" This command enables the scroll bar (see DisableScroll above).

"GetScrollEnable" Value
This command checks to see if a scroll bar is enabled or disabled, and sets
the field or variable specified by Value with a true or false result accord-
ingly.

Chapter 3:Programming Techniques Page 719
Speech Synthesis

Speech synthesis is an exciting new feature introduced in Panorama V. (Note: Speech synthesis is available
only on Macintosh systems. It is not available on Windows systems.) There are several new statements and
functions that support speech synthesis. In it's simplest form you can cause Panorama to speak a word or
phrase simply by using the speak statement followed by the text to speak.

The Speak Statement

This statement speaks a word or phrase using the current voice. If the voice is already talking, it waits until
the current text has been spoken before speaking the new text. The program continues running immediately -
in other words, the next statement will be executed immediately, without waiting for the text to be spoken.
See the info("speaking") function if you need to wait until the text has been spoken to proceed.

The speak statement has one parameter, the text to be spoken. Here is an example that speaks a short sen-
tence.

speak "Welcome to the order entry system!"

Embedded Speech Commands

The system does it's best to parse the text you supply and to speak it properly. For example, it will automati-
cally inflect the end of a sentence depending on whether the sentence ends with a period, question mark, or
exclamation mark. You can also tweak the way the text is pronounced with embedded speech commands.
These commands are text tags that are embedded in the text to change the rate, pitch and emphasis of the text
being spoken. To learn about how to use these tags see Embedded Speech Commands on Apple's developer web-
site.

http://developer.apple.com/techpubs/mac/Sound/Sound-200.html#HEADING200-0

The StopSpeaking Statement

This statement tells Panorama to shut up now! Any text that is being spoken will stop immediately in mid-
sentence. There are no parameters.

The info("speaking") Function

This function returns true if talking is occurring right now. You can use this function to wait for speech to fin-
ish before continuing to the next step in a procedure. For example, this procedure times now long it takes to
speak a phrase.

local start
start=now()
speak "How long does it take to say this?"
loop

nop
while info("speaking")
message now()-start

Page 720 Panorama Formulas & Programming
Buffered Speech

The buffered speech statements allow you to build up the text you want to speak item by item. For example,
you might want to include data from different records in the text to be spoken. The buffered speech state-
ments allow you to build up the text to be spoken over several statements, then smoothly speak the com-
bined text when you are done assembling the items. The two basic buffered speech statements are
speakwords and speaknow. Here’s a silly example of how these could be used to count from one to five.

speakwords "One"
speakwords "Two"
speakwords "Three"
speakwords "Four"
speakwords "Five"
speaknow

Before moving to a less silly example, the table below describes each of the statements for buffering speech.
As the table shows, each of these statements can speak text, numbers, dates, or some combination.

Data Type Statement Description

TEXT

speakwords The text is spoken using normal English.

speakdigits
The data is spoken in English, but if the data contains any numbers they will be
spoken as individual digits. For example, 4892 will be spoken as four eight nine
two.

speakdigitpairs The data is spoken in English, but if there are any numbers they will be spoken
as digit pairs. For example, 4892 will be spoken as forty-eight ninety-two.

speakletters The data is spoken letter by letter, including upper and lower case. For example
Jim will be spoken as upper case J, lower case I, lower case M.

speakcharacters The data is spoken letter by letter. For example April will be spoken as A P R I
L.

speakcharactersslowly The data is spoken letter by letter, with a delay between each letter. For example
April will be spoken as A; P; R; I; L.

speakaddress
The data is spoken in English, but any official USPS abbreviations are expanded
as the text is spoken. For example S or S. is expanded to South, while Bl. is
expanded to Boulevard. Any numbers in the text are spoken as digit pairs.

speakstate
If the text is a two letter abbreviation of a U.S. state it will be spoken as the full
name. For example CA will be spoken as California, while WV will be spoken
as West Virginia.

speakphonenumber The first ten digits in the text are spoken as a phone number, along with any
extension after that.

NUMBER

speakwords The number is spelled out. For example, 4892 will be spoken as four-thousand
eight-hundred and ninety-two.

speakdigits The number is spoken as individual digits. For example, 4892 will be spoken as
four eight nine two.

speakdigitpairs The number is spoken as digit pairs. For example, 4892 will be spoken as forty-
eight ninety-two.

speakdollars The integer portion of the number is spelled out, followed by the word Dollars.
For example 378.93 will be spoken as Three-hundred seventy-eight dollars.

speakdollarsandcents

The integer portion of the number is spelled out, followed by the word Dollars,
followed by the two digits after the decimal point, followed by the word Cents.
For example 378.93 will be spoken as Three-hundred seventy-eight dollars and
ninety-three cents.

DATE speakdate The date is spelled out. For example 4/18/04 is spoken as April eighteenth,
2004.

Chapter 3:Programming Techniques Page 721
Here is an example that reads a check from a checkbook database:

speakwords "Check number"
speakdigitpairs Check
speakwords "to"
speakwords «Pay To»
speakwords "for”
speakdollarsandcents Debit
speaknow

This example reads an address from a contact database.

speakwords First+" "+Last
speakaddress Address
speakwords City+","
speakstate State
speakdigits Zip
speaknow

Speaking Using the Speech Wizard

The Speech Wizard (see “Speech Wizard” on page 103 of Wizrds & Demos) allows you to define templates for
speaking the data in each database. To speak the data in the current record using the currently active tem-
plate use the speakthisrecord command (no parameters are required.)

To speak the data in the current record using a specific template use the speakscript statement.

speakscript database,template

If the database is "" the current database will be assumed, otherwise you can specify any open database.

The template you specify must have been previously defined in the speech wizard. You can use the
speechscripts command to find out what templates are available.

speechscripts database,templatelist

If the database is "" the current database will be assumed, otherwise you can specify any open database.

The templatelist must be the name of a field or variable. When the statement is complete, this field or variable
will contain the names of the templates that have been created in the Speech Wizard, one template per line.

The example below will speak the current record over and over again using each template that has been set
up in the Speech Wizard.

local tlist,tp,n
speechscripts "",tlist
n=1
loop

tp=array(tlist,n,¶)
stoploopif tp=""
speakscript "",tp
n=n+1

while forever

Page 722 Panorama Formulas & Programming
Printing

Even in this e-commerce age many jobs still require paper output. Printing can be done manually (see “Print-
ing Basics” on page 1047 of the Panorama Handbook) or via a procedure.

Selecting a View for Printing

In Panorama printing is always done through a specific view. You can always print the data sheet, but usually
when printing with a procedure you’ll be using a form set up with a custom report (see “Custom Reports” on
page 1061 of the Panorama Handbook). Before printing begins the procedure must select the appropriate form,
either in a new window with the openform statement (see “Opening a Window” on page 445) or within the
current window with the goform statement (see “Changing a Window’s View” on page 451). An alternate
way to select a view for printing is to use the printusingform statement. This statement allows a proce-
dure to print using a form without actually opening the form. See “Printing Using an Alternate Form” on
page 725 to learn how to use this statement.

Selecting a Printer

A procedure always prints to the currently selected printer. The currently selected printer can be changed
manually using your system software, or if you are using OS X you can also change the printer via a proce-
dure.

Changing the Current Printer

To change the current printer use the changeprinter statement:

changeprinter printername

The printer name must be the name of one of the printers connected to the system (you can use the
listprinters(function for a list, see below). Here is a procedure that opens a form and prints a check on
an Epson printer.

openform "CheckTemplate"
changeprinter "Epson Stylus CX5400"
printonerecord dialog
closeform

Note: If the current window is a form with a default printer (see “Setting up Default Printers” on page 1059)
the changeprinter statement is ignored.

Changing the Default Printer

The changedefaultprinter statement will change the default printer for one or more forms (see “Setting
up Default Printers” on page 1059).

changedefaultprinter printername,forms

The second parameter, forms, is a carriage return delimited list of forms. This procedure will set the default
printer of both the Checks and the Deposits forms to use the Epson printer.

changedefaultprinter "Epson Stylus CX5400","Checks"+cr()+"Deposits"

This procedure will set the default printer of all forms in the current database to the Epson printer.

changedefaultprinter "Epson Stylus CX5400",dbinfo("forms","")

If no form is specified then the current form is assumed.

changedefaultprinter "Epson Stylus CX5400",""

Chapter 3:Programming Techniques Page 723
If no printer is specified then the default printer is removed from the form (or forms). This procedure
removes the default printer from all forms in the current database.

changedefaultprinter "",dbinfo("forms","")

After this procedure is used all of the forms will print using the currently selected printer.

Getting Information About Printers

Use the listprinters() function to get a list of printers that are available on this computer. Depending on
what printers are available this will return a carriage return delimited array something like this:

HP Laserjet 5P
LaserWriter 12/640 PS
Stylus CX5400

Just because a printer is on this list does not mean that it is physically able to print at this time. Unfortunately
there is no reliable method for a procedure to determine if a printer is actually currently available for print-
ing. You can use the printerstatus(printername) function to check printer status, but it may show
stopped or idle whether a printer is actually available or not.

Use the currentprinter() function to find out what the currently selected printer is.

Adjusting Page Setup

The Page Setup dialog allows you to configure various printing options (see “The Page Setup Dialog” on
page 1053). A procedure cannot control these options directly, but it can open the Page Setup dialog automat-
ically using the pagesetup statement. This statement does not have any parameters, it is simply used by
itself. Here is a simple procedure that opens a form and allows the page setup to be adjusted, then closes the
form.

openform "My Report"
pagesetup
closewindow

Panorama keeps a separate Page Setup configuration for each form. This allows different forms to have dif-
ferent configurations (for example portrait vs. landscape orientation).

Preparing Data For Printing

Most procedures that print the database also prepare the database in some way. Typically, a procedure may
sort, select a subset of the database and/or prepare summaries. See “Sorting” on page 551, “Locating Infor-
mation” on page 552 and “Summaries and Outlines” on page 566 to learn how to perform these tasks with a
procedure.

Printing the Database

A procedure can print all selected records in the current database using the print statement. This statement
may be used one of two ways. The first method is to follow the statement with the parameter dialog, like
this (there must be a space between print and dialog, as shown below).

print dialog

When used this way the procedure will pause and display the standard Print dialog, the same dialog that
normally appears when you choose the Print command. This allows you to choose the print options for this
print run (number of copies, paper source, etc.) The exact options depend on the printer you have selected.
When the Print button is pressed the procedure will go ahead and print all the selected records in the current
database.

Page 724 Panorama Formulas & Programming
The second method is to follow the print statement with the parameter "", as shown here.

print ""

When the print statement is used this way it will not display the Print dialog. Instead, it simply prints the
database using the same options that were used the last time this form was printed. (Note: Depending on the
printer driver software your printer uses, some options may not be saved from print to print. These options
will use default settings. For absolute control over all print options we recommend that you use the dialog
option.)

Here is an example of a complete procedure to print a report. The procedure opens the form that is designed
for printing this report and then selects the appropriate data. After printing it selects all of the data again and
then closes the form.

openform "90 Day Report"
select Date>today()-90
print dialog
selectall
closewindow

Printing a Single Record

To print just the current record use the printonerecord statement. For example this statement could be
used to print a single letter or a single invoice. Like the print statement the printonerecord statement
may be used with a parameter of either dialog or "". Here is an example that prints the current invoice.

openform "Paper Invoice"
printonerecord dialog
closewindow

Print Preview

The printpreview statement opens a special preview window. This window displays a preview of the
printed results for the current view. This is the same as choosing Preview from the File menu (see “Print Pre-
view” on page 1056 of the Panorama Handbook). The user can flip forward to see additional pages of the pre-
viewed report. When the user closes the preview window, the procedure continues with the statement after
the printpreview statement. Usually this should be either the end of the procedure or the stop statement
(see “Stopping the Program” on page 278).

The most common reason to use the printpreview statement in a procedure is to simulate the Print Pre-
view command in your own custom File menu. Here are the statements to use in your .CustomMenu proce-
dure (see “The .CustomMenu Procedure” on page 363). (You could also trigger print preview with a button.)

if info("trigger") beginswith "Menu.File.Print Preview"
printpreview
stop

endif

Chapter 3:Programming Techniques Page 725
Printing Using an Alternate Form

The printusingform statement allows the current database to be printed using a different form than the
one currently being displayed. It is designed to be used in combination with the print, printonerecord,
or printpreview statements (see previous sections). This statement has two parameters: file and form.

printusingform file,form

File is the name of the database file that contains the form to be printed. The database file must be open. Usu-
ally the form will be in the current database, and in that case you can simply use an empty string ("") for the
file name. Form is the name of the form to be printed.

The print statement normally prints whatever window is currently active. If you want to print a different
window, you must first open that window and then print (see “Selecting a View for Printing” on page 722).
The printusingform statement is another way to print an alternate form.

Warning: The printusingform statement may only be used when a form window is currently on top. It
will not work when a data sheet window is the current window.

The procedure below will print My Report, even if another form is currently visible.

printusingform "","My Report"
print dialog

The procedure below will print Standard Report #4 from the Reports database. Although the form is from the
Reports database, the data will be from the current database. This usually only makes sense if the two data-
bases have the same fields.

printusingform "Reports","Standard Report #4"
print dialog

Page 726 Panorama Formulas & Programming
Printing Data in an Array

The printonemultiple statement prints a form over and over again without advancing from record to
record. Instead of advancing from record to record, a variable is incremented each time the form is printed.
This statement is designed for printing information in an array (see “Text Arrays” on page 93) using a Super
Matrix (see “Super Matrix Objects” on page 939 of the Panorama Handbook). Typical examples include calen-
dars and photo thumbnails. The printonemultiple statement has five parameters.

printonemultiple variable,start,end,bump,copies

The variable parameter is the name of the variable you wish to increment as each page is printed.

The start parameter is the beginning sequence number or date value. Start can be an integer number, a vari-
able containing a numeric integer or date value, or a formula or function which results in a numeric integer
or date value. The start parameter must be less than or equal to the end parameter.

The end parameter is the ending sequence number or date value. End can be an integer number, a variable
containing a numeric integer or date value, or a formula or function which results in a numeric integer or
date value. End must be greater than or equal to start.

The bump parameter is the increment value for your sequence. Bump may be a number, a numeric variable,
or a formula which results in a positive numeric integer. The bump value must be a positive integer for a
numeric field. For a date field bump may also be one of the following:

The copies parameter is the number of times the form is printed for each sequence number. Copies may be a
number, a numeric variable, or a formula which results in a positive numeric integer (usually 1).

The printonemultiple statement will print a form a predetermined number of times. Each printing of the
form may be sequenced with incrementing integer or date values in a specified variable. Note: the
printonemultiple statement does not actually print itself, but must be followed by a printonerecord
statement (see “Printing a Single Record” on page 724).

This example prints the next 3 months of a monthly calendar. The example assumes that the form Monthly
Calendar will display the month specified by the variable CalendarDate.

fileglobal CalendarDate
openform "Monthly Calendar"
printonemultiple CalendarDate,today(),today()+90,"m",1
printonerecord dialog
closewindow

This example prints all the photograph files in the current folder. The example assumes that the form Picture
Matrix will display 20 pictures per page, probably using a SuperMatrix object. (It’s possible for a procedure to
find out how many pictures are on each page, see “Super Matrix SuperObject™ Commands” on page 715).
The picture in the top left corner of each is controlled by the global variable PicNumber.

fileglobal PicNumber,PicMax
PicMax=arraysize(listfiles("","PICT"),¶)
openform "Picture Matrix"
printonemultiple PicNumber,1,PicMax,20,1
printonerecord dialog
closewindow

Bump Description

"M" bump one month per page

"Y" bump one year per page

1 bump one day per page

7 bump one week per page

Chapter 3:Programming Techniques Page 727
Printing Directly to a PDF File

If you are using Mac OS X and have the CodePoetry CUPS-PDF Package installed (see “Installing the CUPS-
PDF Package” on page 728) your procedures can print directly to a PDF file with no user intervention (no dia-
logs appear, etc.). This is done with the printpdf statement.

printpdf options

If the options parameter is left blank this statement will simply “print” a PDF file from the current database
view. The PDF file will be given the same file as the database with .pdf added to the end of the name.

For example, suppose this statement appears in a procedure in a database named Contacts:

printpdf ""

This will create a file named Contacts.pdf in the same folder as the database.

The options parameter can contain one or more “assignments” to modify the operation of the printpdf
statement. Each assignment takes the form option=value, for example {file="Invoice 3412.pdf"
onerecord=true}. There are five different options that can be specified.

Here is an example for printing the current invoice from an invoice database. The PDF file will be saved into
a folder named Printed that is a subfolder of the folder that contains the invoice database.

printpdf {file="Invoice }+str(«InvoiceNumber»)+{.pdf" }+
 {path="}+subpath(dbfolder(),"Printed")+{" }+
 {onerecord=true}

This example prints the contents (all selected records) of the Checkbook database into a file named
Reports.pdf on the desktop. The data will be formatted using the Transactions form.

printpdf {file="Report.pdf" path="}+folderpath(info("desktopfolder"))+{" }+
 {database="Checkbook" form="Transactions"}

Option Description

file=
Specifies the name of the PDF file to be generated. If "" or
if this option is omitted the name of the database is used
(with .pdf appended)

path=
Specifies the location of the PDF file to be generated. If ""
or if this option is omitted the PDF file is created in the
same folder as the database.

form=

Specifies the form to be printed. If "" or if this option is
omitted the current view is printed. The specified form
does not have to be open, but the current window must be
a form window.

database=

Specifies the database to be printed (the specified database
must be open). If "" or if this option is omitted current
database is printed. If an alternate database is specified
you must also specify a form with the form= option.

onerecord=
May be either true or false. If true only the current records
will be printed. If false (or if "") then all selected records
will be printed.

Page 728 Panorama Formulas & Programming
Installing the CUPS-PDF Package

Before you can use the printpdf statement you must download and install the CodePoetry CUPS-PDF
Package. CUPS-PDF is an open source program for creating PDF files that can be freely downloaded. The OS
x version of this package can be downloaded from the CodePoetry web site.

http://www.codepoetry.net/projects/cups-pdf-for-mosx

At the time this was written the CodePoetry web site looked like this:

click here to download

Chapter 3:Programming Techniques Page 729
The first step is to download the installer. Once this is complete the installer should automatically launch.

Follow the steps until the package is installed. After the package is installed open the Printer Setup Utility.
This is usually found in the Utilities folder inside the Applications folder.

Page 730 Panorama Formulas & Programming
Next, click on the Add button or choose Add Printer from the Printers menu.

Now make sure that Default Browser is selected in the toolbar.

The next step is to select Virtual Printer from the list of printers.

Chapter 3:Programming Techniques Page 731
Select Generic postscript color printer from the Print Using pop-up menu.

To finish press the Add button and exit from the Printer Setup Utility. You your system is now ready to use
the printpdf statement (see “Printing Directly to a PDF File” on page 727).

Page 732 Panorama Formulas & Programming
Form Comments

Panorama allows you to create extra explanation comments for each form in a database. These comments let
you keep some notes to yourself about each form-what its purpose is, what kind of paper it is printed on,
whatever you want to remember. There’s a limited amount of space, however, so don’t go into great detail
about each field in the form. To create these comments, use the Form Comments command in the Setup
Menu (graphics mode only). Enter the comments in the box in the lower left hand corner of the dialog.

You can also assign a form type using the radio buttons in the upper left hand corner of the dialog. This type
is for your information only and may also be used to select classes of forms using the formselect proce-
dure statement. The pre-defined form types are:

Remember, these form types are for your information only—Panorama will not stop you from printing a
form that is designated as a dialog or from editing data in a form that is designated as a report. However,
form types can be very useful to help the database designer (this means you) keep track of what forms are for
what.

Option Description

Data Entry This is for forms that are primarily for data entry.

Printing

This is for forms that are primarily designed for print-
ing. This option is further subdivided into single page
forms that are designed for printing individual
records, for example checks or tax forms, and reports
that are designed for printing many records at a time.

Dialog & Other This is for forms that are designed to be displayed as
dialog boxes.

Unknown This is the default setting before a purpose has been
assigned.

Custom

Allows you to create your own form classifications
(for use with the formselect statement - see “The
FormSelect Statement” on page 734). Custom classes
may be numbers from 10 to 255.

Chapter 3:Programming Techniques Page 733
In addition to the text comments, you can also assign a preview picture to the form. Before opening the Form
Comments dialog, copy the picture into the clipboard. Once the dialog is open, you can use the Paste
Preview Picture button to paste the picture into the comment window.

Another way to paste pictures into a form comment is to put the pictures in a resource file. The advantage of
this approach is that the picture doesn’t waste any of your valuable memory. However, the resource file must
be opened in the .Initialize procedure for this to work (see “Opening and Closing Resource Files” on
page 435). Once the picture is stored in the resource file (see “Working with Resources” on page 433), you can
open the Form Comments dialog, then hold down the Option key and press the Paste Preview Picture but-
ton. Panorama will request the number of the resource containing the picture. Enter the number and press
Enter.

No matter how you get the picture into Panorama, the picture itself should be no more than 256 pixels high
by 256 pixels wide.

Page 734 Panorama Formulas & Programming
The FormSelect Statement

The formselect statement pauses a procedure and displays a dialog through which the user can choose a
form from the active database. The dialog may also show the Form Comments information (see “Form Com-
ments” on page 732.) The dialog will look something like this.

The formselect statement has four required parameters.

formselect dialog,filter,button,form

Dialog is the resource number that identifies the dialog you wish to display. If you do not wish to create your
own dialog, with ResEdit for example, you may use Panorama's built in dialog number 2086. Filter is a
numeric value used to determine which type of forms will be displayed in the dialog (see “Form Comments”
on page 732). The following table shows the possible filter values.

Button is the name of a variable that will contain the name of the button that was pressed inside the
formselect dialog. Clicking on any button in the dialog closes the dialog and allows the procedure to con-
tinue.

Form is the name of a variable that will contain the name of the form selected in the dialog. If the variable is
pre-set to the form name before the formselect statement is reached this form will be selected when the
dialog opens. If no form is selected this variable will equal "" .

This example opens the built-in Panorama Form Selection dialog, displaying all forms. It will store the button
selection and form selection in the global variables defined.

global buttonname,formname
formselect 2086,0,buttonname,formname

Value Selected Forms

0 All forms

1 Data Entry forms

2 Printing forms

3 Dialog & related forms

4 or greater Custom forms

Chapter 3:Programming Techniques Page 735
This procedure opens a custom Form Selection dialog (# 3000) displaying Print forms only and pre-selects the
form called Sheet. The procedure makes a decision based on one of three buttons pressed: Cancel, Print, or
Edit.

local PrintButton,PrintForm
PrintForm = "Sheet"
openresource "Dialogs"
formselect 3000,2,PrintButton,PrintForm
if PrintButton = "Cancel"

stop
endif
if PrintButton = "Print"

openform PrintForm
print dialog
closewindow

endif
if PrintButton = "Edit"

openform PrintForm
graphicsmode
stop

endif

Reading and Modifying Form Comments in a Procedure

Using the formcomments(function a procedure can read the form comments from any procedure in any
open database. This function has two parameters, database and form. Here is an example that checks for the
word printable in the comments for the current form, and only prints the form if the comments contain this
word.

if formcomment(info("databasename"),info("formname")) contains "printable"
print dialog

else
message "Sorry, this form is not printable."

endif

A procedure cannot set the value of the form comments directly, but using the formcomments statement it
can pause and allow the user to type in form comments.

Page 736 Panorama Formulas & Programming
Accessing and Modifying Procedures

Procedures are usually accessed and edited manually using Panorama’s built in procedure editor, but a pro-
cedure can also access, modify and create other procedures automatically.

Use the dbinfo(function to find out what procedures are in any open database.

dbinfo("procedures",database)

For the database parameter you can specify any open database or specify "" for the current database. The
result of this function is a carriage return delimited list of the procedures in the specified database.

Here is a procedure that opens a database based on a parameter passed to the procedure. It then checks to see
if the newly opened database contains a procedure named .InitializeWidget. If it does, it calls the procedure,
otherwise the call statement is skipped.

openfile parameter(1)
if arraycontains(dbinfo("procedures",""),".InitializeWidget",cr())

call .InitializeWidget
endif

Accessing a Procedure’s Source Code

The getproceduretext(function returns the source code of any procedure in any open database (assum-
ing your security access level allows you to see the procedure). This function has two parameters, the name
of the database and the name of the procedure:

getproceduretext(database,procedure)

If the database name is "" the current database will be used.

This example creates a list of all procedures in the current database that contain a functionvalue state-
ment.

local plist
plist=dbinfo("procedures","")
arrayfilter plist,plist,cr(),
 ?(getproceduretext("",import()) contains "functionvalue",immport(),"")
arraystrip plist,cr()

In other words, this is a list of all procedures in this database that can be called with the call(function.

Changing a Procedure’s Source Code

The setproceduretext statement allows a procedure to change the source code of the current procedure.
The procedure must already have been opened, either manually or with the openprocedure or
goprocedure statements. The setproceduretext statement simply replaces all of the text in the proce-
dure. Any existing text in the procedure will be wiped out.

The setproceduretext statement has one parameter, the new source code text.

setproceduretext sourcetext

Creating a New Procedure

To create a new procedure use the makenewprocedure statement. This statement has two parameters:

makenewprocedure name,before

The name parameter is the name of the new procedure. The name can be up to 25 characters long and must
be unique (you cannot use the name of a procedure that already exists in this database.)

Chapter 3:Programming Techniques Page 737
The optional before parameter specifies the location of the new procedure in the procedure list. If this param-
eter is missing or is "" the procedure will be added at the end of the list. If before contains a valid name of an
existing procedure the new procedure will be added before the specified procedure.

This example creates a new procedure named Grand Total. In the View menu this procedure will be at the
end of the list.

makenewprocedure "Grand Total"

This example also creates a new procedure named Grand Total, but in the View menu this procedure will be
at the beginning of the list.

makenewprocedure "Grand Total",firstline(dbinfo("procedures","")

This example creates a new procedure named Grand Total and fills in the source code of the procedure with
code to total the Debit field.

makenewprocedure "Grand Total"
openprocedure "Grand Total"
setproceduretext "field Debit"+cr()+"Total"
closewindow

Storing Procedures in a Dictionary

Panorama provides several statements that allow you to copy one or more procedures into a dictionary (see
“Data Dictionaries” on page 602). This allows you to store procedures separately from the database, or to
transfer procedures from one database to another. The Panorama Enterprise server uses this technique to
transfer databases from the client to the server.

The saveallprocedures statement saves all of the procedures in a specified database into a variable as a
dictionary.

saveallprocedures database,variable

Once saved this way you can access individual procedures with the getdictionaryvalue(function.

In addition to saving all procedures you can also store only open procedures

saveopenprocedures database,variable

Or just a single procedure:

saveoneprocedure database,procedure,variable

Once you have a variable that contains a dictionary of procedures you can load these procedures back into
the original database (essentially a revert to saved for procedures) or load them into another database. This
can provide a quick way to transfer multiple procedures from one database to another. To load the proce-
dures use the loadallprocedures statement:

loadallprocedures variable,procedurelist

The variable parameter is the variable that contains the dictionary. The procedurelist parameter is also the
name of a variable. This variable will be set to a carriage return delimited list of the procedures that were
actually changed by the loadallprocedurestatement. If no procedures were changed then the list will
be empty. This second parameter is optional — if you don’t care what procedures were modified you can
omit this parameter.

Page 738 Panorama Formulas & Programming
Here is an example that copies the .ModifyRecord procedure from the current database to the Contacts
database.

local pxfr,pupdates
saveoneprocedure "",".ModifyRecord",pxfr
openfile "Contacts"
loadallprocedures pxfr,pupdates
if pupdates=""
 message ".ModifyRecord was already copied"
endif

The comparedictprocedures statement allows you to compare procedures that have been saved into a
dictionary with an open database. It returns information about which procedures have changed.

comparedictprocedures database,dictionary,modified,new,removed

The database parameter is the name of the database, or "" for the current database.

The dictionary parameter is the variable that contains the dictionary (built with the saveallprocedures
statement).

The modified parameter is a field or variable to receive carriage return delimited list of procedures that were
actually modified.

The new parameter is a field or variable to receive carriage return delimited list of procedures that exist in the
dictionary but not in the database.

The removed parameter is a field or variable to receive carriage return delimited list of procedures that exist
in the database but not in the dictionary.

Our example is in two parts. The first part saves the current procedures into a permanent variable.

permanent savedProcedures
saveallprocedures "",savedProcedures

Use this procedure to save the current state of the procedures. Then do some work, editing various proce-
dures, creating new ones, deleting old ones. After doing this you can use the following procedures to see
which procedures were changed.

local modded,added,xed
comparedictprocedures "",savedProcedures,modded,added,xed
displaydata "Modified Procedures:"+cr()+modded+cr()+cr()+
 "New Procedures:"+cr()+added+cr()+cr()+
 "Deleted Procedures:"+cr()+xed

Chapter 3:Programming Techniques Page 739
Writing Your Own Channel Modules

Panorama comes with a number of channel modules for sending e-mail, dialing the phone, and interfacing
with other web sites and third party software. If you have programming experience you can write your own
channel modules. To help make this easier we have created a Channel Workshop wizard that will create the
core of your new module for you. The next few sections provide an overview of this process, but before you
write your own new channel we recommend that you take some time to study the modules provided with
Panorama.

Each module is contained in a folder that has the name of the module. This folder must contain a database
that has the name of the channel and the name of the module, separated by an underscore (_). This is called
the module database. The illustration below illustrates two of the modules that come with Panorama: ABDialer
and Mailburst. (If you use the Channel Workshop, described below, it will automatically create the correct
folders and database for you.)

As you can see, the module folder must be placed inside the folder for the corresponding channel type. In
other words, dialing modules must be in the Dial folder, email modules, in the Email folder, etc.

In the illustration above, each folder contains a .pwp and .dat file. These files are created automatically by the
Channels wizard. The ABDialer folder also contains an AppleScript file used by the module. You should
store any additional files needed by the module within the same folder as the module itself.

The ModuleInformation Procedure

Every module database must contain a procedure named ModuleInformation. Panorama calls this procedure
to find out about the settings and capabilities of this module. The procedure has two parameters. Parameter 1
is a text parameter that specifies what information Panorama is requesting. The procedure must return this
information in the second parameter using the setparameter statement. Unless noted otherwise the informa-
tion must be returned in data dictionary format (see “Data Dictionaries” on page 602). To create a dictionary
first create a variable and assign it a value of "". Then use the setdictionaryvalue name,value statement
to add each name/value pair to the dictionary.

Page 740 Panorama Formulas & Programming
The types of information that Panorama will request are "settings", "settingnames", "settingdefaults", "setting-
descriptions", and "url". The ModuleInformation procedure will usually use a case statement to process each
of these options.

You don't have to write the ModuleInformation from scratch yourself. Instead, you can use the Channel
Workshop wizard (described below) to write the procedure for you.

Channel Specific Procedures

Each type of channel will require one or more additional procedures to perform the work of the channel.

Type Description

"settings"
The procedure must return a carriage return separated array
listing the settings used by this module. The settings should
not contain any spaces, punctuation or special characters.

"settingnames"

The procedure must return a dictionary that contains the set-
tings and setting names. The setting name may contain spaces,
punctuation, etc. For example, the AreaCode setting might
have a name of Area Code.

"settingdefaults" The procedure must return a dictionary that contains the set-
tings and default values for each setting.

"settingdescriptions" The procedure must return a dictionary that contains the set-
tings and default values for each setting.

"url"

The procedure must return a dictionary that contains the
URL's to be listed in the URL wizard. In each name/value pair
the name is the URL itself and the value is a short description
of the URL (perhaps the page title).

Type of Channel Procedure
Name Description

Dial DialDigits
This procedure has one parameter - the digits to
dial. The procedure should dial these digits
exactly, with no additions or subtractions.

Email SendEmail

This procedure sends an e-mail. The procedure
has two parameters: options and message.

The options parameter must contain assignments
for various e-mail options, including the recipi-
ent, sender, subject, server, etc. For more infor-
mation see the documentation for the SendMail
statement in the Programming Reference Wiz-
ard.

The message parameter will contain the body of
the e-mail message to be sent.

Chapter 3:Programming Techniques Page 741
The Channel Workshop Wizard

The Channel Workshop wizard automates much of the drudgery of creating a channel module. Of course the
workshop can't write all of your code for you (it does write some of it) but it does automate the basic tasks
required to create a channel, freeing you to focus on writing the actual code necessary to implement the chan-
nel. When you first open the Channel Workshop it automatically begins the process of creating a new chan-
nel.

Your first step is to type in a name for the new channel, and to use the pop-up menu select the type of chan-
nel. Once you have selected the type of dialer you may want to use the bottom pop-up menu to initialize
your new module with settings from an existing channel.

Press Ok to start configuring your new module. Since we selected the Copy from option we'll start with
some settings already set up.

Page 742 Panorama Formulas & Programming
Use the pop-up menu in the upper right hand corner to add, delete, or edit settings.

You can also double click on a setting to edit it.

You can modify the bookmarks the same way.

You can also add bookmarks by dragging from your browser into the bookmark area.

Chapter 3:Programming Techniques Page 743
Previewing the ModuleInfo Procedure

Press the Preview button if you'd like to see a preview of the code of the ModuleInfo procedure you are about
to generate.

It’s not actually necessary to ever look at this code, but it does give you an overview of the configuration you
are setting up.

Page 744 Panorama Formulas & Programming
Creating the Module

When you are ready to create the module press the Make Module button. As shown below, Panorama will
create the new module in the correct location (making any new folders that are necessary). It will then open
the new module for you so you can immediately begin working on the code for your new module. To test
your new module, bring the Test This Module window to the front and press Command-R.

Tip: If your procedure needs to use an AppleScript to control another application don't forget about the new
ExecuteAppleScript statement, which allows you to build and execute an AppleScript on the fly.

Once your new module is finished you can select and configure it with the Channels wizard, just like any
other channel module.

Chapter 4: Working With Alternate
Programming Languages

Panorama isn’t limited to Panorama’s own built-in programming language (described in Chapters 24 and 25
of the Panorama Handbook). When using Panorama on OS X a programmer can also embed code written in
several other languages into a Panorama procedure, including AppleScript, Unix Shell Scripts, Perl, Ruby,
Python and PHP.

Embedding alternate programming language code allows Panorama to tackle jobs it couldn’t handle on its
own. It also allows you to avoid re-inventing the wheel by leveraging the code libraries available for these
alternate languages. Some examples of the libraries available for Perl, Ruby, Python and PHP include tools
for manipulating complex numbers and matrices, pattern matching, statistical calculations, linear equations,
image manipulation, sql database access, cryptographic services, xml parsing and various internet protocols
including dns, ftp, smtp, pop3, imap, telnet, ssh, bittorrent, soap and low level tcp/udp access. Some of these
tasks could be done with Panorama, but using a pre-built library is a lot easier! We’ll have a few examples that
illustrate using a pre-build library later in this chapter.

Choosing a Language

With multiple alternate languages to choose from, how do you pick the one you want to use? In some cases
the choice is clear, in other cases it may be more of a personal preference. We’ll start this chapter with a very
basic summary of the each language available for embedding within Panorama. If you are already familiar
with these languages and know which one you are going to use you may want to skip ahead to “Code
Embedding 101” on page 754.

Keep in mind that entire books have been written each of these programming languages, in some cases doz-
ens of books. Teaching how to program in each of these languages is beyond the scope of this book. Depend-
ing on the task you are tackling you will need to pick up some knowledge about the languages you choose to
use. We’ll provide some recommendations about web sites and books that we’ve found useful, you can find
more at your local bookstore, Amazon, or with a search engine (Google, etc.).

AppleScript

AppleScript is a special language invented by Apple to allow scriptable applications to work together. If an
application is scriptable then this language can be used to control it and communicate with it. Not all Macin-
tosh applications are scriptable, but there are dozens of significant applications that are, including Address
Book, iCal, Finder, Mail.app, iTunes, Safari, Microsoft Word and Excel, Adobe Photoshop, Illustrator and
InDesign and many more. For example Panorama can use an embedded AppleScript to retrieve a table from
Excel (or copy a table to Excel), or to look up a name from your Address Book.

Page 746 Panorama Handbook
AppleScript uses an English-like syntax that is supposed to be simple and natural but unfortunately can trip
you up. Learning AppleScript is further complicated by the fact that each scriptable language has its own
extensions to the language that bring their own quirks and traps. That said, AppleScript is a powerful tool
that lets you combine the power of two or more programs together even if they were never intended to work
together by their original authors. In appropriate situations AppleScript can make daunting tasks routine and
is one of the features that make the Macintosh a uniquely powerful system (unlike the other embeddable lan-
guages discussed in this chapter, AppleScript is unique to Macintosh systems and is not available for any
other type of computer).

Listed below are several books that we’ve found especially helpful for learning and mastering AppleScript:

If you are serious about AppleScript we highly recommend that you purchase a copy of Script Debugger by
Late Night Software. As mentioned above, AppleScript can be quite perverse. Sometimes working with
AppleScript can feel like trying to do carpentry in a shop with no windows and no lights — you can only
work by feel! When we started working with Script Debugger it was as if the light switch had been flipped
on. Script Debugger is not cheap but if your time is at all valuable the payback period is incredibly short —
and the quality of your code will improve as well. Script Debugger is discussed in more detail later in this
chapter, see also.

AppleScript : The Definitive Guide

• Author: Matt Neuburg
• Paperback: 590 pages
• Publisher: O'Reilly; 2nd edition (January 4, 2006)
• ISBN: 0596102119

If you’ve already got some programming experience, this book is the ultimate reference for Apple-
Script. Rather than rely on published documentation, the author did his own testing to uncover all
the nooks and corners of this complex language, and he doesn’t hesitate to point out the shortcom-
ings as well as the strengths of the AppleScript system. Be sure to pick up at least one other Apple-
Script book, because this one covers only the language itself, and does not include any specifics of
how to use AppleScript with other applications.

AppleScript For Applications

• Author: Ethan Wilde
• Paperback: 480 pages
• Publisher: Pearson Education; 1st edition (November 15, 2001)
• ISBN: 0201716135

This book takes a cookbook approach to AppleScript. The book includes complete ready-to-use
scripts for popular Mac apps such as Word, Photoshop, and QuarkXPress plus a companion Web site
for downloads and helpful links. These scripts can be used as is or as a starting point for your own
custom scripts. It also includes a step-by-step beginner’s tutorial to getting started with AppleScript.

Danny Goodman’s AppleScript Handbook

• Author: Danny Goodman
• Paperback: 576 pages
• Publisher: iUniverse; 2nd edition (April 1, 2000)
• ISBN: 0966551419

This is the classic AppleScript book, originally published many years ago when AppleScript was first
released. It’s a bit dated, but still a good resource.

Chapter 4:Working With Alternate Programming Languages Page 747
Shell Scripts

Shell scripts are the lingua franca of all UNIX and Linux systems, with Mac OS X being no exception. Shell
commands were the original method for operating UNIX systems. Instead of looking at windows or clicking
the mouse the user would type commands onto a command line. Each command would perform a specific
task, for example changing to a different folder, displaying a list of files, modifying a file (or files), connecting
to a network, etc. In order to use the system you needed to memorize the most common shell commands and
their options, while having a manual or reference book handy for the less often used commands. Unless you
were a computer geek you probably wouldn’t think this was a very user friendly system, and in fact comput-
ers really didn’t take off until graphical mouse based control systems were added.

Shell commands, however, do have some advantages over graphical mouse based systems. While shell com-
mands are harder to use, they are much easier for the programmer to create. Because of this there are many
operations that can be performed with shell commands that have never been enhanced with a graphical con-
trol. These operations can only be performed with a shell command.

Another big advantage of shell commands is that they were designed to be easy to automate. In fact, any-
thing that can be done with a shell command can be automated. That’s not true for mouse based controls,
which often can’t be automated at all.

On Mac OS X shell commands can be manually entered using Apple’s Terminal program. When you press
the Return key any output is displayed below the command.

To use shell scripts within Panorama you actually embed the shell command directly into the Panorama pro-
cedure. Instead of being displayed, the output is routed to a Panorama field or variable.

If you’re new to shell scripting you’ll probably find that the biggest challenge is knowing what command you
need to use to perform the task you need done. There are literally thousands of commands available, and
most have cryptic names like cd (change directory), ls (list files), cp (copy files) etc. There is a complete list of
commands available on Mac OS X at this web page:

http://developer.apple.com/documentation/Darwin/Reference/ManPages/

Each command listed on this page is a link — click the link for detailed information about that particular
command.

shell command

output

Page 748 Panorama Handbook
There are many books available on the topic of shell scripting, both for Mac OS X and for general UNIX/Linux sys-
tems. Quite frankly we haven’t found any one book that is really comprehensive. Here at ProVUE we’ve wound up
with more than a handful of various shell scripting books and picked up tidbits from each. That said, here are a cou-
ple that you may want to consider.

There are also many web sites with shell scripting tutorials. Some of the ones we’ve found start out well but
don’t go very far. If you find a good one let us know and we’ll pass it along in future versions of this hand-
book!

UNIX for Mac OS X: Visual QuickPro Guide

• Author: Matisse Enzer
• Paperback: 560 pages
• Publisher: Peachpit Press; 1st edition (December 3, 2002)
• ISBN: 0201795353

This book shows how to configure the Unix environment, navigate permissions, directories and files,
run different Unix utilities, configure and run the Apache Web server, and much more. It also covers
how to protect files with Unix's security tools, and how to fix problems when things go wrong..

Unix for Mac

• Author: Sandra Henry Stocker , Kynn Bartlett
• Paperback: 352 pages
• Publisher: Visual (March 7, 2003)
• ISBN: 076453730X

Includes step-by-step screen shots demonstrating more than 160 Unix tasks, including: using the ter-
minal application; navigating the file system; customizing the shell and writing shell scripts. It
avoids bogging the reader down with excessive information while, at the same time, providing a
good introduction.

Chapter 4:Working With Alternate Programming Languages Page 749
Scripting Languages

The four remaining languages (Perl, Ruby, Python and PHP) are commonly called “scripting languages.”
Though of course each of these languages is unique, they also have a number of features in common.

Each of these languages has its own group of adherents (to put it politely in some cases). Perl and PHP have
been popular for many years, but Ruby and Python have been coming on strong recently (and all of these
languages are constantly evolving, transitioning to new versions and generally jockeying for position). To a
large degree your choice depends on personal preferences and upon the library packages you need and code
that may already be available to you. The quick summaries below are just our impressions, on the internet
you’ll find as many opinions as you find commentators. (By the way, you don’t have to pick just one of these
languages, if you needed to you could embed all six of these languages into a single Panorama procedure!)

Feature Notes

Interpreted Execution
Each of these languages is interpreted rather than compiled. That
means that there is no preparation necessary to run your programs,
just edit and go (unlike compiled languages like C or Java).

Dynamic Typing

Unlike strongly typed languages like C and Java, these languages
don’t require that you define the data types of variables in advance.
In fact you can even change the data type of a variable on the fly as
the program runs.

Automatic Memory Management Unlike lower level languages like C, these languages handle all mem-
ory allocation and management for you.

Text Handling Each of these languages has powerful tools for working with text and
doing pattern matching.

Dynamic Arrays (Lists)

All of these languages allow arrays to be extended dynamically as
the program runs instead of requiring that arrays be defined stati-
cally during compilation. They also support associative arrays (hashes)
that allow array values to be indexed by name instead of numerically.

Objects All of these languages allow for the creation of classes and objects for
modern modular “object oriented” programming.

Extensive Libraries

Each of these languages has vast (and growing) libraries of ready to
use modules for performing useful tasks. Before programming some-
thing yourself check the libraries — you may find that some or all of
the work has already been done for you.

Page 750 Panorama Handbook
Perl

Perl is the granddaddy of scripting languages — the first version appeared in 1987. Perl was originally devel-
oped for text and report processing (the name stands for Practical Extraction and Report Language), but
today some people refer to it as “the duct tape of the internet” because while it may not always be the neatest
solution it can (and has been) used for almost anything. Perl has so many features it is kind of like the kitchen
sink of programming — in fact the Perl motto is “there’s more than one way to do it!” (Panorama’s program-
ming language could have the same motto, which makes us feel quite comfortable with Perl.) Perl wasn’t
originally object oriented, but current versions have supported object oriented programming for quite some
time.

There are many books and online resources available for Perl. Here are a few of our favorites:

There are numerous Perl resources available on the web. Probably the best places to start are the official Perl
web site and the Perl documentation site:

http://www.perl.org/

http://perldoc.perl.org/

Programming Perl

• Author: Larry Wall, Tom Christiansen, Jon Orwant
• Paperback: 1092 pages
• Publisher: O'Reilly Media, Inc.; 3 edition (July 14, 2000)
• ISBN: 0596000278

We probably shouldn’t list this book first, but we couldn’t help ourselves. Programming Perl is clear,
comprehensive and witty. It’s now the standard we use to measure our own writing (unfortunately
coming up well short), and it is currently our favorite programming book. First published in 1990, it
is considered the “bible” of Perl. What’s not to like? At over 1,000 pages it may be a bit too compre-
hensive for many. But if you really want’ to learn Perl inside and out, this is the book to go to.

Learning Perl

• Author: Randal L. Schwartz, Tom Phoenix, Brian D Foy
• Paperback: 304 pages
• Publisher: O'Reilly Media, Inc.; 4th edition (July 14, 2005)
• ISBN: 0596101058

If Programming Perl is too much for you then you might want to try this one.

Perl Cookbook

• Author: Tom Christiansen, Nathan Torkington
• Paperback: 927 pages
• Publisher: O'Reilly Media, Inc.; 2nd edition (August 2003)
• ISBN: 0596003137

When you just need to solve a problem right now this book is the one to turn to. It’s filled with ready
to use code for problems ranging from the simple (reformatting paragraphs) to complex (sending e-
mail with attachments). Each cookbook “recipe” is explained and analyzed, and all of the code is
available online so that you can simply paste it right into Panorama.

Effective Perl Programming: Writing Better Programs with Perl

• Author: Joseph N. Hall, Randal Schwartz
• Paperback: 288 pages
• Publisher: Addison-Wesley Professional; 4th edition (December 30, 1997)
• ISBN: 0201419750

This book distills years of Perl experience into a book that is both fluid and fun to read. It's somewhat
like reading the Perl FAQ; even when you think you know everything, there's more you don't know.
Packed with examples and code snippets.

Chapter 4:Working With Alternate Programming Languages Page 751
Ruby

Ruby was designed to be a pure object-oriented language from the ground up, so everything—every string,
every number, every user-defined data type—all of these are objects in Ruby. Many programmers find Ruby
code to be very clean and readable — well known commentator Tim Bray says “Ruby is remarkably, perhaps
irresistibly, attractive.“

Some books we have used for studying Ruby are listed below. When looking at Ruby books to help you write
Ruby code for Panorama you’ll probably want to avoid books about Ruby on Rails, which doesn’t apply to
Panorama.

Online you can start with the official Ruby web site and site devoted to ruby documentation:

http://www.ruby-lang.org/en/

http://www.ruby-doc.org/

Programming Ruby: The Pragmatic Programmers' Guide

• Author: Dave Thomas, Chad Fowler, Andy Hunt
• Paperback: 828 pages
• Publisher: Pragmatic Bookshelf; 2nd edition (October 1, 2004)
• ISBN: 0974514055

This book (nicknamed the “pickaxe” from the illustration on the cover) is considered by most to be
the Ruby “bible.” It includes tutorial-style introduction and overview of the language, a very com-
plete reference and finally, there's lots of information on packages (libraries) you might want to use.

Ruby Cookbook

• Author: Lucas Carlson, Leonard Richardson
• Paperback: 906 pages
• Publisher: O'Reilly Media, Inc. (July 19, 2006)
• ISBN: 0596523696

Like the Perl Cookbook described above, this is the book to turn to when you just need to solve a
problem right now. It’s filled with ready to use code and each “recipe” is explained and analyzed. All
of the code is available online so that you can simply paste it right into Panorama.

Ruby by Example: Concepts and Code

• Author: Kevin Baird
• Paperback: 326 pages
• Publisher: No Starch Press (June 8, 2007)
• ISBN: 1593271484

This book uses a real world examples approach to learning Ruby..

Page 752 Panorama Handbook
Python

Python is another language designed from the ground up to be object oriented. It’s possibly most famous for
the use of indentation to denote programming blocks (instead of begin/end or {/} like most other languages).
In other words, whitespace can be significant in a Python program. It’s also known for high performance and
for extensive, reliable libraries.

Here are the Python books on our bookshelf at ProVUE:

The official web site for Python is:

 http://www.python.org/

Learning Python

• Author: Mark Lutz , David Ascher
• Paperback: 552 pages
• Publisher: O'Reilly Media, Inc.; 2nd edition (December 2003)
• ISBN: 0596002815

In addition to teaching you about Python this book will also get you drinking the Kool-aid — the
authors are avid Python evangelists. The first part covers the essentials, including types, operators,
statements, classes, functions, modules and exceptions. Once they get through all that there is not
much space left for discussion of Python’s extensive libraries, though they are briefly covered.

Programming Python

• Author: Mark Lutz
• Paperback: 1596 pages
• Publisher: O'Reilly Media, Inc.; 3rd edition (August 23, 2006)
• ISBN: 0596009259

The text covers every conceivable facet of Python, exhaustively exploring the whole language,
including Python’s extensive libraries.

Python Essential Reference

• Author: David M. Beazley
• Paperback: 625 pages
• Publisher: Sams; 3 edition (February 20, 2006)
• ISBN: 0672328623

This reference concisely covers the Python language and libraries. It is designed for readers that are
already experienced programmers familiar with other languages like C or Java. If this is you then
this book may be a good way to get up to speed with Python without wading through lots of basic
material intended for beginners.

Python Cookbook

• Author: Alex Martelli, Anna Ravenscroft, David Ascher
• Paperback: 844 pages
• Publisher: O'Reilly Media, Inc.; 2nd edition (March 18, 2005)
• ISBN: 0596007973

Like the Perl and Ruby cookbooks described earlier this book may contain exactly the code you need
to solve a problem right now. It’s a bit different from the other cookbooks in that the “recipes” have
been submitted by a variety of authors (not just the three listed above). Essentially it is an attempt to
create an “open source” book. Because of this it is perhaps not quite as organized as the other cook-
books, but there is still a ton of good material here.

Chapter 4:Working With Alternate Programming Languages Page 753
PHP

Like Perl, PHP was not originally an object oriented languages but object oriented features have been added
in recent releases. PHP is especially popular for use on web sites — it is commonly integrated with the popu-
lar Apache web server but can also be used separately. Like the other scripting languages here the PHP com-
munity has developed extensive code libraries with interesting capabilities like XML processing, SQL
database access and image and PDF processing.

So far there is only one PHP book in our library:

The official PHP web site is:

http://www.php.net/

Programming PHP

• Author: Rasmus Lerdorf, Kevin Tatroe, Peter MacIntyre
• Paperback: 521 pages
• Publisher: O'Reilly Media, Inc.; 2nd edition (April 28, 2006)
• ISBN: 0596006810

All of the essential topics (syntax, functions, data types, objects) are covered in the first section of the
book. Later sections cover many of the library capabilities available for PHP. Unlike some other PHP
books this book is not totally HTML centric, which is good if you’re planning to use PHP with Pan-
orama. (You’ll still need to adjust many of the examples for use with Panorama instead of within a
web page.)

Page 754 Panorama Handbook
Code Embedding 101

When we talk about code embedding we mean it literally — the source code in Perl, Ruby, etc. is usually liter-
ally embedded in the Panorama source code, as shown in the example below. (In this illustration the code
happens to be in Ruby and is highlighted in light purple, but the highlight doesn’t appear when you are actu-
ally using Panorama.)

Quoting Embedded Code

Embedded code can be in a Panorama variable or even calculated by a Panorama formula, but usually it is
simply a text constant (“Constants” on page 49) as shown in the example above. Since the embedded code
itself almost always contains Panorama’s normal constant delimiters like ", ’, { and } Panorama includes a
special delimiter for quoting code - the pipes delimiter. Pipe delimited code starts with a series of pipe (|)
characters, and terminates with an equal number of pipes. The exact number of pipes to use as a delimiter is
up to you on a case by case basis, you can use 2, 3, 4, or more. Within the pipe delimited text you can use any
other character you like, including pipes themselves. Here are some examples of text constants using pipes.

|||This text is delimited with three pipes|||

||||Four pipes here||||

|||Text can even contain |pipes| within the text!|||

You can use pipe delimited text anywhere a text constant is called for, but you’ll find them especially useful
for quoting code. Here are some additional examples:

message perl(|||print "Hello World"|||)

message ruby(|||puts "Hello World"|||)

message python(|||print "Hello World"|||)

Ruby code

Panorama code

Chapter 4:Working With Alternate Programming Languages Page 755

Embedding Code from a Text File

To embed code from a text file (created with an external editor) use Panorama’s

fileload(

 function, like
this:

python(fileload("","mycode.py")

ruby(fileload("","mycode.rb")

This examples will run code from text files in the same folder as the current database. To learn more about
this function see also.

Using Panorama Fields and Variables as Terms in an Embedded Program

Most embedded programs need to get data from Panorama. For example, suppose you embed a Perl pro-
gram to send and e-mail the Perl program will need to get the e-mail address, subject and body of the mes-
sage from Panorama. To make this easy to do Panorama allows Panorama fields and variables to be inserted
as terms into the embedded code.

To identify that the field or variable is from Panorama rather than a variable belonging to the embedded lan-
guage you must surround the field or variable name with special tags: $« and »$. Here’s a simple example
that copies the contents of a Panorama field named Email into a variable in the embedded language named
url:

url=$«Email»$

An important point is that you cannot reverse this assignment — a Panorama field or variable cannot be on
the left hand side of an assignment statement (in other words, Panorama fields and variables cannot be lval-
ues). So this assignment statement will not work.

$«Email»$=url <<-- will not work!

You can, however, use Panorama fields or variables as operands anywhere on the right hand side of an
assignment. The Panorama values may be text or numeric values, and you can use multiple Panorama fields
or variables in a single expression.

Energy=$«Mass»$*c*c

wordlist=$«Abstract»$.split(" ")

label=$«Name»$."\n".$«Address»$."\n".$«City»$.", ".$«State»$." ".$«Zip»$

If the Panorama field or variable name includes spaces, punctuation or other special characters you must
include a separate set of « and » characters to the name, like this:

Range=$««Tank Capacity»»$*$««Miles Per Gallon»»$

The extra set of « and » characters is necessary to make the text inside the $« and »$ tags a valid Panorama
formula. In fact, you can include any Panorama formula inside the tags, as described in a following section.

Page 756 Panorama Handbook

Using the Field Menu to Insert Fields Names

The

Field

 menu inserts a field name into the procedure currently being edited (at the insertion point). If you
hold down the

Control

 key while using this menu (or use the right button on a two button mouse) the field
will be inserted with the special $« and »$ tags necessary for use within embedded programs.

If the Panorama field name includes spaces, punctuation or other special characters the menu will insert a the
extra set of « and » characters necessary (see previous section).

Using a Panorama Formula as a Term in an Embedded Program

The previous sections showed how a Panorama field or variable can be inserted into an embedded program
(Perl, Ruby, etc.). This feature isn’t limited to just fields or variables, you can actually insert

any

 Panorama for-
mula between the $« and »$ tags.

fullname = $«upper(FirstName+" "+LastName)»$

fieldlist = $«dbinfo("fields","")»$.split("\n")

$databasepath = $«unixshellpath(dbpath())»$

Panorama first calculates the value of the entire formula and then inserts that value as a term in the embed-
ded program.

hold down Control key to add $« and »$ tags

Chapter 4:Working With Alternate Programming Languages Page 757

Getting Data (Results) Back from Embedded Code

Now that you’ve learned how to get data from Panorama to your embedded code, how do you get data
results back from the embedded code to Panorama? There are three possible methods —1) use an embedded
code function, 2) using the ScriptResult variable, or 3) specifying a field or variable for result. Before discuss-
ing these options, however, let’s take a moment to talk about how embedded programs generate data results.

Standard Output (stdout)

To output data to Panorama the embedded program simply needs to send data to the standard output stream
(often called stdout). When using Unix shell commands this happens automatically. In Perl, Python and PHP
data is output to stdout with print, in Ruby it is done with puts. See the documentation for each of these
languages to learn more.

The one exception is AppleScript, which doesn’t support stdout. When embedding AppleScript the data
result returned to Panorama is the value of the final expression executed within the script.

Code Embedding Functions

Panorama has six functions that allow alternate programming languages to be embedded within a Panorama
formula (which may be used in a procedure or on a form). These are called code embedding functions:

applescript(code)
shellscript(code)
perl(code)
ruby(code)
phython(code)
php(code)

Each of these functions takes code written in the specified programming language, executes, and then returns
the result. For example this program uses the applescript(function to embed a short one line program
written in AppleScript (in this illustration the AppleScript code is highlighted in purple, but that does not
happen in Panorama’s editor).

local abNames,Names,namePick
abNames=applescript(|||tell app "Address Book" to get name of every person|||)
arrayfilter tagarray(abNames,{"},{"},cr()),Names,cr(),
 lastword(import())+", "+firstword(import())
arraysort Names,Names,cr()
superchoicedialog Names,namePick,{height=360 width=120}

When the procedure runs it will it will run the embedded AppleScript to get the name of every person con-
tained in your Address Book. It will then format the and sort the list, and display it as a list of choices.

Page 758 Panorama Handbook

If you need to modify multiple Panorama fields or variables from an embedded code routine you’ll need to
put all of the data in the output and then parse the results in Panorama. Here’s a partial example that puts
each data item from a Perl program on a separate line.

local contactinfo
contactinfo=perl(|||

...
print name."\n".address."\n".city."\n".state."\n".zip|||)

Contact=firstline(contactinfo)
Address=nthline(contactinfo,2)
City=nthline(contactinfo,3)
State=nthline(contactinfo,4)
Zip=nthline(contactinfo,5)

Once the Perl program is finished Panorama splits the returned data into five separate fields. Though this
example separates the data items with carriage returns you can use any structure you want. Just make sure
the code in your embedded program that generates the output matches your Panorama code that parses it
and separates it into individual fields and variables.

Code Embedding Statements and the ScriptResult Variable

Another way to embed code is to use one of the six statements listed below. The most basic versions of these
statements use just one parameter, the code to be embedded (other options will be discussed later).

applescript code
shellscript code
perl code
ruby code
python code
php code

After any of theses statements run the global variable ScriptResult will contain the value of the data gener-
ated by the embedded program. (You don’t need to declare this variable with a global statement, Panorama
does that for you.) This example will get the name of the song currently playing in iTunes and put it into the
local Panorama variable song.

local song
applescript |||tell application "iTunes" to get name of current track|||
song=ScriptResult

In some cases you won’t care about any data passed back from the embedded program. In that case you can
simply use the statement and not worry about what’s in ScriptResult. For example this program uses Apple-
Script to reveal the location of the current database (though in reality you would probably simply use Pan-
orama’s revealinfinder statement to do this):

applescript |||
tell application "Finder"

activate
reveal file $«dbname()»$ of folder $«dbpath()»$
end tell

|||

When this program runs the Finder will open a new window displaying the folder that contains the current
database. Since opening the folder window is the goal of the program we don’t care about the data returned
from the embedded program.

Chapter 4:Working With Alternate Programming Languages Page 759
Bringing the Embedding Data Output Directly into a Panorama Field or Variable

By adding a second parameter to an embedded code statement you can specify a Panorama field or variable
where the result should be placed.

applescript code,result
shellscript code,result
perl code,result
ruby code,result
python code,result
php code,result

Here is a revised version of the example from the previous section that gets the name of the song currently
playing in iTunes and put it into the local Panorama variable song.

local song
applescript |||tell application "iTunes" to get name of current track|||,song

Note that you must choose one method or the other. If you specify a field or variable for the result the result
will not be stored in the ScriptResult variable.

Page 760 Panorama Handbook
Advanced Embedding Topics

Now that you’ve mastered the basics of code embedding the following sections take a look at some of the
nitty gritty details.

The Embedded Code Pre Processor

Before passing the code to the appropriate interpreter Panorama runs a simple pre-processor on the code.
This pre-processor allows Panorama fields, variables and formulas to be used within the embedded code (see
See “Using Panorama Fields and Variables as Terms in an Embedded Program” on page 755).

The pre-processor is very simple. It simply looks for pairs of $« and »$ tags within the code. If it finds any, it
assumes that whatever is between these tags is a Panorama formula, and it evaluates that formula. The pre-
processor then replaces both the tags and the formula with the value of the formula expressed as a literal (text
or numeric constant) in the target language. For example, suppose the current database has field named
Album that currently contains the name Wish You Were Here. The table below shows how the preprocessor
would expand this field in each language.

If the text contains special characters that need to be escaped the pre-processor will take care of that. For
example, suppose the current Album name was Love Action ’Remix’. The single quote character
requires special handling in several of these languages, as shown below (you’ll also notice the special space
handing in the shell script example above):

The bottom line is that you don’t need to worry about what characters are in a Panorama field or variable —
the pre-processor takes care of any conversion necessary.

The pre-processor also takes care of Panorama fields or variables that contain numbers. For example, sup-
pose the current database has numeric fields named Width, Length and Height, and you have a Ruby func-
tion named shippingrate(for calculating shipping.

myVolume = $«Width»$ * $«Length»$ * $«Height»$;

The preprocessor will expand this code like this:

myVolume = 12.6 * 4.8 * 9.2;

Language Original Source After Preprocessor

AppleScript set AlbumName to $«Album»$ set AlbmunName to "Wish You Were Here"

Shell Script cd $«Album»$ cd Wish\ You\ Were\ Here

Perl $AlbumName = $«Album»$; $AlbumName = 'Wish You Were Here';

Ruby AlbumName = $«Album»$; AlbumName = 'Wish You Were Here';

Python AlbumName = $«Album»$ AlbumName = '''Wish You Were Here'''

PHP $AlbumName = $«Album»$; $AlbumName = 'Wish You Were Here';

Language Original Source After Preprocessor

Perl $AlbumName = $«Album»$; $AlbumName = 'Love Action \'Remix\'';

Ruby AlbumName = $«Album»$; AlbumName = 'Love Action \'Remix\'';

Python AlbumName = $«Album»$ AlbumName = '''Love Action \'Remix\''''

PHP $AlbumName = $«Album»$; $AlbumName = 'Love Action \'Remix\'';

Chapter 4:Working With Alternate Programming Languages Page 761
Transferring Dates from Panorama to Embedded Code

The preprocessor does not automatically handle transfer of dates from Panorama to an embedded program.
Panorama stores dates as numbers, you’ll need to convert this to text with the datepattern(function or
into separate day, month and year values and then use the appropriate code in the embedded language to
convert that text or set of numbers into a date. The example below shows one method (this is Perl, after all, so
there are many possible methods) that could be used to transfer a Panorama field named Date to a Perl vari-
able named $startDate.

perl |||
use Time::Local;
$startDate=timelocal(0,0,0,$«dayvalue(Date)»$,$«monthvalue(Date)»$,$«yearvalue(Date)»$);
...

Here’s a similar method for transferring dates to a Ruby variable:

ruby |||
require 'date'
startDate=Date.parse($«datepattern(Date,"mm/dd/yyyy")»$);
...

and to a Python variable:

python |||
import datetime
startDate=datetime.date($«yearvalue(Date)»$, $«monthvalue(Date)»$, $«dayvalue(Date)»$)
...

and finally a method to do this in PHP:

php |||
$startDate = strtotime($«datepattern(Date,"mm/dd/yyyy")»$);
...

Using Panorama Formulas “Bare” within an Embedded Program

You’ve already seen how to use the $« and »$ tags to insert a Panorama formula as a term in the embedded
program. The preprocessor also supports alternate ^« and »^ tags that insert the value of the formula “bare”
into the embedded code. By “bare” we mean that the value is inserted exactly as-is into the embedded pro-
gram, with no quotes or escaping of special characters. We can think of several uses for this. First, you could
use this to insert complete statements or even entire blocks of code into an embedded program. This example
assumes that your database contains three fields named File, Folder and Action. The Action field must con-
tain either open or reveal. Depending on which of these words the Action field contains the procedure will
either open the specified file or open the Finder window containing the file.

if Action match "open" or Action match "reveal"
applescript |||
tell application "Finder"

activate
^«Action»^ file $«File»$ of folder $«Folder»$
end tell
|||

else
message "Action must be open or reveal."

endif

Page 762 Panorama Handbook
A bare formula can also be useful for initializing lists, hashes and arrays. Here is an example that converts a
Panorama carriage return delimited array (a list of field names in the current database) into a list in a Perl
variable:

perl |||
@fieldnames = (^«replace(arrayfilter(dbinfo("fields",""),cr(),
 {perlconstant(import())}),cr()," , ")»^)

When the pre-processor gets done with this code it will look something like this:

@fieldnames = (’Name’ , ’Address’ , ’City’ , ’State’ , ’Zip’)

Bare formulas can also be used with special quoting in the embedded language. This example assigns the
contents of the Panorama field Memo to the Perl variable $memoText, but converts the text to upper case
first.

perl |||
$memoText=<<"FOO";
\U^«Memo»^\E
FOO
...

Generating Constant Values. In the previous section the perlconstant(function was used to generate a
Perl literal value within the arrayfilter(function. This function takes a single parameter and converts
that parameter into a Perl literal value suitable for insertion into a Perl program. If the parameter contains
text then quotes are added and any special characters are embedded. Panorama actually has six such func-
tions, one for each of the embeddable languages.

applescriptconstant(value)
unixshellstring(value)
perlconstant(value)
rubyconstant(value)
pythonconstant(value)
phpconstant(value)

Each of these function generates the appropriate quotes and escaped special characters for the corresponding
language. (Note: You shouldn’t ever need to use these function unless you are using bare Panorama formulas
within your embedded programs. The pre-processor already uses these functions for you when you insert
formulas with the normal $« and »$ tags.

Chapter 4:Working With Alternate Programming Languages Page 763
The External Script Wizard

The External Script wizard (in the Developer Tools submenu of the Wizard menu) can help you debug
embedded programs. The wizard displays the last embedded program that has been run, showing both the
output of the pre-processor (see “The Embedded Code Pre Processor” on page 760) and the result produced
by the program (usually standard output). For example, consider this database that contains E-mail domains
along with an embedded Ruby program for verifying domains.

When the procedure runs it will loop from the top to the bottom of the database, executing the embedded
Ruby code once for each record in the database. To see the results of the final time the Ruby code was exe-
cuted open the External Script wizard:

The top section of the wizard displays the results produced by the Ruby code. In this case tidbits.com is a
valid domain name and has four MX records. The bottom section of the wizard shows the exact source code
that was submitted to the Ruby interpreter. Look at line 5 — you can see that the pre-processor replaced
$«Domain»$ with ‘tidbits.com’.

Page 764 Panorama Handbook
Dealing With Errors in Embedded Programs

The External Script wizard is especially handy if there is a typo or error in an embedded program. For exam-
ple, suppose you had accidentally typed an extra e at the end of domain.

When you run this procedure an error message will appear:

Too cryptic for you? Press the More Info button. Both the Error Detail and External Script wizards will open
automatically. The Error Detail wizard (see also) will tell you where in your Panorama code the external
script is located (sometimes this may not be obvious if you have multiple levels of subroutines). The External
Script wizard displays the embedded program, the error message, and (if possible) highlights the line con-
taining the error.

To fix this problem you’ll need to go back to the original Panorama procedure that contains the embedded
program. If the procedure isn’t already open (or if it is hidden behind other windows) you can open it by
choosing Open Procedure from the Source menu.

Chapter 4:Working With Alternate Programming Languages Page 765
Working with External Editors

Sometimes you may want to do some testing or other work on an embedded program in an external editor.
To do this simply choose the editor from the Source menu.

The wizard will save the embedded program in a temporary file and open the requested editing program.
You can also choose from this menu simply by clicking on the source code — a pop-up menu appears.

You can also work with the results in an external editor. Simply click on the results for a pop-up menu or
chose from the Result menu.

When you work on the source code in an external editor there is no automatic way to get your changes back
into Panorama. (Usually you wouldn’t want to anyway, since this source code has already been run through
the pre-processor.) You can, of course, use copy and paste to bring some or all of the program back into your
Panorama procedure.

Page 766 Panorama Handbook
Working with External Debuggers

For some languages the External Script wizard supports the use of external debuggers. At the time this is
being written debugger integration is available for AppleScript, shell scripts, Perl and Ruby. For each of these
languages the debugger is accessible from the Source menu, either in the menu bar or as a pop-up menu by
clicking on the source code.

AppleScript Debuggers

The Source menu contains two programs that can help with debugging, Script Editor and Script Debugger.

Script Editor is included with every Macintosh system. It’s not really a debugger but it does allow you to
make changes and try them out.

Script Debugger is a commercial program for debugging AppleScripts. It’s from a company called Late Night
Software and if you are planning on doing any serious work with AppleScript we highly recommend that you
check out this program. Script Debugger isn’t cheap, but the investment will pay for itself quickly if you are
writing scripts of any complexity at all. its ability to debug, examine variables, and explore the object model
have turned AppleScript projects we work on here at ProVUE Development from a frustrating hit or miss
experience into a smooth productive workflow. Working with Script Debugger is like turning on the light in
a dark room. When you select Script Debugger from the Source menu the wizard saves a temporary file con-
taining the script and fires up the software, as shown here:

We don’t have any connection with Late Night Software, but we do recognize great tools when we use them, so
we wanted to pass along the secret to you. You can find out more at:

http://www.latenightsw.com

Chapter 4:Working With Alternate Programming Languages Page 767
Shell Scripts

There’s no actual debugger for shell scripts, but you can run them in Apple’s Terminal program:

Choosing this command opens a new window in the Terminal program and runs the command.

Page 768 Panorama Handbook
Perl Debuggers

The wizard is integrated with two Perl debuggers.

The first option is the standard Perl Debugger, which is included free with Perl. When you choose this option
Panorama automatically opens a new Terminal window and launches the debugger with this embedded pro-
gram.

At this point you can type in various commands to single step, set breakpoints, examine variables, etc. Every-
thing is done by typing in commands. To learn more about how to use this debugger see the Programming
Perl book mentioned earlier in this chapter (see “Perl” on page 750) or online at these urls.

URL Description

http://perldoc.perl.org/perldebug.html Perl Debugger Reference Manual

http://perldoc.perl.org/perldebtut.html Perl Debugger Tutorial

Chapter 4:Working With Alternate Programming Languages Page 769
The second option is Affrus, another commercial program we like from Late Night Software. Affrus is an inte-
grated visual Perl editing and debugging environment for Mac OS X. The debugger features step-wise execu-
tion, breakpoints, tracing, and expression evaluation as well as stack frame tracing with full access to locally
scoped (my) variables. The debugger also displays all Perl registers and variables from any Package. When
you select Affrus from the Source menu the wizard saves a temporary file containing the script (after pre-
processing) and fires up Affrus, as shown here:

You can learn more about Affrus at:

http://www.latenightsw.com

Page 770 Panorama Handbook
Ruby Debuggers

To launch the standard Ruby debugger choose Start Ruby Debugger from the Source menu. This is the stan-
dard command-line debugger that comes free with Ruby.

When you choose this option Panorama automatically opens a new Terminal window and launches the
debugger with your embedded Ruby program.

At this point you can type in various commands to single step, set breakpoints, examine variables, etc. Every-
thing is done by typing in commands (you can get a list of the available commands by typing help followed
by carriage return). To learn more about how to use this debugger see the Programming Ruby book men-
tioned earlier in this chapter (see “Ruby” on page 751). At the time this is being written there is no “official”
documentation online for the ruby debugger, but the debugging chapter from the 1st edition of the Program-
ming Ruby book is available at:

http://www.ruby-doc.org/docs/ProgrammingRuby/html/trouble.html

Chapter 4:Working With Alternate Programming Languages Page 771
Special Embedding Options

In addition to the options already described Panorama allows you to specify the amount of time an embed-
ded program is allowed to run and the temporary folder used to run an embedded program. You can also
specify that shell scripts must run with temporary root privileges.

Specifying the Maximum Embedded Program Runtime

Panorama will normally wait up to 60 seconds for an embedded program to complete. If the embedded pro-
gram does not complete after 60 seconds Panorama will terminate the program and return an error. If you
want a longer (or shorter) maximum time you can specify the maximum runtime. If you are using the
applescript or shellscript statements the maximum runtime is the third parameter, for perl, ruby,
python and php it is the fourth parameter.

applescript code,result,timeout
shellscript code,result,timeout
perl code,result,folder,timeout
ruby code,result,folder,timeout
python code,result,folder,timeout
php code,result,folder,timeout

For example, suppose you want to embed a complex Ruby program that may take several minutes to run.
This example will allow the code to run up to 10 minutes (600 seconds).

local rubyResult
ruby |||

...

...

... very long ruby program

...

...
|||,rubyResult,"",600

You can also specify maximum script runtime in advance with the scriptimeout statement.

local rubyResult
scripttimeout 600
ruby |||

...

...

... very long ruby program

...

...
|||,rubyResult

The scripttimeout statement also allows you to change the timeout for the embedded code functions
(applescript(, shellscript(, perl(, etc.)

Running Shell Scripts with Temporary Root Privileges (SUDO)

Embedded code usually inherits whatever privileges the current user has. If you need to run a shell script
with elevated privileges you must supply a password parameter to the shellscript statement (the fourth
parameter).

shellscript code,result,timeout,password

However, you don’t actually have to supply the actual password here. If the password is blank, the
shellscript statement will prompt for the password when it runs:

local scriptResult,systemPassword
systemPassword=""
shellscript |||diskutil repairPermissions /|||,scriptResult,60*20,systemPassword

Page 772 Panorama Handbook
You can also build the password into the procedure itself, like this:

local scriptResult,systemPassword
systemPassword="zorax72"
shellscript |||diskutil repairPermissions /|||,scriptResult,60*20,systemPassword

Building the password into the procedure isn’t usually a great idea, however. You should carefully consider
the security implications before using this technique.

Specifying the Embedded Code Folder

To execute Perl, Ruby Python or PHP code Panorama creates a temporary file containing the code and uses
the command line to invoke the appropriate interpreter. This temporary file is usually created in a special
folder designated by the operating system for temporary files . You can use the folder parameter to specify a
different folder for the temporary code file. This example puts the temporary file in a folder named Perl
Code, which is in a subfolder of the folder containing the current database.

perl |||... perl code ...|||,scriptResult,dbsubfolder("Perl Code")

You can put the temporary file anywhere you want. It will be erased once it the interpreter is finished with it.

Real World Embedded Code Examples

Often the best way to learn a new programming technique is to study a working example. The Panorama
example folder includes a number of sample databases that illustrate programming in each of the six avail-
able embedded languages. To access these databases simply open the Example Launcher wizard (in the
Demo submenu of the Wizard menu) and search for embed, as shown below. (If you don’t see these files then
you need to download the deluxe version of Panorama. There’s no extra charge for the deluxe version, but it
is a larger download.)

If you only want to see the example for a particular language simply type in that language, like this:

The following sections will briefly discuss some of these example files. (Note: These examples are designed
for teaching purposes, and are not necessarily “production” quality with all the bells, whistles, error checking
etc. We also can’t guarantee that these examples will work on your computer, or provide support if they
don’t. On a more positive note you should keep in mind also that these examples only scratch the surface of
the possibilities enabled by embedding these languages in your Panorama code.)

Chapter 4:Working With Alternate Programming Languages Page 773
AppleScript — Address Book Search

This database implements a “Live Clairvoyance” style search, but instead of searching a database it searches
Apple’s Address Book application.

Each time a key is pressed the Panorama program shown below is run:

The program actually contains two separate AppleScripts. The first gets a list of people that contain the text
that has been entered (which is in a Panorama variable named abSearchText).

tell application "Address Book"
set thePeople to every person whose name contains $«abSearchText»$

end tell

Page 774 Panorama Handbook
This script returns a list of internal ID’s for the matching people:

As you can see, these internal ID’s are pretty much unintelligible on their own. The second half of the pro-
gram turns these ID’s into a carriage return delimited array, then uses the arrayfilter statement to repeatedly
call another AppleScript to get the names associated with these ID’s.

arrayfilter personIDArray,abMatchArray,cr(),assign(import(),"tempID")[2,1]+
applescript(|||

tell application "Address Book"
set thePeople to every person whose id = $«tempID»$
get name of item 1 of thePeople

end tell
|||)[2,-2]+chr(0)+tempID

There is a bit of a trick in the code above. Panorama’s import() and seq() functions don’t work inside
embedded code. In this case the import() function contains the ID’s we need to feed back to AppleScript, so
we really need that value in the embedded code. To get around this the code uses the assign(function to
temporarily assign the ID to a fileglobal named tempID. The tempID variable is then embedded in the Apple-
Script. (You could eliminate the need for this trick by using a regular loop instead of arrayfilter, but
arrayfilter is quite a bit faster.)

The end of this code segment shows another lesser known trick. Panorama’s List Object will not display any
text in a line that comes after a chr(0) byte. This allows us to embed the internal ID in the list without dis-
playing it. We’ll use this internal ID in a moment.

Once you’ve found the person you want you can click on their name to see the detailed information for that
person:

Chapter 4:Working With Alternate Programming Languages Page 775
Clicking on a person’s name in the list triggers this procedure:

This starts by using an AppleScript to get all of the detailed information for this person:

tell application "Address Book"
set thePeople to every person whose id = $«array(abMatchItem,2,chr(0))»$
get properties of item 1 of thePeople

end tell

The variable abMatchItem contains the choice the user clicked on. Remember that the internal ID for each
person is embedded in each choice after a chr(0) byte? The array(function extracts this ID so that it can
be submitted to Address Book through the script.

array(abMatchItem,2,chr(0))

The result of this script looks like this:

You can’t see all of it in this screen shot, but the result contains a VCard with the information we want to dis-
play. Since Panorama knows how to import VCards we simply import this information into the database to
display it.

This simple example doesn’t allow us to do anything beyond searching and displaying Address Book entries,
but it could be extended to allow you to modify entries or to transfer the information to other databases.

Page 776 Panorama Handbook
Shell Script — File Info

This example database uses shell scripts to examine and change file information. You can drag any file from
the Finder onto the database and it will display the attributes of the file, including type, creator, permissions
and owners.

When a file is dropped on the database the procedure below is executed:

Chapter 4:Working With Alternate Programming Languages Page 777
For the purpose of this chapter we are primarily interested in the second half of this procedure, which
embeds a shell script with the ls command to find out the owner and permissions for the dropped file. At
this point the filename is stored in the field File in standard HFS format:

The embedded code uses the unixshellpath(function to convert this path and filename into UNIX format.

shellscript ||| ls -l $«unixshellpath(File)»$ |||

The result will look something like this:

The remainder of the .GetAttributes procedure takes these results and parses them into separate Panorama
fields for display.

In addition to displaying attributes this procedure also allows you to change them. Clicking on one of the
nine permission boxes triggers this procedure:

The first half of the code toggles the appropriate field in the database. The second half calculates the mode
argument for the unix chmod command. The final line runs the chmod command to actually change the per-
missions of the file itself. Try this yourself and use the External Script wizard to see the command line being
generated.

permissions
owner

group

Page 778 Panorama Handbook
You can also edit the owner or group owner of the file. When you press Enter or Tab to finish editing this pro-
cedure will be triggered:

This program uses the unix chown command to change the owner. This command can only be run with root
privileges, so you must enter the administrator password to run the command. This procedure is set up to
remember the password after you enter it once. (In other words, you’ll only have to enter the password once
each time you open the database, not every time you change the owner of a file.) If you enter the wrong pass-
word the chown command will fail, which is caught by the if error statement. This code is written so that
if this happens you’ll be prompted to enter the password again.

Perl — POP3 Mail Reader

This example uses embedded Perl code to read mail from a POP3 server.

Chapter 4:Working With Alternate Programming Languages Page 779
Here’s the program that reads mail from the POP3 server.

The program starts by including the Net::POP3 module, which is part of the standard Perl distribution:

use Net::POP3;

It then gets the server url, user name, password and server port ID from Panorama variables. In this example
these variables have been set up with a separate configuration form:

my $Pop_server=$«popServer»$;
my $Pop_user=$«popUser»$;
my $Pop_pass=$«popPassword»$;
my $Pop_port=$«val(popPort)»$;

Next the code sets up a connection to the POP3 server:

my $pop = Net::POP3->new($Pop_server, LocalPort => $Pop_port, Timeout => 10)

and then logs on to the server:

defined ($msgCount = $pop->login($Pop_user, $Pop_pass))

Assuming the logon is successful it gets a list of the messages waiting to be downloaded (this is a list of mes-
sage id numbers, not the messages themselves).

my $messages = $pop->list

Page 780 Panorama Handbook
Finally it grabs the mail messages themselves.

foreach my $msgnum (keys %$messages)
{

print "[message]";
my $msg = $pop->get($msgnum);
print @$msg;
print "[/message]\n";

}

The print "[message]"; and print "[/message]\n"; statements are included to help Panorama parse the
results later. The print @$msg; statement actually prints the headers and body of the message (all to standard
output).

Finally the program disconnects from the POP3 server:

$pop->quit;

Once all of this is done a second procedure is called that parses the results that came back from the Perl code.

This procedure uses standard Panorama techniques described in the earlier chapters of this manual.

Chapter 4:Working With Alternate Programming Languages Page 781
Ruby — Verify Email Domains

Have you ever had a collection of e-mail addresses and wondered if they were valid? The only surefire check
is to actually send mail to each address and see what happens, but you can verify that the domain is valid.
Here is a database with domain names in the first column.

This simple program can check to see if the domain is a valid one for sending e-mail.

The Ruby code checks to see if there is a DNS record with MX records for the domain (MX records point to
mail servers). The results will look something like this:

Apple has a lot of mail servers! If the result is empty then there is no MX record for this domain, so it is not a
valid e-mail domain.

The example database contains a second procedure that checks all of the domains in the database. It basically
works the same, but encloses the Ruby code in a Panorama loop to check each record from top to bottom.

Page 782 Panorama Handbook
Python — HTML + Plain Text Email with Images

The ability to send plain text e-mail has been a standard feature of Panorama since version 5.0. But what if
you want to send HTML e-mail with images? This sample file demonstrates a way to do this using Python.
The database fields include a list of images (which must be in the same folder, a plain text version of the e-
mail, and an HTML version of the e-mail.

The image files must be stored in the same folder as database.

Chapter 4:Working With Alternate Programming Languages Page 783
Let’s jump to the end — when you press the Send Email button a fancy e-mail is sent, complete with HTML
text and pictures.

If you send the e-mail to someone that has a plain text e-mail client they’ll see only the plain text.

Page 784 Panorama Handbook
Here is the complete procedure that actually composes and sends the e-mail.

There are three permanent variables that contain the URL of your SMTP server as well as your user name and
password on that server. These variables are set up elsewhere, either with a form or in another procedure.

permanent smtpServer,smtpUser,smtpPassword

Chapter 4:Working With Alternate Programming Languages Page 785
Next the code prepares the list of images. First it expands each image name into a complete HFS path (for
example LostCanyons.jpg becomes something like Disk:Folder:LostCanyons.jpg). Then the second arrayfilter
converts these paths into a format compatible with UNIX (for example Volumes/Disk/Folder/LostCan-
yons.jpg).

local hfsImagePaths,unixImagePaths
arrayfilter Images,hfsImagePaths,cr(),dbpath()+import()
arrayfilter arraystrip(hfsImagePaths,cr()),unixImagePaths,cr(),unixshellpath(import())

Now the variable unixImagePaths contains the list of paths and images in UNIX format. We’ll use this list in
the Python code momentarily.

On to the Python code, which starts by including the libraries necessary for manipulating MIME multi-part
e-mail:

from email.MIMEMultipart import MIMEMultipart
from email.MIMEText import MIMEText
from email.MIMEImage import MIMEImage

Next it gets the From and To addresses from Panorama:

strFrom = $«From»$
strTo = $«To»$

Now we’re getting somewhere — the next few lines build the e-mail message object and fill in the e-mail
header fields.

msgRoot = MIMEMultipart('related')
msgRoot['Subject'] = $«Subject»$
msgRoot['From'] = strFrom
msgRoot['To'] = strTo
msgRoot.preamble = 'This is a multi-part message in MIME format.'

The message body is added to the object next, in both plain and HTML versions.

msgAlternative = MIMEMultipart('alternative')
msgRoot.attach(msgAlternative)
msgText = MIMEText($«Plain»$)
msgAlternative.attach(msgText)
msgText = MIMEText($«HTML»$, 'html')
msgAlternative.attach(msgText)

Now for the images. The first step is to get the list of images into a Python array. The Python splitlines(func-
tion takes that carriage return delimited list from Panorama (the one that we prepared at the top of the proce-
dure) and splits it into separate array elements.

images = $«unixImagePaths»$.splitlines()

Now a Python loop iterates over each image to add them to the e-mail object. The code reads each image
from disk into the msgImage object, adds an id (image1, image2, image3, etc.) then attaches the image to the
e-mail object.

i=1
for image in images:

fp = open(image, 'rb')
msgImage = MIMEImage(fp.read())
fp.close()
msgImage.add_header('Content-ID', '<image'+str(i)+'>')
msgRoot.attach(msgImage)
i+=1

Page 786 Panorama Handbook
Before moving on lets discuss the image id’s a bit further. These id’s are used within the tags in the
HTML source to specify what image you want to display where. For example the first image is displayed by
including the tag in the text, the second with , etc. These tags
much mach the Python code, so if you changed the Python code to:

msgImage.add_header('Content-ID', '<picture'+str(i)+'>')

then you would have to use the tags , etc. in the HTML
text.

Ok, back to our e-mail sending program. The e-mail message is complete with all attachments, now all we
have to do is send it. Python has a SMTP library that does all of the heavy lifting for us.

import smtplib
smtp = smtplib.SMTP()
smtp.connect($«smtpServer»$)
smtp.login($«smtpUser»$,$«smtpPassword»$)
smtp.sendmail(strFrom, strTo, msgRoot.as_string())
smtp.quit()

That’s it — the e-mail message is on its way!

Chapter 4:Working With Alternate Programming Languages Page 787
PHP — Extract EXIF Information from Images

This example is a modified version of the Image Drops example described in Chapter 16 (see “Flash Art
Image Drag and Drop” on page 779). The Image Drops example allows images to be added to a database sim-
ply by dragging the images from the Finder. This modified version works the same way, but it automatically
extracts the EXIF information from the image and puts it into the Notes field.

Page 788 Panorama Handbook
If you are not familiar with EXIF this is a message for embedding data within an image. Cameras use EXIF to
embed detailed information about the image into the image itself. Here is the embedded information for this
image, which was taken with an iPhone.

FileName = IMG_0043.JPG
FileDateTime = 1185506593
FileSize = 448599
FileType = 2
MimeType = image/jpeg
SectionsFound = ANY_TAG, IFD0, THUMBNAIL, EXIF
COMPUTED = Array
Make = Apple
Model = iPhone
Orientation = 1
ResolutionUnit = 2
DateTime = 2007:07:26 20:23:13
FNumber = 14/5
DateTimeOriginal = 2007:07:26 20:23:13
DateTimeDigitized = 2007:07:26 20:23:13
ColorSpace = 1
ExifImageWidth = 1600
ExifImageLength = 1200

Here is the procedure that is triggered when an image file is dropped on the database.

The first line accepts the images and puts the image names and paths into the database. See see “Flash Art
Image Drag and Drop” on page 779 to learn more about the dropimagesfromfinder statement.

dropimagesfromfinder “field="Image"”

The rest of the code is a loop that processes all images that have empty an Notes field. The procedure starts
from the top and works its way through each image. The code uses PHP’s EXIF library, which you can learn
more about here:

http://us.php.net/manual/en/function.exif-imagetype.php

Chapter 4:Working With Alternate Programming Languages Page 789
For each image the first step is to find out what type of image (if any) this is.

$imageid = $«unixshellpath(Image)»$;
$imagetype = exif_imagetype($imageid);

The $imagetype variable now contains a number denoting the type of image (1=gif, 2=jpeg, 3=png, 4=swf,
5=psd, 6=bmp, 7=tiff, 8=tiff, 9+ = other format). If the type is from 1 to 8 then the EXIF data is extracted from
the image:

$exifarray = exif_read_data($imageid);

To get this data back to Panorama it must be converted from an array into text and printed to standard out-
put.

foreach ($exifarray as $key => $value)
{

echo "$key = $value\n";
}

The only remaining step is to copy the data into the Notes field after the PHP code is done.

Notes=strip(ScriptResult)

Voila!

Page 790 Panorama Handbook
Using AppleScript to Control Panorama from Other Applications

So far we’ve discussed embedding other languages into Panorama, which is the most common need of most
Panorama users. However, it is also possible to embed Panorama code into an AppleScript, allowing Pan-
orama to be controlled by external scripts.

AppleScript is an unusual language in that it is not constant. Instead of creating a complete language, Apple
developed only a very skeletal framework. The rest is filled in by the actual application being programmed.
The result is that each application is programmed somewhat differently.

If you are an experienced AppleScript programmer, this list describes how Panorama fits into the AppleScript
scheme of things. (If this list doesn’t mean anything to you, go back and review one of the AppleScript books
listed above.)

If you examine this list carefully, you can see that AppleScript really gives you the same control over Pan-
orama that Panorama’s built in programming language gives you. Anything that can be done in a Panorama
procedure can also be done within an AppleScript program, and other applications can be programmed as
well.

Everything You Really Need to Know…

Although Panorama’s AppleScript dictionary includes over a dozen commands that can be used in a multi-
tude of combinations, most scripts involving Panorama boil down to two basic operations: 1) transferring
data between AppleScript variables and Panorama fields and variables, and 2) running programs written in
Panorama’s built–in programming language. The next two pages will show you the easiest methods to
accomplish these two operations, and should meet 99.95% of your Panorama AppleScripting needs without
even having to read the rest of the chapter.

Value of Cell

Within scripts, you’ll use the phrase value of cell to access and modify Panorama fields and variables.
This phrase must be followed by the name of the field or variable (in quotes). For example, this script checks
to see if the PaymentMethod field in the current record of the current database is MasterCard.

tell application "Panorama"
if Value of Cell "PaymentMethod" = "MasterCard" then

-- process master card
end if

end tell

The value of cell phrase may be used to access either fields or global variables. When it is used to access
a field, that field must be in the currently active database, i.e. the database with the frontmost window within
Panorama. (However, Panorama itself does not have to be the active application.)

• Panorama is not recordable.

• Panorama supports the object model for transferring num-
bers and strings between AppleScript and Panorama.

• Panorama does not support the whose clause.

• AppleScripts can launch Panorama procedures.

• Panorama procedures can be included within a script.

• Panorama procedures can launch AppleScripts.

Chapter 4:Working With Alternate Programming Languages Page 791
Using the AppleScript set statement, a script can copy Panorama database fields (or variables) into Apple-
Script variables. This example pulls the name and address out of the current database into the AppleScript
variable LabelText, then makes a label in WordPerfect.

tell application "Panorama"
set LabelText to ¬

Value of Cell "Name" & return & ¬
Value of Cell "Address" & return & ¬
Value of Cell "City" & ", " & ¬
Value of Cell "State" & space & ¬
Value of Cell "Zip"

end tell
tell application "WordPerfect"

copy LabelText
to beginning of paragraph 1

end tell

By reversing the order of the parameters, the set statement can be used to copy data into Panorama fields or
variables. This example gets the name of the topmost window in the Finder, then puts that name into a field
named Folder in the current database. (If there is a global variable named Folder, the name will go into the
variable instead of into a field.)

tell application "Finder"
set ActiveFolder to name of window 1

end tell
tell application "Panorama"

set Value of Cell "Folder" to ActiveFolder
end tell

It is also possible to access database cells by number instead of by name, although this is rarely of any use.
For example, to get the value of the first field in the database use value of cell 1, for the second field value of
cell 2, etc.

Executing Panorama Procedures

Using the execute statement, you can put a Panorama procedure right in the middle of any AppleScript. Sim-
ply type the procedure in quotes after the word execute. This example tells Panorama to open the form
Shipping.

tell application "Panorama"
execute "openform “Shipping”"

end tell

This example includes a single Panorama statement, but your procedure may be as complex as you wish.
Notice, however, that since the entire procedure must be surrounded by double quotes, you cannot use dou-
ble quotes within your procedure. There are several solutions to this: 1) you can use smart quotes, as shown
above, 2) you can use curly braces {} instead of quotes, 3) you can use single quotes instead of double quotes,
or 4) you can use \" for each double quote. All four of these methods are shown in this example:

tell application "Panorama"
execute "openform “Shipping”"
execute "openform {Shipping}"
execute "openform 'Shipping'"
execute "openform \"Shipping\""

end tell

Page 792 Panorama Handbook
The execute statement is not limited to a single statement or a single line. It can include complex proce-
dures like this:

tell application "Panorama"
Execute "field {Machine Type}
formulafill array(SystemInfo,1,{-})
field {System Version}
formulafill array(SystemInfo,2,{-})
groupup
field {Machine Type}
count
outlinelevel 1"

end tell

The execute statement does not make Panorama the frontmost application. If the procedure is going to dis-
play a dialog or allow the user to interact with a window, the script should activate Panorama (bring it to the
front) before using the execute statement. To bring Panorama to the front, use the AppleScript activate state-
ment.

Transferring Data Between AppleScript and a Panorama Program

Using the value of cell phrase, it’s easy to transfer data between AppleScript and the procedure in the
execute statement. This example uses Panorama’s dbinfo(function to get a list of the fields in the cur-
rently active database.

tell application "Panorama"
execute "global zFieldList
zFieldList=dbinfo(“fields”,“”)"

end tell
set dataFields to value of cell "zFieldList"
if dataFields contains "Address"

(* process address ... *)
end if

Here is a script that passes data to a Panorama procedure. This script is designed to be saved as an applica-
tion. When you drag and drop a text file (or files) on this application it will automatically import and append
the text files into the current database.

on open fileList
tell application "Finder"

repeat with oneFile in fileList
set filePath to oneFile as string
tell application "Panorama"

Execute "global importFile"
set Value of Cell "importFile" to filePath
Execute "openfile {+}+importFile"

end tell
end repeat

end tell
end open

Note: This example requires the Scriptable Finder, which is included with System 7.5 or later.

Transferring a Value Back From Panorama to the AppleScript (Returning a Value)

The procedure triggered by execute can return a value back to the AppleScript that called it. This is done with
the SetAppleEventValue statement.

setappleeventvalue value

Chapter 4:Working With Alternate Programming Languages Page 793
The value parameter is the value to return to the calling AppleScript. This value must be either text or an
integer (dates, floating point and non-integer fixed point values are not allowed). These examples return a
constant value, but any formula may be used.

setappleeventvalue "alpha"

setappleeventvalue 3

If the setappleeventvalue is used more than once within a procedure the last value set will be returned.

This example counts the number of open files in Panorama and sets the AppleScript variable dbcount to that
value.

tell application "Panorama"
 set dbcount to execute "setappleeventvalue linecount(info({files}))"
end tell

Here is a very similar example that sets the AppleScript variable dblist to a list of currently open files.

tell application "Panorama"
 set dblist to execute "setappleeventvalue info({files})"
end tell
set AppleScript's text item delimiters to return
set dblist to every text item of dblist

See the next section for an explanation of the last two lines of this example.

Working with Lists

One of AppleScripts powerful features is the List data type. Panorama does not directly support the list data
type, but you can easily convert between Panorama text arrays and lists, and back again.

Here is an example that transfers a text array to an AppleScript variable and then converts that variable into a
list.

tell application "Panorama"
Execute "global aString
aString=dbinfo({fields},{})"
set databaseFields to Value of Cell "aString"

end tell
set AppleScript's text item delimiters to return
set databaseFields to every text item of databaseFields

This example gets a list of all the currently running programs (called processes) and then converts that list to
a comma separated text array.

tell application "Finder"
set ProcessList to name of every process

end tell
set AppleScript's text item delimiters to ","
set ProcessList to ProcessList as text

The script could continue by passing the text array to Panorama for further processing. (Note: This example
requires the Scriptable Finder, which is included with System 7.5 or later.)

Page 794 Panorama Handbook
AppleScript & Panorama… The Rest of the Story

The previous pages cover everything you really need to know to do work with AppleScript and Panorama.
However, there is more to the story. Most of the material that follows really falls into the category of “more
ways to do the same things” and is not really vital.

Our guide throughout the rest of this appendix is the Panorama AppleScript dictionary. You can open and
view this dictionary from within the AppleScript Script Editor application.

The Required Suite

Like all other AppleScript savvy applications, Panorama supports the four required statements: open,
close, quit, and run.

The open statement opens one or more database files. This statement requires one parameter, a reference to
one or more files. If you want to reference a single file, simply include the word file followed by the name of
the file in quotes.

tell application "Panorama"
Open file "Address List"

end tell

Notice that in this example, the word file is part of the parameter, not part of the command. This is different
from Panorama’s openfile statement, which is all one word. (Of course you could also use the openfile
statement to open files, as shown here:)

tell application "Panorama"
execute "Openfile {Address List}"

end tell

Chapter 4:Working With Alternate Programming Languages Page 795
The print statement prints one or more database files. This statement is identical to selecting the files in the
Finder and choosing Print from the File menu. However, this method of printing give you no control over
what form is used for printing, or what records are selected for printing. To get control over these parameters,
use the execute statement with Panorama‘s print statement.

tell application "Panorama"
activate
execute "Openfile {Address List}
openform {My Report}
select Date>date({1/1/96})
print dialog"

end tell

The quit statement shuts down Panorama. The run statement starts Panorama up if it is not running. How-
ever, this statement is not really very useful because Panorama will start up automatically any time a script
asks it to do something by including the phrase tell application "Panorama" in the script.

The Core Suite

The Core Suite includes 9 additional statements you can use in your scripts.

The close statement closes a window. Unlike Panorama’s close statement, the AppleScript close state-
ment can close any window, not just the top window. For example, to close the 3rd window from the top, use
this script:

tell application "Panorama"
close window 3

end tell

The count statement counts windows or fields. Here is a simple script that counts the current number of
open windows in Panorama.

tell application "Panorama"
get Count windows

end tell

A slightly different format is required to count fields. This script counts the number of fields in the currently
active database.

tell application "Panorama"
get Count of every Cell

end tell

(Note: This of every format works with windows also, one of the many examples of redundancy in the
AppleScript language. This redundancy is not consistent, however, and you cannot say get Count cells to
find the number of fields in a database. Of course you could also create these examples with the execute
statement, using Panorama itself to count the windows or fields.)

The data size statement can be used to get the size of the contents of a field or variable. For example, suppose
the field Name in the current record contains John. In that case, the result of this script will be the number 4
(the number of characters in the name John).

tell application "Panorama"
get Data Size of Value of Cell "Name"

end tell

The do script statement launches a Panorama procedure. The procedure must be pre-defined in the cur-
rent database.

tell application "Panorama"
do script "Year End Totals"

end tell

Page 796 Panorama Handbook
The execute statement lets you put a Panorama procedure inside an AppleScript. Unlike the do script
statement, the execute statement requires no advance preparation in the database itself.

The exists statement can be used to determine if a field, variable, or window exists or not. This statement
returns a true-false result, and is usually used with the if statement. This script checks to see if the current
database has a field called Name. If it does contain such a field, the script converts the field to all upper case.

tell application "Panorama"
if Exists of Cell "Name" then

execute "field Name
formulafill upper(Name)"

end if
end tell

The get statement is the standard AppleScript get statement—it simply evaluates a value and puts it in the
Result variable. In the script editor you can open the Result window to see the contents of this variable,
which can be useful for debugging.

The move statement works with windows. Using this statement, you can change the order of the windows
within Panorama. Here are some examples of how the move statement can be used.

Move Window 2 to beginning

Move Window 1 to end

Move Window 1 to after Window 2

Move Window 1 to before Window 5

Move Window 1 to back of Window 2

The set statement is the AppleScript equivalent of the assignment statement in most programming lan-
guages. For example, in most programming languages you would add two numbers like this:

Sum=3+4

But in AppleScript this assignment is written like this:

set Sum to 3+4

The set statement is one of the most frequently used statements in the AppleScript language.

The Objects

Panorama has three types of objects that you can use in your scripts: application, window, and cell.

The application object refers to Panorama itself. You cannot modify this object, but you can get useful infor-
mation about it-the version, name, etc. This script prints the current database, but only if Panorama is the
topmost application.

tell application "Panorama"
if frontmost

execute "print dialog"
end if

end tell

(Note: One of the properties of an application is its version number. The dictionary says that this is a string.
However it is not a string or a number, but a special class. There is not much you can do with this special ver-
sion class. Unfortunately, this is consistent with other applications, including the Scriptable Finder.)

Chapter 4:Working With Alternate Programming Languages Page 797
The window object refers to Panorama windows. A window may be identified by its name or by a number
(with 1 being the topmost window). Here is a script that gets the name of the topmost window:

tell application "Panorama"
get Name of Window 1

end tell

In addition to the name, there are many other properties of a window that you can access: the window loca-
tion, its size, whether or not it has a close box or zoom box, and many more. See the Panorama AppleScript
dictionary for a complete listing of window properties.

Some window properties can be changed from AppleScript with the set statement. For example, you can
move a window to a new position using the bounds property.

tell application "Panorama"
set Bounds of Window 1 to {50, 100, 400, 250}

end tell

You can change the order of windows with the move statement. This script moves the third window to the
front.

tell application "Panorama"
activate
Move Window 3 to beginning

end tell

The activate statement is not actually necessary. It brings Panorama to the front, which makes it easier to
see the windows change order.

The move statement is very flexible for changing the order of windows. Here are some more examples of pos-
sible options.

Move Window 2 to beginning

Move Window 1 to end

Move Window 1 to after Window 2

Move Window 1 to before Window 2

Move Window 1 to back of Window 2

The cell object type is used for working with Panorama fields and variables. The most commonly used prop-
erty of cell objects is their value, as seen throughout this appendix (Value of cell "Name", etc.)

Another cell property is the index, or field number. (This property only applies to fields, not variables.) Here
is an example that gets the field number (1, 2, 3, etc.) of the field City.

tell application "Panorama"
get Index of Cell "City"

end tell

If the database contains fields called Name, Address, City, State and Zip then this script will return the value
3.

Page 798 Panorama Handbook
Another cell property is the cell Name. Again, this really only applies to fields, not variables. This script uses
the Name property to build a list of all the fields in a database.

tell application "Panorama"
set CellNames to {}
repeat with cellnumber from 1 to Count of every Cell

set CellNames to (CellNames & Name of Cell cellnumber)
end repeat
get CellNames

end tell

The script above will work fine and illustrates the Name property well, but by letting Panorama itself do
some of the work we can create a script that runs much faster.

tell application "Panorama"
Execute "global aString aString=dbinfo(“fields”,“”)"
set databaseFields to Value of Cell "aString"

end tell
set AppleScript's text item delimiters to return
set databaseFields to every text item of databaseFields
get databaseFields

The dictionary lists several other properties of cell objects (Best Type, Class, Default Type) but these really
aren’t of any use to AppleScript programmers (although they are used internally by AppleScript itself).

Chapter 5: Cross Platform Databases

Most Panorama databases can be prepared for cross platform operation in a few seconds. In fact, for most
files the process of transferring a file from the Macintosh to the PC is as simple as adding .pan to the file name
and transferring the file to the PC.

File Type/Creator vs. Extensions

The Mac OS uses an invisible 8 character designator to identify the type of each file. The designator is divided
into a 4 character type code and a 4 character creator code. If you are not a programmer you may not have
ever realized these codes were there, because they are completely hidden.

The Windows operating system does not have an invisible designator to keep track of file types. Instead,
Windows uses a visible designator appended to the end of the file name. This designator, called an extension,
is a period followed by 3 or 4 characters. For example, .txt is a text file, .exe is a program file (application), and
.pan is a Panorama database. If a filename doesn't have an appropriate extension, Windows can't tell what
kind of file it is.

Although there are hundreds of different extensions, there are only a handful that apply to Panorama data-
bases and their associated files.

Before a file may be used on the PC, it must have the correct extension added. If you only have a few files,
you may wish to simply type in the extensions yourself.

Since the Macintosh version of Panorama does not normally use extensions, we've mostly tried to hide them
within Panorama itself. For example, if you open a database named Checkbook.pan, Panorama will display it
simply as Checkbook in the window title, without the .pan extension. When you save a file with the Save As
dialog, it is not necessary to type .pan if the file original had a .pan extension -- Panorama will add the exten-
sion for you.

Extension Type of File

.pan Panorama Database

.pnz Panorama File Set

.pwp Panorama Word Processor File

.pct Macintosh Picture (PICT) File

.rsr Macintosh style Resource File

.txt Text File

Page 800 Panorama Formulas & Programming
Platform Converter Wizard

If you have more than a few files to convert you can use the Platform Converter wizard to help. The con-
verter can automatically convert an entire folder of files (including subfolders, if any). The converter exam-
ines the hidden type and creator codes for each file, and automatically adds the appropriate extension. The
Platform Converter can also convert Macintosh resource files for you (more on that later). If you are using
MacOS you’ll find the Platform Converter wizard in the Utilities submenu of the Wizard menu. (The Plat-
form Converter wizard is not available on Windows PC systems because by the time a file has been copied to
the PC, the hidden codes needed by the converter are gone. Platform conversion must be performed on a
Macintosh system, since that's where the hidden codes are accessible.)

Chapter 5:Cross Platform Databases Page 801
Converting from Macintosh to PC

To convert a file, group of files, or folder full of files from Mac to PC simply select the files in the Finder, then
drag them and drop them on the Macintosh to Windows section of the wizard.

The converter will scan each file and folder that was dropped (and subfolders, if any). Based on the hidden
file type and translation, the converter will add the appropriate extension to each file. As it performs the con-
version, the program keeps a log of everything it does. You can see the log by pressing the Log button. The
log also shows any errors encountered by the converter. Typical errors include a file name that would be
more than 31 characters long with the extension added (the PC allows 255 but the Mac only allows 31), a file
name that contains characters not allowed by the PC (for example slash or backslash), or a file type that can-
not be converted to the PC (an application, for instance).

Converting Resources

A Macintosh file may actually contain two separate components, called the data fork and the resource fork.
The resource fork can be used to hold custom menus, icons, text, pictures, and other items. Windows files,
however, only contain one "fork," which corresponds to the data fork.

The Panorama Platform Converter, however, can convert any file that contains a resource fork so that it may
be used on the PC. If the Resource Files option is checked, the converter will check each file to see if it con-
tains a resource fork. If it does, the converter will copy the resource information into the data fork of a new
file, with an extension of .rsr. The PC version of Panorama knows how to access the items (custom menus,
etc.) that are stored inside the .rsr file.

Converting from PC to Macintosh

If you create a Panorama database on the PC and then copy it back to the Mac, the new file will appear as a
generic icon on the desktop. To convert a file, group of files, or folder full of files from PC to Macintosh sim-
ply select the files in the Finder, then drag them and drop them on the Windows to Macintosh section of the
wizard.

The converter will scan each file and folder that was dropped (and subfolders, if any). Based on the extension
(.pan, .pnz, etc.) it sets the proper hidden type and creator code for each file, allowing the file to be accessed
properly on the Macintosh. If the Remove Extensions option is checked the converter also removes the exten-
sion from the file name. It does not, however, convert .rsr files back into Macintosh resource files. If the
Convert & Open option is checked then Panorama will open any databases after they are converted. (Note:
Databases converted from PC to Mac can only be opened with Panorama 4.0 or later. Older versions of Pan-
orama will not open these files!)

Page 802 Panorama Formulas & Programming
Converting from Panorama 3.x to V (Macintosh)

Panorama 3.1 and Panorama V can both co-exist on the same Power Macintosh computer, and in fact both
can be running at the same time! Databases initially created with Panorama 3.1 will automatically open Pan-
orama 3.1 when double clicked; databases created with Panorama V will automatically open Panorama V
when double clicked. Panorama V can open databases created with Panorama 3.1 or earlier simply by drag-
ging these files onto Panorama V or by using the Open File dialog. If you want Panorama V to launch auto-
matically when a Panorama 3.1 database is double clicked, you must convert it using the Platform Converter
wizard. After the database is converted it's icon will change from the old Panorama icon to a new icon.

To convert databases files so that they will automatically launch Panorama V instead of 3.1 select the files in
the Finder, then drag them and drop them on the Panorama 3 to V section of the wizard.

The wizard will scan the files and change each one to launch Panorama V instead of Panorama 3. If the
Convert & Open option is checked then Panorama will immediately open the databases after they are con-
verted.

Technical Note: The Panorama 3 to V conversion does not actually change the internal structure of the file.
Panorama 3, 4 and V share the exact same internal file structure. The only modification this conversion makes
is to change the hidden Type and Creator codes that the Macintosh OS uses to identify the application to be
launched when a file is double clicked.

Converting from Panorama V to 3.x (Macintosh)

To convert databases files so that they will automatically launch Panorama 3 instead of V select the files in the
Finder, then drag them and drop them on the Panorama V to 3 section of the wizard.

The wizard will scan the files and change each one to launch Panorama 3 instead of Panorama V. Note: If a
database was lasted opened on a Windows computer Panorama 3.1 will not be able to open the file, and it
will not be converted.

Chapter 5:Cross Platform Databases Page 803
Fixing a Database With Missing or Incorrect Type/Creator Information

The Macintosh operating system normally maintains special invisible codes that identify the type of each file,
and the application that created that file. These are called type and creator codes. Sometimes, however, these
invisible codes can get stripped from a file. When this happens the file will have a generic or incorrect icon.
One of the most common ways for this to happen is when sending a file via e-mail — some e-mail programs
do not correctly transmit the type and creator codes. It can also happen if the file is copied onto a PC format-
ted disk, then back to the Macintosh.

If a Panorama database loses its type and creator code, you can restore these codes by dragging the file (or
files) onto the Fix Type/Creator Codes section of the Platform Converter wizard.

Any file that is dropped on this section will have its type and creator codes modified to the correct codes for a
Panorama database. Be sure that you only drop files that you are sure are Panorama databases on this sec-
tion! If you drop a file that is not a Panorama database on this section, it will be modified so that its type and
creator code will fool the system into thinking that it is a Panorama database. Double clicking such a file will
cause Panorama to try to open the file thinking that it is a database, and may cause Panorama to crash.

Sharing Databases Across a Cross Platform Network

In addition to transferring files back and forth between a Mac and a PC, you can actually share a database (or
collection of databases) across a cross platform network. It's annoying on the Macintosh, but if you want to
use a database on both the Mac and PC, you must include the extension as part of the filename (.pan, etc.)
even when you are using the file on the Macintosh. To help keep the transition smooth, the Macintosh version
of Panorama slightly modifies it's behavior when it detects a database with the .pan extension. Just as when
using the PC version of Panorama, the extension is removed for internal use. So if you open a file named
Checkbook.pan, the window title will simply be Checkbook, without the .pan extension. When a file that was
originally opened with the .pan extension is saved, the .pan extension is automatically added to the filename,
whether you use Save, Save As, or Save A Copy As. The main goal is to keep any existing procedures that
reference file names working without changes whether there is an extension or not.

Cross Platform vs. Older Versions of Panorama

The processor used in Windows computers (x86/Pentium) stores numbers in a different format from the pro-
cessors used in Macintosh computers (PowerPC/68K). Since Panorama files contain many numbers, a con-
version must be performed when a database is moved to a different platform. Let's suppose a database is
created on a Macintosh. The first time the database is opened on any Windows machine, the numbers inside
the database are automatically converted to PC format in memory. The conversion only takes a split second,
so Panorama doesn't even notify you that the conversion is happening. When the file is saved, the file with
the converted numbers is written to disk. When you re-open the file on the PC, no further conversion is nec-
essary. However, if you transfer the file back to a Macintosh computer and open it, Panorama must re-convert
the numbers in the file. Again, this happens automatically, and in a split second. In fact, the whole process is
so transparent, you'll never notice it with one exception. The exception is if you attempt to open a file that has
been saved on the PC on an older (Panorama 3) version of Panorama. Since older versions of Panorama do
not have the conversion code, they will be unable to open the file. For now, the only solution is to make sure
you open and save the file on a Macintosh computer before attempting to use the file with an older version of
Panorama.

Page 804 Panorama Formulas & Programming
Cross Platform Font Usage

If a font has the same name on the Macintosh and the PC then it can be used in a database on either type of
computer. If the database is transferred from a Macintosh to the PC or PC to Macintosh the font will continue
to work properly.

Panorama has special handling for four special fonts.

On the Macintosh these four fonts are always present as universal fonts, so you can rely on them always
being available. We have created the four equivalent fonts for Windows computers to guarantee that these
fonts are always available on any computer. For example, if you create an object using the Geneva font on a
Macintosh computer it will automatically be translated to the Alpine font when displayed on a Windows PC
computer. If you want to make sure that your database will display properly on any computer you should
restrict yourself to using only these four fonts.

Cross Platform Programming

If you've been doing Panorama programming with a previous version of Panorama, you're probably won-
dering what it will take to get your procedures and formulas to work cross platform. The good news is, prob-
ably nothing! We've gone to great lengths to make Panorama for the PC completely compatible with previous
versions, as you'll see below. The payoff is that we have successfully ported several large Panorama applica-
tions to the PC without making a single change to the applications. No procedures were changed, no forms,
fields, nothing. These applications include the Panorama 3 MegaDemo, Power Team, and several complex
third party applications, including one with dozens of files and hundreds of forms and procedures.

So far we have encountered only one database that required changes to work on the PC - the Panorama On-
Line Reference. The changes required about 10 minutes to complete, and were needed because several proce-
dures referred to subfolders named •Statements, •Functions(, etc. Unfortunately, the • character is not
allowed in a Windows file or folder name, so it had to be changed. Basically, unless your database uses spe-
cial Macintosh only features (the System folder, AppleScripts, special Apple only characters) you shouldn't
have to touch your databases at all, just add extensions and go!

File Name Extensions and the OpenFile Statement

Windows files have extensions (.txt, .pan, etc.) and Macintosh files do not. We've programmed Panorama for
the PC so that in almost all cases, your existing procedures will work just fine even if they open other data-
bases. For example, suppose you have a database named Checkbook, and you want to open it inside a proce-
dure. It's simple, right? Just use the openfile statement:

openfile "Checkbook"

However, on the PC, the file that is opened is actually named Checkbook.pan. Don't worry, however -- Pan-
orama will automatically add the extension for you. You don't have to change your procedure at all, and it
will automatically work on either the Macintosh or the PC. By the way, it's ok to include the extension if you
wish:

openfile "Checkbook.pan"

However, this code is not portable. It will not work on the Macintosh unless the file is actually named Check-
book.pan.

Macintosh Windows

Geneva Alpine

New York Yankee

Chicago City

Monaco Block

Chapter 5:Cross Platform Databases Page 805
By the way, there is one case where the .pan extension will be automatically added even if you are on the
Macintosh. If the currently open file has a .pan extension, Panorama will assume that the file you want to
open has a .pan extension. This allows you to build a set of files that can be shared cross platform on a server
(which must all have a .pan extension, even when used on the Mac).

Confused? Don't be. The bottom line is you should pretty much always be able to leave off the extension
when using the openfile statement.

When programming on the Macintosh you can use the nodefaultextension statement to open a database
that doesn’t have a .pan extension even if the current database does have a .pan extension. For example, sup-
pose that you are working with a database named Contacts.pan. The procedure below will open the database
named Schedule.pan.

openfile "Schedule"

However, what if the database you want to open is actually called Schedule, not Schedule.pan. In that case
you must add the nodefaultextension statement immediately before the openfile statement, like this.

nodefaultextension
openfile "Schedule"

This revised procedure will open the Schedule database.

Name Extensions and Window Names

Panorama removes the .pan extension from the in-memory copy of the database. This means that you won't
see the extension in the window title, and should not include the extension when using the window state-
ment. Panorama also will not include the extension as part of the file name returned the
info("databasename"), info("windowname"), or info("files") functions. You also should not
include the extension in any statements or functions that require you to specify the name of an open database
(for example lookup(, grabdata(, arraybuild, etc.) Bottom line -- just keep programming the same way
you always have.

Flash Art Formulas

When the current database has a .pan extension and the Flash Art formula refers to a disk file (as opposed to
a picture in the Flash Art Gallery or a resource) Panorama will automatically add the extension .pct to the
final result (unless the formula generates an extension itself). You should make sure that any picture files
used in a Flash Art or Super Flash Art formula end with the .pct extension (the Panorama Platform Converter
will take care of this for you).

Using Partial Paths to Reference SubFolders

On the Macintosh you can use a "partial path" to reference a sub-folder of the folder that contains the data-
base. Partial paths always begin with a colon. For example, ":Photos:Grand Canyon" refers to a file named
Grand Canyon in the Photos folder (the Photos folder must be in the same folder as the database). When this
partial path is used on the PC, Panorama automatically converts the colons into backslashes for you. For
example, you might use a partial path like this in a Flash Art SuperObject or in the openfile statement.

Hard Coded Folder Locations

If your program contains hard coded folder locations (for example "My Disk:Samples:Contacts") these will
have to be changed. Of course, you probably don't have any, since these would not work on different Macin-
tosh systems either.

If you build a folder location with the folderpath(and dbinfo(functions, you'll still be alright. On the
PC, this will result in a path that looks something like C:\Samples\1999\, which can be fed into the folder(
function or used anywhere a path name may be used (for example Flash Art or the openfile statement).

The info("panoramafolder") function also works on both the Macintosh and the PC.

Page 806 Panorama Formulas & Programming
Is It a Mac or a PC?

Panorama V includes true-false functions for determining whether the current computer is running Win-
dows, OS 9 or OS X.

These functions are not available in earlier versions of Panorama. If you want your database to be compatible
with Panorama 4 you can test for Macintosh vs. Windows this way:

if folderpath(info("panoramafolder"))[2,3]=":\"
/* PC */

else
/* Macintosh */

endif

This works because all PC pathnames begin with a letter followed by :\, for example C:\ (main hard disk) or
D:\ (cd-rom).

Function Description

windows() True if running on a Windows computer

osx() True if running on a Macintosh OS X computer

os9() True if running on a Macintosh OS 9 computer

	Table of Contents
	Chapter 1: Formulas
	Formulas In Action
	Displaying/Printing A Formula
	Storing Formula Results in the Database
	Using a Formula to Locate/Select Information
	Formulas in Procedures
	Using the Formula Wizard
	Calculations with Database Fields
	Changing the Active Database
	Using Fields from Other Databases
	Topic and Functions Help Menus
	Function Search
	Special Formula Result Formats
	The Programming Reference Wizard

	Formula Components
	Formula Grammar
	Calculation Order and Parentheses
	Functions
	Multi-Parameter Functions
	Zero Parameter Functions
	Functions Menu
	Whitespace
	Grammar Errors
	Comments

	Values
	Constants
	Build in Constants: Pi, Carriage Return and Tab
	“Pipe” Delimited Constants
	Fields
	Using the Current Field
	Line Item Fields

	Variables
	Variable Names
	What’s Inside A Variable?
	The Life Cycle of a Variable
	Creating Variables in a Procedure
	Initializing Variables
	Variables and Data Types
	SuperObject Variables
	Variable Name Conflicts
	Permanent Variable Tips

	Special Characters
	Working With Extremely Complex Formulas
	How Large Should the Buffer Be?

	Arithmetic Formulas
	Dividing by Zero
	Overflow/Underflow Problems
	Adding Line Item Fields
	Basic Numeric Functions
	Scientific Functions
	Financial Functions

	Text Formulas
	Gluing Strings Together
	Functions for Taking Strings Apart
	Taking Strings Apart (Text Funnels)
	Numeric Start and End Positions
	Specifying Numeric Length Instead of Position
	Start/End Positions by Character Matching
	Cascading Text Funnels
	Character Matching in Reverse Gear
	Stripping Out Individual Words
	Multiple Matching Characters for Start/End Position
	Non-Matching Character for Start/End Position
	Limitations of Text Funnels
	String Testing Functions
	String Modification Functions
	Converting Between Numbers and Strings
	Characters and ASCII Values
	Working with Character Values
	Invisible Characters
	The ASCII Chart Wizard
	Showing Character Ranges with the ASCII Wizard
	ASCII Character Constant Functions
	Text Arrays
	Picking a Separator Character
	Working With Arrays
	HTML Tag and Tag Parsing Functions
	Tag Parameter Functions
	HTML Table Parsing Functions
	HTML/URL Conversion Functions
	HTML Generating Functions
	Encoding/Decoding Base64 Data

	Date Arithmetic
	Today’s Date
	Converting Between Dates and Text
	Date Functions
	Calendar Functions

	Time Arithmetic
	Converting Between Times and Text
	Time Calculations
	Time Calculations with Text
	Calculating Time Intervals Smaller Than One Second
	Time Code Calculations (Video/Film)

	SuperDates (combined date and time)
	Reminders
	Appointments vs. To-Do’s
	Creating and Modifying a Reminder
	Reminder Functions
	Alarms

	True/False Formulas
	Comparison Operators
	A beginswith B
	A endswith B
	A contains B
	A notcontains B
	A soundslike B
	A match B
	A matchexact B
	A notmatch B
	A notmatchexact B
	A like B
	Combining Comparisons
	A and B
	A or B
	A xor B
	not A
	Equals Comparison vs. Assignment
	True/False Values
	The ? Function
	Converting a Boolean Value to Text

	Linking With Another Database
	The Lookup Wizard
	Type Mismatch Problems
	Lookup Variations
	Looking Up Rates in a Rate Table
	Looking Up Multiple Fields From One Record
	The GrabData Function
	Looking Up Multiple Values at Once
	Linking Clairvoyance to the Lookup Key Field
	Looking Up Data in the Current File

	The Assign Function
	Zip Code Lookup
	US Post Office Abbreviation Functions

	Graphic Co-Ordinates
	Points
	Rectangles

	Colors
	Raw Binary Data
	The RPN Programmer’s Calculator
	Converting Between Different Bases
	Calculations with Reverse Polish Notation
	Boolean Operators

	Disk Files and Folders
	Resource Files

	Import/Export Functions
	System and Database Information Functions
	System Information
	User Information
	Variable Information
	Database Information
	Window, Form and Report Information
	Server Database Information (Panorama Enterprise)

	Custom Functions
	The Custom Functions Wizard
	Function Names
	Parameter Names
	Advanced Topic: The FDF File
	Advanced Topic : Creating Custom Functions In A Procedure
	The Custom Functions (ProVUE) Wizard

	Chapter 2: Procedures
	Programming Isn’t Magic!
	Introduction to (Panorama) Programming
	Procedures
	Statements
	A Simple Procedure in Action
	Creating a Procedure with the Recorder
	Recording Mouse Clicks
	Non Recordable Menus and Tools
	Recording Data Entry
	Writing a Procedure from Scratch
	Writing Statements
	Trying Out a Procedure
	Checking for Mistakes
	Mysterious Errors
	Closing the Window When a Procedure is Finished
	Re-Opening a Procedure
	Font and Size
	Adding a Recording to an Existing Procedure

	Programming Helpers
	The Programming Assistant Dialog
	Using the Assistant from the Keyboard
	Assistance Domains
	Getting Assistance with a Selection
	Smart Text Insertion
	The Programming Context Menu
	Help Submenu
	Mark Submenu
	Insert Field Name Submenu
	Insert Form Name Submenu
	Insert Procedure Name Submenu
	Topics Submenu
	Opening a Procedure or Form
	Selecting Parentheses Contents
	Comment/Uncomment
	Programming Reference Wizard
	Navigation Using the Search Panel and Topic List
	The Full Text Search Option
	Navigation Using the Topic, Statement and Function Menus
	Navigation Using HyperLinks
	Built In vs. Custom Statements and Functions
	Using the Template Panel
	Minimizing the Programming Reference Wizard

	Data Flow
	Assignment Statements
	Triggering Automatic Calculations
	The Define Statement
	The Set Statement
	The FormulaValue Statement
	Variables
	Creating a Variable
	Assigning a Value to a Variable
	Using a Variable in a Formula
	The Birth and Death of a Local Variable
	Long Life Variables
	Destroying a Variable
	Variable Accessibility
	Accessing “Dormant” Variables
	“Hidden” Variables and Fields
	Accessing Variables In Form Objects (Text or Images)
	Creating Variables with a SuperObject
	Permanent Variable Tips
	Displaying and Changing Variables

	Control Flow
	True/False Formulas
	Equals Comparison vs. Assignment
	True/False Values
	IF Statements
	ELSE Statements
	Nested if Statements
	Error Handling with if error
	CASE Statements
	LOOP Statements
	Stopping a Loop in the Middle
	Restarting a Loop in the Middle
	Subroutines
	CALL Statement
	Calling Procedures With Unusual Names
	Passing Values to a Subroutine (Parameters)
	Passing Values Back From a Procedure
	What if the parameters don’t match the procedure?
	Calling a Subroutine in Another Database
	Terminating a Subroutine in the Middle
	Mini Subroutines within a Procedure
	Subroutines and Local Variables
	The UseCallersLocalVariables and UseMyLocalVariables Statements
	Recursive Subroutines
	Using a Subroutine in a Formula (the CALL(function)
	Restrictions on Subroutines used as Formulas
	Other Control Flow Statements
	Jumping to an Another Location in the Program
	Stopping the Program
	Aborting a Program
	Controlling the Abort Process
	Doing Nothing for a While
	Building Subroutines On The Fly (The Execute Statement)
	Tips for On-The-Fly Program Writing
	Execute and Local Variables
	Using Execute to Process Arrays
	Do It Yourself Data Merge
	On-The-Fly Subroutine Error Checking
	Building Parameters on the Fly (Parameters in a Variable)
	Catching Program Errors (Especially for Web and other Server Applications)
	Custom Statements
	The Custom Statements Wizard
	Creating Your Own Custom Statement Library
	Creating a New Custom Statement
	Setting Up a Procedure Information Block
	Processing Parameters
	Optional Parameters
	Repeating Parameters
	Raw Parameters
	Debugging a Custom Statement
	Accessing Forms & Procedures in the Library Database
	Advanced Topic: Using Libraries In Other Folders

	Program Formatting
	Notes To Yourself
	“Commenting Out” Statements
	Organizing Large Procedures (The Mark Menu)

	Suppressing Display of Text and Graphics
	Updating the Display After (or Within) a NoShow Block
	ShowPage
	ShowLine
	ShowFields field,field,…,field
	ShowColumns field,field,…,field
	ShowVariables var,var,…,var
	ShowRecordCounter
	ShowOther field,code
	Checking NoShow Status
	Disabling the Watch Cursor
	Hide and Show

	Debugging a Procedure
	The Panorama Interactive Debugger
	The Debug Statement
	Using the Debugger
	Single Stepping
	Resuming Full Speed Execution
	Making Corrections to a Procedure
	Watching Computations
	Using the Inspector to Examine Fields, Variables and Formulas
	What Fields or Variables can be Displayed?
	Displaying Functions
	Error Detail Wizard
	Using the Error Detail Wizard
	Finding the Source of the Error
	Open Reference Wizard
	Copy to Clipboard
	Error Detail Problems
	Debugging with the TTY (Virtual Teletype) Wizard
	Using TTY with Growl
	Selective TTY Output (Modes)
	Keeping a Permanent Record
	Procedure Debug Log
	The Procedure Log Window
	Recording a New Log
	Decoding Parameters and Assignment Statements
	The LogMessage Statement
	The Log Menu

	Using the View Wizard with Procedures
	Searching All Procedures
	Displaying Source Code Statistics
	Exporting and Importing Procedure Source Code

	Cross Referencing
	The Cross Reference Wizard
	Opening a Form, Procedure or Crosstab
	Setting up a New Cross Reference
	Updating a Cross Reference

	50 Ways to Trigger a Procedure
	The Action Menu
	Action Menu Options
	Setting Different Menu Item Styles (Bold, Italic, etc.)
	Shortcuts/Command Key Equivalents
	Disabled Menu Items
	Separator Lines in a Menu
	Renaming the Action Menu
	Dividing the Action Menu into Multiple Menus
	“Unlisted” Procedures

	Live Menus
	The FileMenuBar Statement
	The .CustomMenu Procedure
	Programming the .CustomMenu Procedure
	The info("trigger") Function
	Processing Custom Menus with Simple IF’s
	Processing Custom Menus with Nested IF’s
	Splitting the Trigger into Menu/Item Names
	Menus with Modifier Keys
	Building Menus from Arrays
	Command Key Equivalents
	Menu Styles
	Disabled Menu Items and Separator Lines
	Submenus (Hierarchical Menus)
	Multiple Column Menus
	The WindowMenuBar Statement
	Advanced Topic: Live Menus Behind the Scenes
	Menu Titles
	Menu Items
	Submenus
	Formula Errors
	The menu(, menuitems(, arraymenu(and checkarraymenu(functions
	Helper Functions for Standard Menus

	Buttons
	Hidden Triggers
	Creating Hidden Trigger Procedures
	.About
	AutoGrow
	.ClearRecord
	.CloseWindow
	.CurrentRecord
	.CustomMenu
	.DeleteRecord
	.DialogKeyDown
	.Help
	.Initialize
	.KeyDown
	.ModifyRecord
	.ModifyFill
	Logging Changes (Audit Trail) with .ModifyRecord, .ModifyFill and info("modifiedfield")
	.NewRecord
	.OutOfBounds
	.ZoomFailed
	Data Entry Triggers
	Data Entry Triggers (Part Two)
	Hot Key Procedures
	HotKeys with Modifiers
	Universal HotKey Procedure
	Triggering a Procedure Every Second
	Triggering a Procedure Every Minute
	Triggering a Procedure As Soon As Possible
	Event Handler Procedures
	Text Editor SuperObject ..Handler Option
	Focus Procedure
	..OpenForm
	..ActivateForm
	..CustomAbout
	..CloseDatabase

	Chapter 3: Programming Techniques
	Accessing Files
	Files and Folders
	Combined Folder Location and File Name
	Folder ID’s and Paths
	Locating a File with Standard Dialogs
	Customizing the Standard File Dialogs
	Opening a Panorama Database
	Suppressing the Default Extension
	Appending Databases End-to-End
	Eliminating Duplicates in Appended Data
	Replacing the Data in a Database
	Saving a Panorama Database
	Closing a Database
	Shutting Down Panorama
	Importing Text Files
	Carriage Returns in the Data
	Importing a Text File into an Existing Database
	Importing from a Variable
	Importing HTML Tables
	Re-Arranging the Order of Imported Data
	Building the ImportUsing Formula on the Fly
	Exporting Text Files
	Exporting Line Items as Separate Records
	Analyzing Line Items
	Exporting Array Elements as Separate Records
	Opening a Document in Another Application
	Smart Merge Synchronization
	How Smart Merge Synchronization Works
	Adding Smart Merge to Your Database
	The Modified Field
	Adding New Records
	The Smart Merge Procedure
	Directly Reading and Writing Disk Files
	What’s in a File?
	Reading Data Files
	Reading Really Big Data Files
	Writing Data Files
	Copying Data Files
	Using FileSave and ArrayBuild to Export Data
	Reading and Writing Resource Forks
	Erasing a File
	Changing a File’s Name
	Changing a File’s Type and Creator
	Creating a New Folder
	Getting Information about a File
	Getting and Setting Additional File Information
	Accessing and Modifying File Permissions
	Building a List of Files or Folders
	Building a List of Disks (Volumes)
	Working with Resources
	Opening and Closing Resource Files
	Opening a Resource File in the .Initialization Procedure
	Reading a Resource
	Reading STR and STR# Resources
	Writing a Resource
	Deleting a Resource
	Renumbering a Resource
	Listing Resources
	Working with Multiple Resource Files
	Accessing the Windows Registry
	Getting Information About Registry Items
	Modifying Registry Entries
	Deleting a Registry Entry

	Monitoring Memory Usage
	Windows
	Opening a Window
	Specifying the New Window Location
	New Window Options
	Non Standard Window Styles
	Changing a Window’s Position/Options
	Changing a Window’s View
	Changing the Name of a Window
	Scrolling Inside a Form Window
	Closing a Window
	Trapping the Close Box
	Changing The Window Order (Who’s on Top?)
	Temporary “Invisible” Windows
	Databases Without Windows
	“Magic” Windows
	Window Clones
	Designing A Clone Window Application

	Alerts
	Displaying a Message
	Alerts With Multiple Buttons
	The Alert Statement
	Obsolete Alert Statements
	Suppressing Alerts
	The SuperAlert Statement
	The DisplayData Alert

	Dialogs
	Basic Text Entry Dialogs
	The SuperGetText Statement
	Obsolete Text Entry Statements
	The SuperChoiceDialog Statement
	Custom Dialogs
	Preparing a Form for Use as a Dialog
	Customizing the Dialog Code
	Options to the RunDialog Statement
	Editing Database Information with a Dialog
	Custom Dialog Menus

	Accessing and Modifying the Database Structure (Fields)
	Getting Information About Field Structure
	Modifying Field Structure Directly
	Hiding and Showing Fields
	Working With the Design Sheet
	Updating Database Structure From Another Database
	Transferring Permanent Variables
	Verifying Database Identity

	Database Navigation and Editing
	Moving Up and Down in the Database
	Moving Left and Right
	Moving “Left” and “Right” on a Form
	Moving to an Empty Line Item Field
	Adding and Deleting Records
	Modifying the Database One Cell at a Time
	Accessing and Modifying the Current Cell
	Accessing and Modifying the Clipboard
	Triggering Automatic Calculations
	Triggering Automatic Procedures
	The Set Statement
	The FormulaCalc Statement
	Opening the Input Box
	“Natural” Data Entry
	Natural Data Display
	Natural Data Entry
	Validating a Credit Card Number

	Moving Data Between Files
	Cross Database Assignment Statements
	Identifying Data to Move
	Transfer Function Parameters
	Single Record Transfer Functions
	grabdata(target database,data field)
	lookup(target database,key field,key value,data field,default value,summary level)
	lookuplast(target database,key field,key value,data field,default value,summary level)
	lookupselected(target database,key field,key value,data field,default value,summary level)
	table(target database,key field,key value,data field,default value,summary level)
	Clairvoyance and Lookups
	The SpeedCopy Statement (Multiple Assignments in One Statement)
	Multiple Record Transfer Functions
	lookupall(target database,key field,key data,data field,separator)
	lookupcalendar(target database,key field,key data,data field,separator)
	lookuprtime(target database,key field,key data,pattern,separator)
	After a Lookup…Modifying the Original Data
	Using Lookups for Display/Printing
	Using ArrayBuild to Transfer Data Between Files
	Posting Data to Other Databases
	The Post Statement
	The PostAdjust Statement

	Sorting
	Reducing Screen “Flashing”
	Making Sorts Even Faster

	Locating Information
	Finding Information
	A Handy Universal Find Procedure
	Find Next
	Selecting Information
	Handling Empty Selections
	Selecting Duplicates
	Live Clairvoyance™
	Adding a Cancel Search Button
	Clicking on the Live Clairvoyance List Object

	Summaries and Outlines
	Summary/Outline Examples
	Calculating Grand Totals
	Running Total
	Running Difference

	Transforming Big Chunks of Data
	Making Transformations Even Faster
	Numeric Calculations with FormulaFill
	Suppressing Zero’s
	Fill vs. FormulaFill
	Using FormulaFill to Transform Text
	Date Calculations with Formula Fill
	The SEQ Function
	Filling Empty Cells
	Automatic Numbering
	Propagate and UnPropagate
	Using UnPropagate to Eliminate Duplicates
	Change (Find and Replace)
	Changing with the Replace(Function
	Data Style and Color
	Accessing Style and Color in a Formula

	Processing/Transforming an Entire Array
	“Filtering” an Array
	Stripping Blank Elements From An Array
	Reversing the Order of an Array
	Using Regular Text Functions with Arrays
	Sorting an Array
	Removing Duplicate Items from an Array
	Building an Array from a Database
	Appending an Array to a Database
	Copying Between Multiple Variables and an Array
	Editing an Array using Separate Variables

	Processing/Transforming Binary Data
	Bits
	Bytes
	Words
	Long Words
	Creating Binary Values
	One Dimensional Arrays of Binary Values
	The CharacterFilter Statement
	The ChunkFilter Statement
	The TextFilter Statement
	Data Dictionaries
	Key/Value Pairs
	Storing a Key/Value Pair in a Dictionary
	Accessing Dictionary Entries
	Another Technique For Initializing a Dictionary
	Additional Methods for Modifying Dictionary Entries
	Looking Up a Dictionary Key Given Its Value

	Accessing the Internet
	Basic Web Access
	Fetching Web Pages
	Parsing Web Pages
	Fetching Images
	Relative URLs
	Submitting Forms
	Cookies
	Accessing Web Content
	Generating Map Images
	Generating the Same Map at Different Zoom Levels (Scales) or Sizes
	Adding an Interactive Map Interface to a Database
	General Zip Code Information
	Street Address Information
	White Pages
	FedEx Shipment Tracking
	Controlling Web and E-Mail Clients
	Displaying a Web Page
	Displaying a Web Page on a Local Hard Drive
	Displaying a Map
	Sending an E-Mail
	Sending E-Mail
	Channel Configuration
	Sending a single e-mail
	Sending multiple e-mails

	Programming Graphic Objects on the Fly
	Basics of Graphic Object Programming
	Selecting an Object by Name
	Selecting Multiple Objects
	Getting Information About Individual Objects
	Modifying Selected Objects
	Getting Information About Selected Objects
	Object ID Values
	Redrawing an Object
	Dragging a Rectangle
	Movable Dividers

	Drag and Drop
	Drag Items and Flavors
	The Dropalyzer Wizard
	Dragging Items from Panorama
	Dragging a Single Flavor
	Dragging Multiple Flavors
	Receiving Dragged Data
	The .DropProcedure
	Dropping Files and Folders on Panorama
	VCard Drag and Drop
	Drag and Drop (Obsolete Method)

	Program Control of SuperObjects™
	The Active SuperObject
	Accessing and Modifying a SuperObject’s Internal Data
	Internal Data Types
	Text Editor SuperObject Commands
	Text Editor Internal Data
	Text Display SuperObject Internal Data
	Word Processor SuperObject Commands
	Word Processor Internal Data
	Super Flash Art Commands (Including Movie Control)
	Super Flash Art Internal Data
	Converting Between Image Formats
	Working with JPEG Images
	Taking an iSight Snapshot
	Building Web Like HyperText Systems with Super Flash Art
	Preparing Pictures with Extractable Text
	Programming a HyperText Engine
	Extracting All Text of a Specific Style
	Creating Multi-Page Pictures
	Push Button Internal Data
	Flash Art Push Button Internal Data
	Data Button SuperObject Internal Data
	Flash Art Data Button SuperObject Internal Data
	Sticky Push Button SuperObject Internal Data
	Pop-Up Menu SuperObject Internal Data
	List SuperObject™ Commands
	Using Drag and Drop to Change the Order of Items in a List
	List SuperObject Internal Data
	Auto Grow SuperObject™ Commands (Elastic Forms)
	Auto Grow SuperObject Internal Data
	Super Matrix SuperObject™ Commands
	Super Matrix SuperObject Internal Data
	Scroll Bar SuperObject™ Commands

	Speech Synthesis
	The Speak Statement
	Embedded Speech Commands
	The StopSpeaking Statement
	The info("speaking") Function
	Buffered Speech
	Speaking Using the Speech Wizard

	Printing
	Selecting a View for Printing
	Selecting a Printer
	Changing the Current Printer
	Changing the Default Printer
	Getting Information About Printers
	Adjusting Page Setup
	Preparing Data For Printing
	Printing the Database
	Printing a Single Record
	Print Preview
	Printing Using an Alternate Form
	Printing Data in an Array
	Printing Directly to a PDF File
	Installing the CUPS-PDF Package
	Form Comments
	The FormSelect Statement
	Reading and Modifying Form Comments in a Procedure

	Accessing and Modifying Procedures
	Accessing a Procedure’s Source Code
	Changing a Procedure’s Source Code
	Creating a New Procedure
	Storing Procedures in a Dictionary

	Writing Your Own Channel Modules
	The ModuleInformation Procedure
	Channel Specific Procedures
	The Channel Workshop Wizard
	Previewing the ModuleInfo Procedure
	Creating the Module

	Chapter 4: Working With Alternate Programming Languages
	Choosing a Language
	AppleScript
	Shell Scripts
	Scripting Languages
	Perl
	Ruby
	Python
	PHP

	Code Embedding 101
	Quoting Embedded Code
	Embedding Code from a Text File
	Using Panorama Fields and Variables as Terms in an Embedded Program
	Using the Field Menu to Insert Fields Names
	Using a Panorama Formula as a Term in an Embedded Program
	Getting Data (Results) Back from Embedded Code
	Standard Output (stdout)
	Code Embedding Functions
	Code Embedding Statements and the ScriptResult Variable
	Bringing the Embedding Data Output Directly into a Panorama Field or Variable

	Advanced Embedding Topics
	The Embedded Code Pre Processor
	Transferring Dates from Panorama to Embedded Code
	Using Panorama Formulas “Bare” within an Embedded Program
	Generating Constant Values
	The External Script Wizard
	Dealing With Errors in Embedded Programs
	Working with External Editors
	Working with External Debuggers
	AppleScript Debuggers
	Shell Scripts
	Perl Debuggers
	Ruby Debuggers
	Special Embedding Options
	Specifying the Maximum Embedded Program Runtime
	Running Shell Scripts with Temporary Root Privileges (SUDO)
	Specifying the Embedded Code Folder

	Real World Embedded Code Examples
	AppleScript — Address Book Search
	Shell Script — File Info
	Perl — POP3 Mail Reader
	Ruby — Verify Email Domains
	Python — HTML + Plain Text Email with Images
	PHP — Extract EXIF Information from Images

	Using AppleScript to Control Panorama from Other Applications
	Everything You Really Need to Know…
	Value of Cell
	Executing Panorama Procedures
	Transferring Data Between AppleScript and a Panorama Program
	Transferring a Value Back From Panorama to the AppleScript (Returning a Value)
	Working with Lists
	AppleScript & Panorama… The Rest of the Story
	The Required Suite
	The Core Suite
	The Objects

	Chapter 5: Cross Platform Databases
	File Type/Creator vs. Extensions
	Platform Converter Wizard
	Converting from Macintosh to PC
	Converting Resources
	Converting from PC to Macintosh
	Converting from Panorama 3.x to V (Macintosh)
	Fixing a Database With Missing or Incorrect Type/Creator Information

	Sharing Databases Across a Cross Platform Network
	Cross Platform vs. Older Versions of Panorama

	Cross Platform Font Usage
	Cross Platform Programming
	File Name Extensions and the OpenFile Statement
	Name Extensions and Window Names
	Flash Art Formulas
	Using Partial Paths to Reference SubFolders
	Hard Coded Folder Locations
	Is It a Mac or a PC?

